ELEN E3084: Signals and Systems Lab
Lab VI: Analog Filter Design

1 Introduction

This lab corresponds to Section 7 of the Lathi course textbook, and here we’ll design four
basic types of filters: the lowpass, bandpass, highpass and bandstop filters. Filters are
used to eliminate unwanted signal components such as noise and distortion. For example,
a lowpass filter is used to suppress high frequency components of a signal. Also recall from
Section 5 of the textbook that an anti-aliasing filter (an analog lowpass filter) is used prior
to sampling of a continuous signal in order to get rid of high frequency components of the
signal. This is essential in order to maintain the integrity of the low frequency components
during sampling. Figure 1 shows ideal filter characteristics for lowpass, bandpass, highpass,
and bandstop filters.

IH({w)I IH({w)I
A A
1 1
>
(6] * (0] K Sk
Passband Stopband Stopband Passband Stopband
: @ _ (b)
IH{w)I IH({w)I
A A
1 | E— 1
o * — 0 > *
Stopband Passband Passband Stopband Passband
(c) (d)

Figure 1: Ideal filter characteristics of various types of filters. (a) Lowpass filter. (b)
Bandpass filter. (¢) Highpass filter. (d) Bandstop filter.

As can be seen from Figure 1, an ideal filter has a passband (unity gain) and a stopband (zero
gain) with a sudden transition from the passband to the stopband. There is no transition
band. However, for practical filters (see Figure 2), the transition takes place over a finite
band of frequencies. Moreover, for realizable filters, the gain cannot be zero over a finite
band (Paley-Wiener condition). We therefore define a stopband to be a band over which the

gain is below some small number G5 (maximum stopband gain), as illustrated in Figure 2.
Similarly, we define a passband to be a band over which the the gain is between 1 and some
number G, (minimum passband gain). In our design procedure, G,, Gy, w,, and wy will be
specified for lowpass and highpass filters. For bandpass and bandstop filters, G,, G, wpi,
ws1, Wy2, and wsy will be specified. In this lab, the gains (G, and G;) are specified in terms
of decibels and the frequencies are specified in radians.

IHGw)| IHGw)|
A A
177 1 7 N\
G, G,
G, : —c G, ‘ .o
o (*)p ws (0] 0‘)51 wpl wpz 0‘)32 -
k X * k *a ok x ok
Passband Transition Stopband Stopband + Passbana\ + Stopband
band Transition Transition
band band
@) (b)
IHG{w)| IHG{w)|
A A
1 1 —
Gy Go
[—— G) ——————
o ws wp > 0] wpl ('Jsl wsZ wpz »w
k ¥ * k x ok Kk
Stopband Transition Passband Passband Stopband Passband
band Transition Transition
band band
(©) (d)

Figure 2: Passband, stopband, and transitionband in various types of filters. (a) Lowpass
filter. (b) Bandpass filter. (c) Highpass filter. (d) Bandstop filter.

Before we begin, first go to the 1ab6 directory and start the diary function. This creates
a diary file that must be submitted to the LA or TA at the end of the lab session. Don’t
forget to turn off the function at the end of the session.

2 Lowpass Filter

In this section, we’ll design different classes of lowpass filters (Butterworth, Chebyshev, and
elliptic filters) for a given set of specifications. The students are highly encouraged to read
Sections 7.5 and 7.6 to fully understand the steps involved in designing a lowpass filter.

For each filter we design, we’ll test the filter with the musical signal used in Lab IV. A

MATLAB function wavinfo that reads a WAV file and plots the signal in both time and
frequency domain is provided. See how the input signal looks like by typing the following
command.

> wavinfo(’neneh32.wav’);

What is the duration of the signal?
What is the bandwidth of the signal?

Now, we’ll design a lowpass filter so that we can hear only the low frequency components of
the given speech signal. We’ll design 4 different classes of lowpass filters and compare them.

Design a Butterworth lowpass filter that meets the following specifications: G, = —2dB and
Gs = —20dB. You should determine your own passband and stopband edge frequencies (w,
and wy). You can look at the spectrum of the given signal and determine the frequency range
of the signal components that you want to filter. If time permits, the filter can be tested
with different values of edge frequencies.

A MATLAB function makefilter, which can be used to create a filter that meets a set
of given specifications, is provided. Note that the gains are specified in decibels and the
frequencies in radians.

> % wp and ws are the edge frequencies.
> [num, den] = makefilter(’lowpass’, ’butter’, -2, -20, wp, ws);

What is the filter order and the transfer function of the lowpass filter?
Now test the filter using the provided function, runfilter.

> runfilter(num, den, ’neneh32.wav’);

Does your filter behave as expected?

Design a Chebyshev (Type I) lowpass filter that meets the same set of specifications. Write
down the filter order and the transfer function of the lowpass filter. For this, we can again
use the makefilter function with the second parameter set to ’chebyl’.

What is the difference between the amplitude response of the Butterworth filter and that of
the Chebyshev filter? Which filter is better? Why?

Design an inverse Chebyshev (Chebyshev Type II) lowpass filter with the same specifications.
What is the difference between this filter and the Chebyshev Type I filter?

Design an elliptic lowpass filter with the same specifications.

Which lowpass filter would you prefer? Why?

3 Bandpass, Highpass and Bandstop Filters

Using certain frequency tranformations, the transfer functions of bandpass, highpass and
bandstop filters can be obtained from a basic lowpass filter design. The interested students
should read Section 7.7 of the textbook for detailed information about designing the filters
using frequency transformations. In this section, we’ll simply use the makefilter function
to create the filters.

3.1 Bandpass Filter

Design four bandpass filters (Butterworth, Chebyshev Type I, Chebyshev Type II, and ellip-
tic filters) that meet the following specifications: G, = —2dB and Gy = —20dB. Again, you
should determine your own passband and stopband edge frequencies. In this case, the edge
frequencies (w, and w;) are vectors with two elements. Make sure the frequencies are chosen
appropriately so that you can see the low and high frequency components of the given signal
are missing after it gets filtered.

> [num, den] = makefilter(’bandpass’, ’butter’, -2, -20, wp, ws);
> runfilter(num, den, ’neneh32.wav’);
> % Repeat the above commands for the other three classes of filters.

What is the filter order and the transfer function for each bandpass filter?
Do your filters behave as expected?

3.2 Highpass Filter

Design four highpass filters (Butterworth, Chebyshev Type I, Chebyshev Type II, and elliptic
filters) and test them with the given speech signal.

What is the filter order and the transfer function for each filter?
Do your filters behave as expected?

3.3 Bandstop Filter

Design four bandstop filters (Butterworth, Chebyshev Type I, Chebyshev Type II, and ellip-
tic filters) and test them with the given speech signal. Again, make sure that the frequencies
are chosen appropriately so that you only see the low and high frequency components of the
given signal after it gets filtered.

What is the filter order and the transfer function for each filter?
Do your filters behave as expected?

4 Lab Problems

In this section, using just lowpass and highpass filters, we’ll design bandpass and bandstop
filters. Assume two programmable black boxes are given as shown in Figure 3. Figure 3(a)
represents a lowpass filter whose edge frequencies (w, and w;) can be controlled, and Fig-
ure 3(b) represents a highpass filter. Using the given blocks in any way, draw a block diagram
representation of a system that filters the components of an input signal with frequencies
in the range [1K, 3K] Hz. In your diagram, clearly indicate the edge frequency values used
in the lowpass and highpass filters. Then, obtain the transfer function of the system you
designed and test the system with the audio signal we studied in this lab. Does your system
behave as expected?

LPF HPF

— —o ¢— (Q)p, Q)s)

(@,)
(@) (b)

—o

pr s

Figure 3: Black box representation of programmable lowpass and highpass filters. (a) Low-
pass filter. (b) Highpass filter.

Repeat the above procedure, but now the system should suppresses the components with
frequencies in the range [1K, 3K] Hz.

Hint:

1. First the transfer function representing each block of the system should be obtained.

2. You may find some of the MATLAB functions - series, feedback, parallel, and
append - useful when finding the transfer function of the whole system.

5 Appendix

This appendix lists the MATLAB code of the functions used in the lab.

wavinfo

function wavinfo(wav)

% WAVINFO Reads a WAV file and plots the signal both in time and frequency domain.
% wavinfo(wav)

)

% wav: name of a WAV file

% Read the input signal

[m,fs] = wavread(wav);

% Keep only a small part of it to speed up calculations
m = m(110000:230000) ;

t = linspace(0, length(m)/fs, length(m));

f = linspace(-fs/2, fs/2, length(m));

% Listen to it

soundsc(m, fs);

figure;

% Look at the original time signal
subplot(2,1,1); plot(t,m); grid on;
axis([min(t), max(t), min(m), max(m)]);
title(’The original time signal’);

% Look at the spectrum of the original signal
M = am_spectrum(m) ;

subplot(2,1,2); plot(f, M); grid on;
axis([min(f), max(f), min(M), max(M)]);
title(’The spectrum of the original signal’);

makefilter

function [num, den] = makefilter(type, class, Gp, Gs, wp, ws)
% MAKEFILTER Creates an analog filter that satisfies the given criteria.
% makefilter(type, class, gp, gs, Wp, Ws)

type: type of the filter - ’lowpass’, ’bandpass’, ’highpass’, or ’bandstop’
% class: filter class: ’butter’, ’chebyl’, ’cheby2’ or ’elliptic’

% Gp: minimum passband gain in dB

% Gs: maximum stopband gain in dB

% wp: passband edge frequencies in radians

% ws: stopband edge frequencies in radians

% num: numerator of the transfer function of the filter

% den: denominator of the transfer function of the filter

if “strcmp(type,’lowpass’) & ~“strcmp(type,’bandpass’) & “strcmp(type,’highpass’) & ~“strcmp(type,’bandstop’)
error(’Invalid option for the type of the filter.’);

end

if “strcmp(class,’butter’) & ~strcmp(class,’chebyl’) & “strcmp(class,’cheby2’) & “strcmp(class,’elliptic’)
error(’Invalid option for the filter class.’);

end

if strcmp(type,’lowpass’)

if strcmp(class,’butter’)
% Butterworth
[n, wn] = buttord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = butter(n, wn, ’s’);

elseif strcmp(class,’chebyl?’)
% Chebyshev Type I
[n wn] = cheblord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = chebyl(n, -Gp, wn, ’s’);

elseif strcmp(class,’cheby2’)
% Chebyshev Type II
[n wn] = cheb2ord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = cheby2(n, -Gs, wn, ’s’);
else
% Elliptic
[n wn] = ellipord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = ellip(n, -Gp, -Gs, wn, ’s’);
end
elseif strcmp(type, ’bandpass’)
if strcmp(class, ’butter’)
% Butterworth
[n, wn] = buttord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = butter(n, wn, ’s’);
elseif strcmp(class,’chebyl’)
% Chebyshev Type I
[n wn] = cheblord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = chebyl(n, -Gp, wn, ’s’);
elseif strcmp(class,’cheby2’)
% Chebyshev Type II
[n wn] = cheb2ord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = cheby2(n, -Gs, wn, ’s’);
else
% Elliptic
[n wn] = ellipord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = ellip(n, -Gp, -Gs, wn, ’s’);
end
elseif strcmp(type, ’highpass’)
if strcmp(class,’butter’)
% Butterworth
[n, wn] = buttord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = butter(n, wn, ’high’, ’s’);
elseif strcmp(class,’chebyl’)
% Chebyshev Type I
[n wn] = cheblord(wp, ws, -Gp, -Gs, ’s’);

[num, den] = chebyl(n, -Gp, wn, ’high’, ’s’);

elseif strcmp(class,’cheby2’)
% Chebyshev Type II
[n wn] = cheb2ord(wp, ws, -Gp, -Gs, ’s’);

[num, den] = cheby2(n, -Gs, wn, ’high’, ’s’);

else
% Elliptic
[n wn] = ellipord(wp, ws, -Gp, -Gs, ’s’);

[num, den] = ellip(n, -Gp, -Gs, wn, ’high’,

end
else
if strcmp(class,’butter’)
% Butterworth
[n, wn] = buttord(wp, ws, -Gp, -Gs, ’s’);
[num, den] = butter(n, wn, ’stop’, ’s’);
elseif strcmp(class,’chebyl’)
% Chebyshev Type I
[n wn] = cheblord(wp, ws, -Gp, -Gs, ’s’);

’s?);

[num, den] = chebyl(n, -Gp, wn, ’stop’, ’s’);

elseif strcmp(class,’cheby2’)
% Chebyshev Type II
[n wn] = cheb2ord(wp, ws, -Gp, -Gs, ’s’);

[num, den] = cheby2(n, -Gs, wn, ’stop’, ’s’);

else
% Elliptic
[n wn] = ellipord(wp, ws, -Gp, -Gs, ’s’);

[num, den] = ellip(n, -Gp, -Gs, wn, ’stop’,

end
end

’s’);

fprintf(’The filter order n = %i\n’, n);
fprintf (°The transfer function of the filter is:\n’);
printsys(num, den);

% Plot the magnitude response of the filter
w = 0:1:2%pix4500;

w=w’;

[mag, phase, w] = bode(num, den, w);
figure;

plot(w, mag);

title([’The ’ type ’ filter (’ class ’)’]);

runfilter

function runfilter(num, den, wav)

% RUNFILTER Tests a given filter

% runfilter(num, den, m)

yA

% num: numerator of the transfer function of the filter

% den: denominator of the transfer function of the filter
% wav: name of a WAV file

% Read the input signal
[m,fs] = wavread(wav);
% Keep only a small part of it to speed up calculations

m = m(110000:230000) ;

t = linspace(0, length(m)/fs, length(m));
f = linspace(-fs/2, fs/2, length(m));

M = am_spectrum(m) ;

% Filter

sys = tf(num, den);

newm = lsim(sys, m, t);

% Listen to the filtered signal
soundsc(newm, fs);

figure;

% Look at the filtered time signal

subplot(2,1,1); plot(t, newm); grid on;
axis([min(t), max(t), min(m), max(m)]);

title(’The filtered time signal’);

% Look at the spectrum of the filtered signal
subplot(2,1,2); plot(f, am_spectrum(newm)); grid on;
axis([min(f), max(f), min(M), max(M)]);

title(’The spectrum of the filtered signal’);

