Theoretical Bounds on Control-Plane Self-Monitoring in

Routing Protocols

Raj Kumar Rajendran
Dept. of Electrical Engineering
Columbia University
500 W 120 st, #1312
New York, NY 10027

raj@ee.columbia.edu

ABSTRACT

The distributed routing protocols in use today promise terafe
correctly only if all nodes implement the protocol faitHful A
small insignificant set of nodes have, in the past, broughtran
tire network to a standstill by reporting incorrect routéoirmation.
The damage caused by these erroneous reports, in somecisstan
could have been contained since incorrect route reporteoms
reveal themselves as inconsistencies in the state-infamef cor-
rectly functioning nodes. By checking for such inconsiieaand
taking preventive action, such as disregarding selecta@neports,
a correctly functioning node could have limited the damagesed
by the malfunctioning nodes.

Our theoretical study attempts to understand when a céyrect
functioning node can, by analysing its routing-state, ctetbat
some node is misimplementing route selection. We presesthod-
ology, called Strong-Detection that helps answer the duresiVe
then apply Strong-Detection to three classes of routingogas:
distance-vector, path-vector, and link-state. For eaabs;lwe de-
rive low-complexity self-monitoring algorithms that taks input
the routing state and output whether any detectable aneshek-
ist. We then use these algorithms to compare and contrasethe
monitoring power of these different classes of protocoleeiation
to the complexity of their routing-state.

Categories and Subject DescriptorsC.2.2 Computer Communi-
cation Networks:Network Protocols:Routing Protocols

General Terms: Algorithms, Security, Theory, Verification
Keywords: Strong Detection, Routing Protocols, Distance-Vector

1. INTRODUCTION

Routing protocols enable a distributed set of nodes to deter
the flow of data over important networks such as the Intevhgta
result, ensuring that nodes throughout the network prgpemple-
ment the routing-protocol is of paramount importance. Theing-

*This work was supported in part by NSF grants ANI-0238299,

Vishal Misra
Dept. of Computer Science
Columbia University
1214 Amsterdam Ave.
New York, NY 10027

misra@cs.columbia.edu

*

Dan Rubenstein
Dept. of Electrical Engineering
Columbia University
500 W 120 st, #1312
New York, NY 10027

danr@ee.columbia.edu

protocols in these networks are distributed, and nodesatpéarde-
pendently, but must cooperate and “play by the rules” of thting
protocol if the network is to function correctly and effictgn

A node takes on two sets of responsibilities when it parditep
in a distributed routing protocol. Within the control plarieis
responsible foroute establishmentdentifying the paths through
which packets flow across the network. Within the data plétne,
is responsible for théorwarding of packets along these computed
routes. Routing can suffer if either of these responsiegiare mis-
handled, whether intentionally or by accident. This papeutes
on the control plane.

One or more nodes that misimplement route establishment can
cause widespread damage. The mostinfamous example is #BOAS
incident in which AS7007, running the BGP protocol, annadc
very short, inaccurate routes to most of the Internet [2bf. dver
two hours this disrupted connectivity to large tracts of lihernet.
Despite the publicity this incident generated, it is cldettserious
anomalous behavior continues to occur. More recently, %35
propagated more than 5000 improper route announcemenits aga
leading to global connectivity problems [4]. These accideiemon-
strate the need to guard against disruption in a networkechbg
misimplementations of the route establishment portion pfco-
col.

One solution is to introduce additional mechanisms thaifywer
the correctness of the selected routes. However, it mayfheutti
to deploy such modifications within existing protocols. &imgood
design philosophies seek to utilize all available inforioatand
avoid inessential mechanisms we attempt to understandsanithe
inherent capabilities routing protocols possess for s&fiitoring.
More to the point, when one considers a routing protocol $n it
current form, can analysis of the information that is exgehbe-
tween nodes during route establishment detect errors kéyewn
the network? If so what are the kinds of errors that can bectite

Our goal in this paper is to answer these questions by quantif
ing the intrinsic capability for self-monitoring that défifent routing-
protocols possess and to show how this capacity for intrctime

CNS-0435168, ANI-0133829, ITR-0325495 and research gifts ¢an be harnessedoward this we contribute the following:

from Microsoft, Intel and Cisco.

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGMETRICS'00une 12-16,2007,San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/000655.00.

e We expand on the notion of Strong Detection proposed in
[28] and show how it can be used to detedit errors de-
tectable through self-monitoring. We show that errors not
detectable through Strong Detecticemnotbe detected with-
out additional information by any other technique.

e \We construct low-complexity algorithms that implementBty
Detection for well-known classes of routing protocols.

e We develop computational measures that quantify the self-
monitoring ability of protocols and use them in a simulated

evaluation to compare popular classes of routing protocols

Our contribution in this paper is theoretical: we look at gexh
classes of routing protocols and show how they can be arilyze
for their ability to monitor themselves. We use Strong Detec
to reveal “bounds” on the kinds of errors that these clastesut-
ing protocols can detect. Hence, we are identifying “comipfe
classes” of routing protocols in terms of their self-moriitg abili-
ties. We also develop measures that provide insight intoetagive
state-complexity and self-monitoring ability of protosoWe hope
our work provides a rough guide to the relative self-moriitgrca-
pacities of the different protocols and will help in the dgsiof
robust protocols and in choosing protocols that providectireect
balance between complexity of state-information and tasce to
corruption.

The rest of the paper is organized as follows. We discustecla
work in Sec. 2 and introduce the theory of Strong Detection in
Sec. 3. In Sec. 4 we present the distance-vector, path+vaatb
link-state routing-protocols and provide practical impkentations
of Strong Detection for them. In Sec. 5 we provide experiraknt
verifications of our self-monitoring techniques throughmsiated
evaluations. We conclude our paper with Sec. 6.

2. PRIOR WORK

While several works have identified that disruption due tmin
rect implementation in routing-protocols is an importarglgem,
the approaches to solutions have been different. In [22]aladed
work the authors set out to identify nodes that show erroadia
havior, but in contrast to our work, they do so by analyziraffic
patterns (in routing parlance, they analyze data-plareewhile we
analyze control-plane data). Others emphasize the neeelifable
communication [36] and use centralized public-key infractures
or key-distribution mechanisms to address the problem 811,
12, 15, 31, 3]. However these works do not attempt to harrress t
self-monitoring capabilities that protocols possess.

The authors in [35, 34] address the question of decentchbee
curity in networks. They propose a toolkit of primitives thaan
be added to a routing-protocol to make it more secure. Oukwor
differs in that we attempt to detect incorrect behavior withmod-
ifying the protocols. Other works [24, 14] propose toolsttban
locate the source of routing misbehavior in the face of uagety
and insecure environments.

Some bodies of work have attacked broadly similar questions
Among these is competitive routing [23] where selfish usera i
communications network attempt to maximize their flow by-con
trolling the routing of their flows and the works attempt tocfiif
there exist equilibrium states. This body of work differghat they
are concerned with traffic flows rather than reachability esitth a
competitive environment rather than a misconfigured envirent.

The brief announcement [28] and [29] were among the first work
that provided a technique for detecting static inconsistsnwhile
being grounded in a theoretical framework. It complemettiteio
studies that have sought to understand the nature of migeenfi
rations [18] and yet others that aim to detect misconfigareti
through observance of dynamic behavior [16, 2, 32, 10, 6,25, 2
7].

Some recent work that has addressed this problem usestieuris
to make the best educated guess possible about the stateradtth
work, but can incorrectly infer that there are problems whrefact
none exist [8, 27, 9, 30]. Other work is willing to take advage
of simultaneous analysis of multiple perspectives [33]ereh for
instance, nodes are willing to share their routing tablerimiation.

3. DETECTING MISCONFIGURATIONS

In this section, we develop the idea of Strong Detection thic
will enable us to understand the types of misconfiguratibasyar-
ious classes of protocols can arehnotdetect.

We consider a networky = (V, E, W) whereV is the set of
nodes, F is the set of edges that connect pairs of nodes, l&hd
the corresponding edge-weights. Each nade V is aware of all
other nodes in the network and communicates directly witkta s
of neighbornodes, represented a8(n) = {N1, -+, Ny }-
Each noden also maintains a protocol-specifitate d,, where it
records some of the information exchanged. The informatmm
tained ind,, will vary depending on the protocol used.

A noden’s state can be thought of as a table of §iZéx | N (n)|,
whose entryd., (¢, §) in theith row andjth column is the informa-
tion reported to it by neighbor; about the path to node This
general framework does fairly well at classifying a wideiggyr of
routing protocols that “learn from their neighbors”. An exple
state for the Distance-Vector protocol is given in Sec 4.1.

Consider the perspective of noden the network. Suppose that
some other misconfigured or malicious nad@én the network in-
correctly implements the protocol, and reports erroneausimg
information to its neighbors. This erroneous informatiasulcl
propagate through the network, possibly alterihgand lead other
nodes, includingz, to select routes that are non-optimal.

If a noden analyzes route information received from other nodes
for incorrect implementations we call itraonitor. A monitor node
performs its usual routing protocol duties, but it atmdf-monitors
its own state for misconfigurations.

Before continuing, we state some ground rules that we agply t
keep the theoretical problem both tractable and well-digeti

o Stability: we assume that the analysis is conducted afteeso
have stabilized. In real networks whose underlying topplog
may continually change, routes are continually re-evaidiat
to account for changes in the underlying topology. Our as-
sumptions rule out our ability to detect “dynamic” errorath
can be induced by other types of misconfigurations.

e Detection, not identification: Our goal here is to desigrtec
nigues that detedhe existencef misconfigurations some-
where in the network. We show that sometimes, even de-
tection cannot be achieved. ldentifying the offender of the
misconfiguration once such a misconfiguration is detected is
a separate problem beyond the scope of this paper.

e Protocol Fixing: We evaluate the self-monitoring abiitie
of particular routing protocolas they exist One could ask
“what if the monitors somehow obtained some additional in-
formation beyond the information gathered in their respec-
tive states?”. For instance, what if forwarding along a eout
was attempted and the packet never reached the destination?
Clearly, additional information might enable identificatiof
misconfigurations that we show cannot be identified. Our
view is that this additional information obtained should be
viewed as an enhancement to the routing protocol.

e Correctness of Monitor: We assume that the monitor node
which does the evaluation operates correctly. Clearly, we
cannot make any claims about the validity of our techniques
when applied by misconfigured nodes.

3.1 Weak Detection

Can other nodes detect when a misconfigured riptiéroduces
an anomaly? This problem has been studied previously faifspe

protocols. For instance, in [25], it is shown that the trikengp-
equality can be applied within RIP [19] (a specific Distaneetdr
implementation) to detect certain misconfigurations.

A shortcoming of this previous method is that it identifiepa-s
cific property (in the case above, the property is the triarigh
equality) that the state at a node (or set of nodes) shoulibiexh
and then looks for violations only of this specific propertithin
the node’s state. If a violation of this property is identifiehen
clearly this is sufficient evidence that the network is exinlg a
misconfiguration. However when a violationrietfound, this does
not necessarily mean that a misconfiguration dom®xist.

nla b
al0 2
bl2 0 1 v ?
X z
c|3 1 O O O
d|3 3
i Figure 2: Undetectable Report
Figure 1: Node N'’s

state

Consider the example state-table in Fig. 1 where nods-
ecutes the Distance Vector Protocol along with four otheteso
a, b, c andd. Suppose that the length of every edge in the net-
work is known to equal either 1 axo (i.e. no edge).c andb are
n’'s neighbors and are connected to it by edges of distance &. Th
distance-vector state-table of nodés shown in Fig. 1 where re-
ports to noden that its shortest-path distances to nodgsc andd
are respectively 0, 2, 3, and'3Similarly, nodeb reports distances
of 2, 0, 1, and 3 respectively to these four nodes.

In this state-table, symmetry is not violated sircandb both
report distances of 2 to each other. Similarly the triangerjuality
is not violated in noden’s state table. For instance,claims its
shortest path to nodehas length 3. If the sum of claimed shortest
path lengths fronu to b andb to ¢ was less than 3, the triangle
inequality would be violated, but in this graph, this sum agq.B.
However, one can see that a misconfiguration must in fact exis
using the following argument. If all the information idis state
were correct, then there clearly is an edge of length 1 fiota
¢ (the only way to get length 1 between them). Now sinacks
distance greater than 1 from the three nollesd it must attach to
b throughn (i.e. through the edges — n andn — b). So we have
the edges — n,n — b andb — c. Sinceb is distance 3 froml andn
andc are distance 1 frorh, it must be that! attaches ta. But then
d(a,d) =1 and not 3 as shown in Table 1. Therefore this network
cannot exist! Here, checking the symmetry and trianglelaéty
properties failed to identify the misconfiguration evenugb it was
possible for node: to detect a misconfiguration using its state.

We say that the triangle-inequality based method descebede
belongs to a class of methods that appgak DetectionA method
provides Weak Detection when, given a node’s state, aniegist
misconfiguration is not detected for one (or more) of two oeas

e The misconfiguration is undetectable, regardless of wigt-pr
erty is explored.

e The misconfiguration is detectable by checking some prop-
erty, but the Weak Detection method did not check the ap-
propriate property.

!Note here that we are assuming that the value reported irathe t
ble indicates the distance from the neighbor to the desimaiAn
alternative form often used is to have the value indicatedise
tance from the node itself to the destination through that neigh-
bor. Sincen knows the edge-length to its neighbor, the two forms
provide equivalent information.

3.2 Strong Detection

Our work investigates what is call&trong Detectiofi28] where
the goal is to construct methods that, like Weak Detectiothme
ods, detect misconfigurations. However, Strong Detectiethods
mustdetect any misconfiguration that is detectabl@byproperty.
Note however that there are some misconfigurations thabgres-
sible to detect, even by Strong Detection techniques. @ensie
simple situation pictured in Fig. 2 where node only edge goes to
nodey. Suppose node wishes to determine whether or not nage
is reporting accurate information.Since information atibe edge
ey has toalwayspropagate through nodg nodey can choose to
report any distance te. Hence ifx is the monitor it cannot detect
a misconfiguration ag.

A graphical depiction of Strong and Weak detection is presn
in Fig. 3. Thex — y plane represents the space of possible miscon-
figurations for a particular protocol and the axis perpeulgicto
that plane represents the space of protocols. The miscoafigos
of a particular protocol are shown to be broken up into twe:set
detectable and undetectable misconfigurations. Known \Vi2eak
tection techniques, such as the triangle-inequality, Ganded to
check for subsets of the detectable misconfigurations. eThexy
be Weak Detection techniques, unknown as of now, that magctet
other subsets of detectable misconfigurations. Howevem§De-
tection, by definition must deteatl detectable misconfigurations.
By definition, the region covered by Strong Detection eqiaés
detectable region, and thus encompasses the union of what is
tectable by weak detection.

Path-Vector
Link-State
Distance—Vector

Al'l M sconfigurations

s

riangle Inequality
7
Unknown Property|

Detectable

Un-detectable

uting
otocols

Figure 3: The Space of Misconfigurations

We start by providing a bird’s-eye view of how Strong Detenti
functions at a node, and then we show how it can be practically
implemented. The basic idea behind implementing Strong®et
tion at a monitor node: is to try to identify a network that could
yield the statel,, it obtained. More formally, le§ be the (possibly
infinite) set ofvalid network configurations, i.e., the actual network
must be described accurately by soGies G. For instance, if dis-
tance is computed in terms of the number of hops, thevould be
the set of networks with edges of length 1. If edge lengthsequ
propagation delay, the@ could be the set of all graphs, each of
whose edge lengths are all less than 500 (i.e., a conservagtjyer
bound on the propagation delay between a pair of nodes).

Supposen checks each networe € G. To check a particular
network G, n builds a “toy” network that describe§, and then,
in its local memory, simulates the routing protocol upors tfriet-
work) graphG to obtain a statef$ for the node inG that corre-
sponds toe. n then compares the stats in the “toy” networkG
to its actual statd,, in the real network.

There are two outcomes to consider:

e If no networkG € G satisfiesdS = d,,, then a misconfig-
uration must have occurred: there is no valid network that
would have generated the obtained state.

e Atleast oneG € ¢ satisfiesi$ = d,,. Thenn cannot detect
the misconfiguration, if one exists. This is because, from
n’s perspective, the actual network may be described-by
and when the routing protocol was run correctly, the retdrne
state waslf. On the other hand, the network might be some
other G’ Wheredff/ # d, when the routing protocol runs
correctly, but a misconfiguration produced.

The problem with Strong Detection, as described above,ds th
time needed to either find @ that produces a matching state, or
the (potentially infinite) time needed to demonstrate thate is no
matching graph.

3.3 Computationally Feasible Strong Detec-
tion
We now describe in generality how Strong Detection can be im-

plemented within a reasonable (i.e., low-degree polynfraraount

of time for a variety of protocols. The key idea is to identifgw to
construct a single special grapi, from within the space of valid
graphs,G, which we call thecanonical graph Noden with state

d. pictured in Fig. 4(a) runs the following procedure:

e n executes an algorithm (the details of the algorithm are-spec
ified later in the paper) that takes as input its stdtg,and
outputs a particular graps” with edge-weightss’, which
we refer to as theanonical graph This process is pictured
in Fig. 4(b).

e If G’ is a valid graph ¢’ € G), thenn next simulates the
routing-protocol orG’, producing simulated statk, for node
n as pictured in Fig. 4(b).

e If d,, = d,, then we have identified a valid graglf, and
hence there is either no misconfiguration or it is impossible
to detect, sinc&’ may accurately describe the network and
would causer to obtain statel,, within a correct implemen-
tation.

o If G'isnotvalid G’ ¢ G), orif (G’ € G) butd;, # d., then
there is no grapltz € G that would produce stat, when
the protocol is run on it. This is a rather strong claim and we
have proofs for the protocols we consider.

oTmMOO®>
NEPNNRRO
LnwrENORD
rwowwwn [l

e
Node-State @

Ln@RrNnORD
rwowwwn|l

LnwrNORD
rwowwwn [l

oTmoUow>
MR NN RO
oTmMOO®>
NENNRRO

(a) A Node’s State (b) The Canonical Graph

Figure 4: Strong Detection

This procedure applies to the very broad class of graphsevher
each pair of nodes j has a different sef; ; of allowable values for

w(i, 7), making a grapltz valid if and only ifw(i, j) € Si ;. The
Si,; are assumed to be known a priori (i.e., nadevould know
these values, and can be used as input to the algorithm that co
structs the canonical graph). Each $&f; can be distinct, and
can be any arbitrarily chosen collection of intervals whtmseer
boundary is closed (i.e., the intervals formisg; can be of the
form [z, y] or [z, y)). For exampleS4.c = {1, 3,[4.2 — 5.6]} and
Sp,c ={2,4,[5.1 — 7.6)} are valid allowable values for a single
graph. Our procedures apply to this broad class of graphssanl
otherwise stated.

We describe how the canonical gragh mentioned in Sec. 3 is
constructed for each of the protocols listed in Sec. 4.

4. THE PROTOCOLS

In this section we study a number of routing protocols anawsho
for each, how the Strong Detection technique introducecein S
can be applied by a self-monitoring node to check for debdeta
errors introduced by other nodes.

For each protocol, we outline its operation, describe tlagest
information contained in each node, present a low-compledi
gorithm to detect errors and prove that the algorithm dodsex
detect all detectable misconfigurations. We study the \iotig
protocols, illustrating the error-detection process facte with the
example graph of Fig. 5(a). In all figures noden the example
graph is the self-monitoring node.

e Distance-Vector
e Path-Vector with hop-by-hop distance

Path-Vector with total distance

Path-Vector with Incomplete Information

Link-State

4.1 Distance Vector

The popular RIP protocol was [19] an early implementation of
the Distance-Vector protocol. While RIP is currently notwide
use, variants of distance-vector remains popular in reseoonstrained
settings such as ad-hoc networks and sensor-nets becaitse of
simplicity and minimal footprint. AODV [26] is a widely know
on-demand version of the distance-vector protocol thasexiby
mobile nodes in ad-hoc networks.

4.1.1 Model

A noden’s state in distance vector is a table of sjz& x | N (n)|,
whose entry,d,(i,7) in the ith row andjth column equals the
shortest path distance that neighbgrclaims exists from itself to
nodei 2.

4.1.2 Canonical Graph Construction

The canonical grapli’ is first initialized with all the nodes in
the network. Then every pair of nodgg in the graph is connected
with an edge whose weight' (i, j) is the smallest value if; ; that
is no less thamaxy,e v (n) |dn (k, 1) — dn (k, 5)|. * If no such value
exists (in the case where this maximum is larger than anyevialu
Si.;), then the edge is omitted (or, equivalently, sexid.

2An alternate view had,, (4, j) to be the shortest path distance of
noden to node: through neighboy. The two views can easily be
computed from one another.

3Note that it is this requirement that we choose a value nathess
the stated value that forces us to impose the requiremenetith
interval is closed from below.

After all edges are constructed,@ € G, the distance vector
algorithm is simulated o’ producing a state tabl&, for noden.
Thend,, is compared to the original state talalg within which we
are attempting to identify a misconfiguration.

The state of of node of the example graph of Fig. 5(a) is shown
in Table 5(b). The grapt’ that results from running the canonical-
constructor algorithm on the state table of Table 5(b) isashn
Fig. 5(c). Note that while the original graphi is not a complete
graph, the reconstructed graph is a complete graph. It can also
be verified that running the distance-vector algorithm dhegiof
these graphs produce the same state table of Table 5(b).

A C E
1 7 9 A B
5 A0 3
n 2 4 B 3 0
1 3 cl1 2
D|5 2
2 E|3 1
)
B 2 D 2 FLE | 4 2
(a) Example Graph (b) State-
Table
A i c) E
: A B
A0 3
n 3 1| B3 0
2 4 C 1 2
f D|5 2
2 1 E|3 1
B D, F F 6 2
(c) Canonical Construction (d) State-
Table with
Error
A i ¢] N E
6 5 A B
A0 3
N 3 3 B 3 0
2 C 1 2
i D|5 2
L E|3 1
B D , F F 6 3

(e) Canonical Graph with error (f) Computed
State

Figure 5: Distance Vector

THEOREM 4.1. In the distance-vector protocot],, is a valid
state table for some grap&¥ € G if and only if it is valid for the
distance-vector canonical graptiy’ € G.

The proofs can be found in the Appendix.

4.1.3 Misconfiguration Examples

Now let us consider a situation where there is a misconfigamat
and show how it is detected by nodé. Suppose that nod€
erroneously reports tal that its distance to nodé&’ is 5 instead
of the correct distance 3. Nod¥’s state will change and be as
pictured in Fig. 5(d) d's distance toF' has changed because of
C's error). Next nodeN constructs the canonical graglf from
its new state shown in Fig. 5(d) that contains the changestires
from C’s error. This canonical-grapt®’ constructed according to
the algorithm outlined earlier will be as pictured in Figeh(Note
that the weights on edgesr, ecr, egr andegr have changed
relative to the canonical-graph of Fig. 5(c) constructeairfrthe
correct state. As the final step in the process, n¥dexecutes the

distance-vector protocol on the canonical-gra@hof Fig. 5(e).
This will result in a statel’y as pictured in Fig. 5(f). Nodé&V will
compare this state to its staig; of Fig. 5(d) and will notice that
dn (F, B) = 2whiledy (F, B) = 3. Sincedn # d’y nodeN will
correctly conclude that there is a misconfiguration!

As a second example let us apply this methodology to the sam-
ple state of Fig. 1 we considered earlier where symmetry and
the triangle-inequality properties held and the only alitle edge-
weight was 1 (i.e.S;,, = {1} for all z,y). In that case we con-
cluded, through a complex logical argument, that there d:del
no valid graph that produced that particular state-table iN/s-
trate here how we could arrive at the same conclusion usimmn&t
Detection. Applying the canonical-constructor describbdve to
the state-table of Fig. 1 would produce a graph with just algee
betweerb andc of weight 1. This graph obviously has no path be-
tweena andd and therefore if we ran the distance-vector protocol
on this graph it would definitely not produce the state talflEig.

1. We conclude, without the complicated logic needed eathat
this state is the result of a misconfiguration.

4.1.4 Space and Time-Complexity

In performing Strong Detection, the self-monitoring node-e
cutes two new procedures: one to create the canonical-graph
its state, and the second to run the routing-protocol on &m®-
ical graph. The canonical graph constructed for distaresger in
Sec. 4.1 is fully-connected so h$| nodes andV'| x |V — 1]/2
edges requiring space of the order|bf/>. Executing the routing-
protocol on the canonical-graph requires the state for eade to
be stored. This requires space of the ordek|df|* wherek is ap-
proximately3 + 2|V [*/¢. Therefore the overall space-complexity
is O(|V|**1/) with a small proportionality constant.

Constructing each edge requires looking at the informapian
vided by each neighbor. So it has a time-complexity|df|*> where
d is the number of neighbors, or out-degree. Running the riista
vector routing-protocol on the fully-connected canonigedph has
time complexity ofO(|V|*). This is because at each node routes
need be computed f¢¥ | nodes by looking at information provided
by |V — 1| neighbors. However the canonical graph constructor of
Sec. 4.1 that produces a fully-connected graph is usedsrptper
mainly for ease of exposition. In practice, alternative arzinal-
constructors that produce a canonical-graph with an ogtese]
that is closer to that of the original graph will be used or filiéy-
connected canonical graph can be pruned off redundant.pfatins
such graphs wheré << |V|, executing the protocol has a time
complexity of O(|V|?). Therefore, in practice, the overall time-
complexity will beO(|V [?).

4.2 Path Vector with hop-distances

In the path-vector routing algorithm, each node maintaipath
(alist of nodes to be traversed) to each node in the netwako&*
ically each node exchangeemepaths with each neighbor and re-
computes its most-desirable path to each node in the netvesdd
on its individualpolicies Therefore each node’s state or view con-
sists of the most-desirable paths each of its neighborsnslad
other nodes in the network. We first consider a version of titep
vector routing algorithm where neighbors exchange coreglaths
to destinations and additionally the hop-by-hop distarfcthese
paths.

4.2.1 Model

Consider the same example network used earlier and piciored
Fig. 5(a). The state of node is as shown in Fig. 6(a) for this
network. Note that in this case, each node state consists, as

A B A B

d p d p d p d p
A 0 21 CA AlO - 3 CA
B 1,2 C.B 0 - B |3 cB |0 -
C 1 C 2 c cl|1 Cc 2 C
D| 122 CBD| 2 D D|5 CBD| 2 D
E 1,2 CE 1 E E |3 CE 1 E
F 1,3 CF 1,1 EJF F| 4 CF 2 E,F

(@) Path Vector
distances

with hop- (b) Path Vector

(c) Canonical Graph

Figure 6: Path Vector

o Initialize G’ with V/
e Foreach d, (i, j) do
— Foreach v; ind,, (i, j) do
* Add edgee;lii1 ,n; With weightv; if it does not already exist

* If edgee;mii1 g exists with weight not equal to; return er-
ror.

— done (for eachv,)

e done (for eachd,,)

Figure 7: Canonical Construction Algorithm for Path Vector

before, of a table of sizg/| x |V (n)|, whose entryd., (i, j) in the
ith row andjth column is the information reported to it by neighbor
n; about the path to node;. However eachl, (i, j) now consists
of two vectors of lengttk andk+ 1, ho, hi, ..., hg @andvs, ..., vg
whereh; € V andv, € W. The first vector is the ordered set of
nodes the shortest path froirto j takes while the second vector
represents the weights of the associated edges.

4.2.2 Canonical Graph Construction

Constructing the canonical graph for such a state tablediysit-
forward. For each path reported by any neighbor, edges \uith t
appropriate weights are added if they don't exist. Note #iht
edges in the original graph that do not participate in a pathbe
excluded from the canonical gragkf. A contradiction can arise
during the construction if multiple edges of varying lersytieed
to be constructed between two nodes. Such a contradictiplieisn
that the state table is erroneous. The algorithm is predentEig.
7.

The canonical graph constructed from the state-table ngidtin
Fig. 6(a) is pictured in Fig. 6(c).

THEOREM 4.2. In the path-vector protocolj,, is a valid state
table for some grapliz € G if and only if it is valid for the path-
vector canonical graphi:’ € G.

The proof proceeds similarly to that of distance-vector sramit-
ted.

4.2.3 Space and Time-Complexity

We consider the space and time complexity of the self-mdnigo
process here. The canonical graph constructed for patiowvat
Sec. 4.2.2 has approximatdly'| nodes and x |V| edges where

I is the average path-length ahds |V'|*/¢. Therefore the graph
requires space of the order [3f | x |V/|*/¢. Executing the routing-
protocol on the canonical-graph requires space of the afd&f|*
[V|'/4. Therefore the overall space-complexitydg|V |* x |V |1/4).

Constructing the canonical graph requires looking at ealgee
in all the paths, so has a time complexity equal to the number o
edges in all paths provide soilis< |V|. Running the path-vector
routing-protocol on the canonical-graph has time compjerf
O(d|V'|?) since at each ofV/| nodes, routes need be computed
to |V| nodes by looking at information provided hyneighbors.
Therefore the overall time-complexity will bl@(|V|?).

4.3 Path Vector

BGP is an example of a protocol that uses path-vector routing
BGP a node (known as an AS) computes its most-desirable path t
each node in the network based on its individualicies Therefore
each node’s state or view consists of the most-desirables ggtch
of its neighbors claims to other nodes in the network. We ictans
a simplified path-vector routing algorithm where the shetrgaths
are the most desirable paths.

4.3.1 Model

Here, neighbors exchange the total distances and commatis-
to destinations but dnot provide the hop-by-hop distance. That is,
they exchange the sequential list of nodes than must besed/¢o
reach a destination and the total distance of the compldtelpa
not the individual hop weights. Such a state is pictured @ B{b).

Even though, at first glance, it may seem that there is lesg-inf
mation in this state than in the state of a node where the lgelep
distance is also provided, it can be seen that the two stede&lp
identical information. This is because the individual hopights
can be inferred from the total distance as follows. If neighly;
reports a distancd(N;, X) to node X with path N;,...,Y, X
then it must be the case that the pathYfomust beN;,...,Y,
since if a shorter path existed 16 then the path to¥ throughY
would also include that path. Thereforery can be computed as
d(N;, X) — d(N;,Y) forall X,Y, in any reported path.

4.3.2 Canonical Graph Construction

Therefore the canonical graph is the same as for the casétof pa
vector with hop-by-hop distance and is also pictured in B{g).

4.3.3 Space and Time-Complexity

Since individual edge weights have to be computed from total
path lengths, an additiond]V’| operations need to be performed
relative to the algorithm for path-vector with hop-by-hoigtdnce.
This is small compared to the overall time-complexity.

4.4 Path Vector with Incomplete-Information

We now consider the path-vector algorithm, but in the caserarh
paths and total-distances are known to only a subset ofeafidkdes
in the network. This is the case in some on-demand path-vecto
algorithms, where paths to a destination node are compuibd o
when a packet needs to be delivered to the destination. landin
and mobile environments paths to a destination that are thde
preset limit are considered stale and are discarded anchiyee
generated when a new packet arrives for that destinatiorch Su
strategies lead to a situation where a node possesses attisl to
some subset of the nodes in its network.

4.4.1 Model

In this version of the path-vector algorithm, each node katve
paths and the total distance to a subsetC N of the nodes in the

network. Such a state is pictured in Fig. 8(b). Even thougiheth
are five non-neighbor node3, C, D, E, F, distances and paths to
only the two node®B and D are part of the state.

Unlike the “Path-vector with total-distance to all node$ja
rithm, in this case the individual link-weights cannot ajwabe
computed. Consider the example network of Fig. 8(a) and the
resulting state of Table 8(b) for a network where all lirdsg have
Si.;, the set of allowable weights, to be the real values in thgean
from21t0 3 @ < w;; < 3). From the state table we know that

@)

Wac + Wee + Wep = 8
and
2
and from theS; ; we further know tha < wae < 3,2 < wee <
3,2 <wep 3,2 <wer < 3,2 < wypg < 3. We have five
unknowns, two equations and five ranges for the five unknowns.
The value of the five variables cannot be uniquely determirad

the two equations and therefore the correct weights for ithies |
cannot be determined.

Wae + Wee + Wep + wypq = 10

4.4.2 Canonical Graph Construction

The canonical graph in this situation with incomplete infiar
tion can be constructed if we can determine allowable vafaes
each edge-weightu;; € S;,;), such that they satisfy the total dis-
tance requirement for each known path. So to determine thenca
ical path we need to find teasible solutiorfor the linear set of
equations given by the state-table with the requiremertt ttnest
each edge-weight also satisfies its boshd.

For the case wher§; ; is an interval on the real-line < w;; <
y,z,wij,y € R (i.e. each edge weight is known to belong to an
interval on the real-line) the problem reduces to finding ratial
feasible solution to a linear-programming probleth. The first-
phase of the Simplex algorithm produces such a solution &hd]
so can be used to generate the canonical géptSince the Sim-
plex algorithm is well known, we omit the details of compidat
and just show one feasible canonical graph for the stategofatb)
in Fig. 8(c).

A C E
3 3 9
5
n
2 2 Ag An
Y -
o - B| 8 CEB
8 D 2 F D| 10 CEFD
(a) Example Graph (b) State-Table
A (o} E
25 25 9
5
n
3 25
) O350
B D 25 F

(c) Feasible Graph

Figure 8: Path-Vector with Incomplete Information

for some graphz € G if and only if it is valid for the canonical-
graph for Path-Vector with Incomplete-Informatic@;, € G .

4.4.3 Space and Time-Complexity

The space and time complexities are the same as that for the
path-vector case except tH&f| in this case is the number of nodes
to which paths are known (rather than all nodes in the netvork

45 Link State

OSPF is an example of a protocol that uses Link-State routing
where each node maintains a list of the neighbors and distanc
to neighbors for each node in the network. Periodically isogbe
change their links (or list of neighbor nodes and weightshwach
neighbor. The process stops when each node has the conigtete |
of neighbors (and weights) for each node in the network. Fitim
information each node can recreate the entire network. efber
in the link-state protocol each node’s state is a snapstbeantire
graph. This property trivializes the analysis of detectimgconfig-
urations for link-state protocols. In fact, we have th#t= G. In
other words, imagine if nodewere to enumerate the set of possible
network graphs which, after correctly running the linktstproto-
col would produce its stat§;. The only graph in this set would
be G. Infact, if n1,ne,- -, n, are neighbors of and all neigh-
bor's states matclis state (i.e,S,, = S; for all neighborsj, then
clearly nodei cannot detect a misconfiguration. In contrast, if two
neighbors;z andy have states that remain fixed yet do not match,
Sz # Sy theni will detect a misconfiguration.

The above observation can easily be extended to the foltpwin
Theorem by applying the neighbor argument above along pdths
properly-configured nodes:

THEOREM 4.4. LetG = (N, E,W) be a graph running the
link-state protocol where a subset of nod&g, C N are properly
configured. Then a misconfiguration is detectable iff thedste
two nodesr,y € N’ whereS, # S, and there is a path from
to y through a series of nodes;, no, - - - , n, wheren; € N’ for
1<j<k

4.6 Asymmetric Links

We have considered networks with symmetric edges until now.
In cases where the underlying network has asymmetric lithes,
canonical graphs for the path-vector protocol proceed ashi®
symmetric case except that the edges are directed. The ieanon
cal graph for distance-vector proceeds similar to the caseym-
metric case with a couple of differences: the monitor's hbiy
nodes are connected to it with directed edges of the apartepdi-
rection. Additionally every pair of non-neighbor nodeg in the
graph is connected with a directed edge in each directionsevho
weight w’ (i, j) is the smallest value it$; ; that is no less than
maXpe N (n) dn(k, i) — dn(k, 7) (in undirected graphs we took the
absolute value of the difference betweén(k,:) and d,(k, 7)).
The proof that this method indeed produces the canonicghgra
for asymmetric distance-vector is similar to the proof fgmsnet-
ric distance-vector.

4.7 Multiple Perspectives

We have emphasized, until now, that our detection techriqoe
be applied to the protocol without modification or additibiméor-

THEOREM 4.3. In the path-vector protocol with incomplete-informgfigihn. We now consider how the same technique can be applied

where each edge weight is constrained to an interval on the re
line (x < wi; < ywherezx,w;j,y € RN), d, is a valid state table

4In general our canonical-graph constructions are valicaforore
generals; ;.

when a network has several monitor nodes and the monitorsnode
decide to collaborate with each other in detecting miscondig
tions. Sharing state information with other trusted mansitoan
help perform a more thorough and complete inspection.

We consider a situation where a subset of trusted monitoesod
S in the network have a trusted out-of-band communicatiom¢ha
nel available to them to communicate with each other. They ca
use this trusted channel to provide each other their stébenia-
tion. Therefore each node has a stéte= U,csd,, or a view of
the network that is the union of the states of the individuzdes.
With this additional information each node can perform dette-
tection that with just its own perspective. The procedureheck
for misconfigurations proceeds as before exceptdhat used to
construct the canonical graph rather thandheearlier.

5. SIMULATED EVALUATION

In this section we present the results of simulation expenirs
that study and distinguish the kinds of implementation rsrtbat
can and cannot be detected through self-monitoring. Wesdexi
series of experiments and apply them to each class of pristato
turn. Our experiments show that there is a clear increadeiself-
monitoring ability of path-vector protocols over distangector.
Additionally there is a clear correlation between the distiitity
of an anomaly and the distance between the monitor and thdtlia
is also clear that erroneous information about distancesuitiple
nodes are more easily detectable than isolated errors.

5.1 Experimental Setup

In our experiments we used five different networks with 5@,10
200, 400 and 800 nodes each. The networks were generated by th
BRITE topology generator [20] which attempts to create lsgtit
topologies that accurately reflect the actual Internet laggowith
respect to aspects such as hierarchical structure andedeigtebu-
tion. All networks araundirectedgraphs with flat AS-Level topolo-
gies constructed using the Barabasi model. The nodes waredgl
on the X-Y plane according to a heavy-tailed distributioetédls
can be found at [20]). The edge-weight of a link between two
nodes is set to be the Euclidean distance between the twsnode
The characteristics of the generated networks are givemleTL.

To ensure that our results were not influenced by the theyidios
crasies of individual graphs, for each graph-size (numbendes)
we generated 10 different graphs. Each experiment, fortecpéar
graph-size, was conducted on a graph randomly chosen arheng t
10 graphs of the same size.

Nodes | Edges Degree(%)

Avg. [1IT] 2 3[4]5
50 97 39 [0]58[14][6]6
100 197 39 (0|57(11|8|7
200 397 4.0 0|50 (|21|8]|6
400 797 4.0 0|49 | 20| 8| 8
800 1597 40 | 0| 50|19 9|5

Table 1: Network Characteristics

In all experiments one node, referred to as the monitor, és th
self-monitoring node and another node, referred to as #ne fiub-
lishes erroneous information to its neighbors. The comagte (the
liar) can propagate incorrect information in one of two waysan
understateor overstateits distance to some node. In both these in-
stances we attempt to determine how large the misstatereedsn
to be before it is detected by the monitor. We call these tigatne
and positive detection-threshol@s and7™.

To determine these thresholds we conduct a series of experi-
ments where we decrease the magnitude of the misstatemtiint un

we reach the point at which it is clearly not detected. We fist

a 100% misstatement and if this is not detected we set thetthre
old to be 100%. If the 100% misstatement is detected we make
the misstatements smaller in increments of approximat@¥g and
note the point at which it is no longer detected. We set thistgo

the detection threshold. Note that if none of the misstatesare
detectedl’™ is set to -100% and'™ is set to +100%.

In addition to detection-thresholds, we recorded what w ca
route-change detectioMisstatements by a node can change node’s
state without changing its routing (i.e. the change areigoificant
enough to warrant routing through a different node). Wedfae
recorded how often such a significant misstatement by thevka
detected at the monitor; i.e. the fraction of times that astaie-
ment that changed the monitor’s routing was detected.

We conducted two series of experiments for each protocauin
first series of experiments the corrupt node misstatesstauice to
asinglenode. In these experiments we studied how the detection
thresholds were affected by three different distances:ditiance
between monitor and liar, the distance between liar anddisalit,
and the distance between monitor and lied-about. In thenskse-
ries of experiments, the corrupt node misstated its digtdoall
nodesin the network simultaneously by a constant factor. We var-
ied this factor and determined the detection-thresholdsaaléer.

We again charted the detection threshdlds and 7" as a func-
tion of the distance between the monitor and liar. In all expents
node 0 was arbitrarily chosen to be the monitor, but the nbdée t
played the role of the liar varied. In both experiments tlae Was
chosen at random so that the distance between the monitdiaand
was uniformly distributed between 0% and 100% of the maximum
distance between the monitor and the node furthest fromtiién
network. The detecting thresholds were computed from tampa
the experiment between 100 and 500 times (depending onzée si
of the network) where the node that was lied-about was rahdom
chosen. In all cases we conducted the experiments on mate tha
one of the five networks with 50,100,200,400 and 800 nodes men
tioned above, to account for the effect of network-size agtavork-
characteristics on the ability of protocols to detect cptmodes.

5.2 Distance Vector (DV)

Our first experiment for the distance-vector protocol chine
understatement and overstatement detection threshold<uasc-
tion of the distance between monitor and liar when the liastaites
its distance to a single node. The understatement and aterstnt
thresholds are charted as a function of the distance betmeei
tor and liar, measured as a percent of the maximum distaraeyto
node, for the four of size 50,100,200 and 400 are shown in %ig.
In this figure, the curves at the top half of the charts indicat
the overstatement-threshold, while the plots at the bottalfindi-
cateT~ the understatement-threshold. The area above and below
the two respective sets of curves indicate detected mésataits
while the area between the two sets of curves indicate ucidete
misstatements.

An effect that is seen is that, as the distance between thardch
monitor increases, it is less likely that the lie will be detesl. This
is because a lie is less likely to reach the monitor if theifidurther
away. As the distance between two nodes increase, it is tebs a
less likely that their paths to other nodes pass through etwdr.
Interestingly, the plots in Fig. 9 also indicate that theed&tbility
of understated lies falls off less quickly in larger netwsatkan in
smaller networks.

In our second series of experiments we chart detectiorstiotds

5The words liar used here is not entirely accurate as a node mayas a function of the hop-distance between liar and monitenthe

misstate distances intentionally or inadvertently.

liar misstates distances &l nodes. The liar in this case simultane-

DISTANCE-VECTOR Detectabilty (Single Lie)

100 T T —
P

T T T)
Understate (50 nodes) —+—
P Overstate (50 nodes) ---x---
e Understate (100 nodes) ---*---

. “ Overstate (100 nodes) &
o Understate (200 nodes) —-#-—
- Overstate (200 nodes) ---6---
© Understate (400 nodes) -- -e-- -
Overstate (400 nodes) —-&-—

=3
50 -

50 F 4

Detection threshold (%change)

s L "
50 60 70 80 90

10 20 30 40
Distance from Monitor to Liar (hops)

100

Figure 9: DV: Misstatement to Single Node (hops)

DISTANCE-VECTOR Detectabilty (Lie about all distances)

T

T T T —— s ——
100 iy Ofiderstate (58" rodes) ~Sr—

/GA» Overstate (50 nodes) ---x---
S Understate (100 nodes) ---*---

s Overstate (100 nodes) &
Understate (200 nodes) —-#-—

S0 - Overstate (200 nodes) ---6--- -
Understate (400 nodes) - -e-- -

Overstate (400 nodes) ——-&-—

50 |

Detection threshold (%change)
Q
%
&

-100 | ! ! T
10 20 30 40 50 60 70 80 90
Distance from Monitor to Liar (% max. distance)

100
Figure 10: DV: Misstatement to All Nodes

ously misstates its distance to all nodes in the network lmnatant
factor. We again determine the detection-thresholds atlwtiiese
simultaneous lies become perceptible by the monitor. Thelt®
are charted in Fig. 10. By comparing it to Fig. 9 where the liar
misstated its distance to just a single node, it is cleargbel lies
are more detectable. The area above and below the overstatem
and understatement curves is relatively larger and thelsreeen
the curves is relatively smaller in Fig. 10. While the gehé&end

in Fig. 10 is clear, there is a kink in the detectability of th@0
node graph. We also noticed this kink in other experimentthen
200 node graph. Increasing the number of sampling pointaalid
smooth out this kink leading us to believe that local topalab
details of a network do affect detectability in that area.

In the next chart (Fig. 11) we plot the detection-threshalds
function of three distances: distance between monitor indiar
and lied-about, and monitor and lied-about for the netwoithw
400 nodes. We notice that detection-thresholds monottyiica
crease only when the distance is between the monitor andkthe |
The distance between the monitor and lied-about and thardist
between liar and lied-about are only weakly correlated tectéon.
These results indicate that in large networks, it may be ssug
to have multiple nodes applying Strong Detection techréqaesn-
sure that there is at least one monitor within a short digasfca
potentially corrupt node.

5.3 Path Vector (PV)

We next show the results of our experiments for the Path Yecto
protocol. The detection-thresholds when a corrupt nodestatiss
distances to a single node is charted in Fig. 12 as a funcfion o
the distance between monitor and liar. The distance is medss
a percent of distance to the furthest node in. It is clear ftbim

DISTANCE-VECTOR Detection Sensitivity (Single Lie)

100 - ———r : . s

,,,,,,, -e. o
- =
g

©
@
[nlo)

50 - Monitor - Liar (under) —+—
x Monitor - Liar (over) ---x---
Liar - Lied-about (under) ---%---
Liar - Lied-about (over) ~—&
Monitor - Lied-About (under) ——s—
Monitor - Lied-About (over) ---6--

50 F 4

Detection threshold (%change)

-100

4 "
20 30 40 50 60 70 80 90
Distance from Monitor to Liar (% max. distance)

100

Figure 11: DV: Effect of distances on detection

graphs that anomalies are more easily detected in pationibhan
distance-vector and that the distance between the momitbliar
clearly affects the monitor’s ability to detect anomalies.

It can be seen that overstatements are detected less often. O
reason for this is that overstatements do not propagate ah &8I
understatements. If a node overstates its distance to a ntu
nodes will ignore the path through the liar and use other path
However if a liar understates its distance, the path thrahgHiar
becomes appealing and attracts routes. We also chart thetidet
thresholds as a function of the distance between monitofianith
hops in Fig. 14.

Detection thresholds when a liar misstates its distanciknodes
is charted in Fig. 13 as a function of the hop-distance betviiee
and detector. Again, by comparing it to Fig. 12, it is cleattthis
class of lies are more detectable than lies to single-nodes.

Detection-thresholds as a function of the three distancemi-
tor to liar, liar to lied-about and monitor to lied-about arearted
in Fig. 15 for the 800 node network. Again it is clear that otilg
distance between the monitor and the liar is clearly coreeldo
the detection-thresholds.

5.4 Path Vector with Incomplete-Information

We next show the results of our experiments for the Path Vec-
tor protocol where nodes have information to only a fractibthe
nodes in the network. In this instance we wished to study Haw t
availability of route-information to more nodes affectée @bility
to detect errors elsewhere in the network. In our experisere
varied the fraction of nodes in the network to which the mariiiad
routes from 25% to 100%. The effect on the detection-thresho
curves as a function of the distance between monitor andnés-
sured in hops to a single node is charted in Figs. 16. A cldacef
is seen. As the fraction of the nodes to which paths are dlaila
increases, the chance of detection goes up. For exampledhe a
between the understatement and overstatement curves&(iimgdj
undetected errors) when routes to 100% of the nodes areabiail
is smaller than the area between the understatement anstateer
ment curves when routes to 25% of the nodes are availables Thi
fits our intuition that as more accurate data becomes avaitab
more likely that an error will be detected.

5.5 Multiple Perspectives/Monitors

In some situations there may be more than one monitor node. As
we saw earlier, the ability of monitor nodes to detect lids faff as
the distance between the monitor and liar increases. On¢icol
is to have multiple monitor nodes randomly distributed asrthe
network. This will reduce the distance between a poteritiakind

PATH-VECTOR Detectabilty (Single Lie)
100 — o e B
& 5]

T T i ot
Understate (100 nodes) —+—
7 Overstate (100 nodes) ---x---
¥ Understate (200 nodes) ---*---
P Overstate (200 nodes) &
; Understate (400 nodes) —-#-—
50 -/ P Overstate (400 nodes) --6---
] ¥ Understate (800 nodes) -- -e-- -
o Overstate (800 nodes) ——-&-—

Detection threshold (%change)

100 L— L L L e T e .
10 20 30 40 50 60 70 80 90 100
Distance from Monitor to Liar (% max. distance)

Figure 12: PV: Misstatement to Single Node

PATH-VECTOR Detectabilty (Lie about all distances)
100 T T L A

.o Understate (100 nodes) —+—
- Overstate (100 nodes) ---x---
Understate (200 nodes) ---%--- |
Overstate (200 nodes) &

Understate (400 nodes) ——#—
Overstate (400 nodes) ---o--
Understate (800 nodes) -~ -e- -
Overstate (800 nodes) ——-4-—

50

50 F

Detection threshold (%change)
o

;;';‘;.&,',',i:,—;
100 L—t L L L L L L L T—
10 20 30 40 50 60 70 80 90 100

Distance from Monitor to Liar (% max. distance)

Figure 13: PV: Misstatement to All Nodes

a monitor thereby increasing detectability. In this settiee will
study the effect of such increased monitoring on detectfdies.

While increasing the number of monitors will increase detbit-
ity the ability to detect liars can be further enhanced ifrt@nitors
cooperate. If the monitor nodes share their state infoonatior
example through a secure overlay) they will be able to comstr
an enhanced canonical graph, as outlined earlier, usingumeof
their states.. We now investigate how detectability insesaas the
number of monitoring nodes increase. We assume in thisosecti
that all monitor nodes cooperate and share information.

The results of our experiments for the Distance-Vector aatthP
Vector protocols are shown in Figs. 17 and 18 respectivelyr F
the Distance-Vector protocol we used graphs with 200 nodeés a
charted detectability when 1,2,4, and 8 monitors were udeat.
the path-Vector protocol we used 800 node graphs and chtimted
detectability when 1,2,4, 8 and 16 monitors were used. Tharad
tage of using multiple monitors can be clearly seen.

We also chart the detection-efficiency of the two protocalsa
function of the number of monitors used in Fig. 19. Again the
effect of using multiple perspectives can be clearly seen.

5.6 Comparing the Protocols

It is clear from the experimental results in Sec. 5 that daiae
thresholds and therefore the self-monitoring capabildyies for
the different protocols. Additionally it is clear from Sed. that
the state-complexity of the different protocol classeyvéan this
section we briefly attempt to quantify the difference in thedf-s
monitoring capabilities and state-complexities of diéetr proto-
cols and chart the trade-off.

A measure of the self-monitoring capacity of a protocol stiou
tell us about the ratio of lies it can detect relative to tles lit can-

PATH-VECTOR Detectabilty (Single Lie)
100 T

s S >

% ==="""" Understate (100 nodes) —+—
Understate (200 nodes) ---x---
Understate (800 nodes) ------
Overstate (100 nodes) &
Overstate (200 nodes) —-—=-—

50 - Overstate (800 nodes) --6---

Detection threshold (%change)

f

Distance from Monitor to Liar (hops)

Figure 14: PV: Misstatement to Single Node (hops)

PATH-VECTOR Detection Sensitivity (Single Lie)

100 @' T /)(»_,J_,w,,,, SES — ; : .
,‘a< e
a

*re Monitor - Liar (under) —+— o

Monitor - Liar (over) ---x---
/ Liar - Lied-about (under) ---%---
N Liar - Lied-about (over) &
Monitor - Lied-about (under) -~
Monitor - Lied-about (over) ---6--

50 F

Detection threshold (%change)

-100

1 1 1 ”
20 30 40 50 60 70 80 90 100
Distance from Monitor to Liar (% max. distance)

Figure 15: PV: Effect on distance on Detection

not. Since the set of all lies is infinite the measure has tovee o
some constant set of lies. We therefore define a protocd'sélf-
monitoring abilityd(P) for a set of liesS to be the ratio between
detected lies and all lies in the s&t

Self-Monitoring Abilityd(P) = |detected(S)|/|S|

where S is a set of lies, antbtected(S) is the set of lies in S that
are detected.

In Sec. 4 we computed the state-complexities of the difteren
protocols. We tabulate it here in Table 2 for convenience.teNo
that|V/| is the number of nodes in the netwotl| the number of
edgesd the average out-degree ahthe average path-length.

Protocol State-Complexity
Distance Vector 3+d
Path Vector 241
Path Vector (w hop-by-hop distance] 2(1+1)
Path Vector (Incomplete Information| 2(1+1)
Link-State 21+ |E|/IV])

Table 2: State-Complexity

We tabulate the self-monitoring ability of the differenppcols,
their state-complexities and their efficiencies for theanmek with
200 nodes in Table 3. The self-monitoring ability of the eliff
ent protocols is measured over the over the set of undenseais
uniformly distributed betweef% and —100%. We compute the
efficiency to be the ratio between the self-monitoring &piéind
state-complexity.

It can be seen that the distance-vector protocol detectntiad-
est fraction of lies, while the path-vector protocol showsim-

PATH-VECTOR with Incomplete Information Detection (400 nodes)
100

* » +
Understate (25% nodes) —+—
Understate (50% nodes) ---x---
Understate (75% nodes) ---%---

Understate (100% nodes) &
Overstate (25% nodes) --=-—
Overstate (50% nodes) ---e---
Overstate (75% nodes) ----®--
Overstate (100% nodes) -—---& -

50

Detection threshold (%change)

&
3 4 5 6
Distance from Monitor to Single-Liar (hops)

Figure 16: PV-II: Detectability

provement in detectability. The link-state protocol, whitan de-
tect all understatements unless the liar partitions thavorgg is
provided as a reference.

Protocol Monitoring Ability | State-Complexity| Efficiency
Distance Vector 10 3 3.3
Path Vector 32 8.6 3.7
Path Vector (w hop- 32 12 2.7
by-hop distance)

Link-State 100 8 13

Table 3: Efficiency

6. FUTURE WORK AND CONCLUSION

Our current work involves analyzing the ability of singledas
or groups of cooperating nodes to detect errors when grolps-o
laborating nodes misstate distances. Additionally we avesiti-
gating the ability of a node, or a group of nodes, to pinpoirg t
origin of an error. We are also interested in studying hovorsrr
propagate across networks as a function of the protocol asdd
as a function of characteristics of the network such as otivity,
diameter and degree-distribution.

In this paper we presented a theory that establishes bounds o
the kinds of errors that can and cannot be detected throufh se
monitoring in different protocols. We presented practiaijo-

(6]
(7]

8l

9]

. :) [10]
rithms for well-known routing protocols that show how thiebry
can be applied by a node which, through a simple analysisof it [11]
state-information, can check whether other nodes are indpe
erating as they are supposed to. Such policing mechanises, w
hope, will assist in identifying accidental misconfiguosis and [12]
malicious attacks and further act as a deterrent to malkcédtack-
ers, since careless attacks will easily be detected. 13
7. REFERENCES
[1] W. Aiello, J. loannidis, and P. McDaniel. Origin authigattion in interdomain
routing. InProceedings of the 10th ACM conference on Computer and [14]
communication securifpages 165-178. ACM Press, 2003.
[2] D.-F. Chang, R. Govindan, and J. Heidemann. An empistadly of router
response to large bgp routing table loadPimceedings of the second ACM
SIGCOMM Workshop on Internet measurment workspages 203-208. [15]
ACM Press, 2002.
[3] H.-Y.Chang, S. F. Wu, and Y. F. Jou. Real-time protocalgsis for detecting [16]
link-state routing protocol attack8CM Trans. Inf. Syst. Secp4(1):1-36,
2001. [17]
[4] J. Farrar. C&w routing instability. nanog mail archivesvailable at
http://www.merit.edu/mail.archives/nanog/2001-04g03209.html. [18]
[5] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. Radt@ek.
Measuring the effects of internet path faults on reactiwging. InProc. of [19]

ACM SIGMETRICS 2003, San Diego, Cin 2003.

DISTANCE-VECTOR Multiple-Perspectives (200 node graph)

100 —gx T T * T
P -

oo T e

Understate (1 monitor) —+—
.__.Oveérstate (1 monitor) ---%---
“Understate (2 monitors) ------ |
Overstate (2 monitors) &
Understate (4 monitors) ——s-—
Overstate (4 monitors) ---6--
Understate (8 monitors) -- -e-- -
Overstate (8 monitors) ~—-4-—

50 !

Detection threshold (%change)

100 . T K L
10 30 40 50 60 70 80 90

Distance from Monitor to Liar (% max. distance)

100

Figure 17: DV: Multiple Perspectives

PATH-VECTOR Multiple-Perspectives (800 node graph)
100 =

e T T T8
; o "
7 0 e

Understate (1 monitor) —+—
Overstate (1 monitor) ---%---
Understate (2 monitors) ---%--- _|

o Overstate (2 monitors) &
Understate (4 monitors) ——s-—
Overstate (4 monitors) ---o--
Understate (8 monitors) -- -e-- -
Overstate (8 monitors) -—-4-—
Understate (16 monitors) ------- -
Overstate (16 monitors) —v—

50 |-/

Detection threshold (%change)

-50

-100 1 L - .—
10 30 40 50 60 70 80
Distance from Monitor to Liar (% max. distance)

90 100

Figure 18: PV: Multiple Perspectives

N. Feamster, J. Borkenhagen, and J. Rexford. Contptlire impact of bgp
policy changes on ip traffic. INANOG25 2002.

N. Feamster, R. Johari, and H. Balakrishnan. Impligsiof autonomy for the
expressiveness of policy routing. 8iIGCOMM ’'05: Proceedings of the 2005
conference on Applications, technologies, architectuaes protocols for
computer communicationpages 25-36, New York, NY, USA, 2005. ACM
Press.

L. Gao. On inferring autonomous system relationshipthinternet. IrProc.
IEEE Global Internet Symposium, November 202000.

R. Govindan and H. Tangmunarunkit. Heuristics for inermap discovery. In
IEEE INFOCOM 2000pages 1371-1380, Tel Aviv, Israel, March 2000. IEEE.
T. G. Griffin and G. T. Wilfong. An analysis of BGP convergce properties.
In Proceedings of SIGCOMMvages 277-288, Cambridge, MA, August 1999.
Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne:: a secom-demand routing
protocol for ad hoc networks. IklobiCom '02: Proceedings of the 8th annual
international conference on Mobile computing and netwagkpages 12-23,
New York, NY, USA, 2002. ACM Press.

Y.-C. Hu, A. Perrig, and D. B. Johnson. Rushing attadks defense in
wireless ad hoc network routing protocols.Rmoceedings of the 2003 ACM
workshop on Wireless securifyages 30-40. ACM Press, 2003.

Y.-C. Hu, A. Perrig, and M. Sirbu. Spv: secure path vectuting for securing
bgp. INSIGCOMM '04: Proceedings of the 2004 conference on Appdioat
technologies, architectures, and protocols for computenmunications
pages 179-192, New York, NY, USA, 2004. ACM Press.

S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: afdfailure diagnosis in
ip networks. InMineNet '05: Proceeding of the 2005 ACM SIGCOMM
workshop on Mining network dat@ages 173-178, New York, NY, USA,
2005. ACM Press.

S. Kent, C. Lynn, and K. Seo. Secure border gateway pabigogp).|[EEE
Journal on Selected Areas of Communica}ib8(4):582-592, April 2000.

C. Labovitz, G. R. Malan, and F. Jahanian. Internetinguinstability.
IEEE/ACM Transactions on Networking(5):515-528, 1998.

D. LuenbergerLinear and Nonlinear Programming\ddison-Wesley
Publishing Co.: Reading Mass, 1984.

R. Mahajan, D. Wetherall, and T. Anderson. Understagdigp
misconfiguration. IrProceedings of ACM SIGCOMM 2002002.

G. Malkin. Routing Information Protocol Version 2. RF2253, November
1998.

Multiple-Perspectives
60

T
Understate (DV 100) —+—
Overstate (DV 100) ---x---
Understate (PV 200) ---%---
50 Overstate (PV 200) 8-,
5 . o -
@ P
5 40r -]
2 . * / a
g 30 /-]
g X /
= (oI 7)(,'
g 20}]
3 5
@ P
a o
10 gonmmame]
0 1
! 10

Number of Monitors

Figure 19: Utility of Multiple Perspectives

[20] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Warsal topology
generation from a user’s perspective. Available at httpuit.cs.bu.edu/brite/.

[21] S. Misel. Wow, as7007! Available at
http://www.merit.edu/mail.archives/nanog/1997-04g3340.html.

[22] A.T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. SavagetikaDetecting and
Isolating Malicious Routers. IRroc. of the IEEE Conference on Dependable
Systems and Networks (DSN)ine 2005.

[23] A.Orda, R. Rom, and N. Shimkin. Competitive routing imitiuser
communication network$EEE/ACM Trans. Netw1(5):510-521, 1993.

[24] V. N. Padmanabhan and D. R. Simon. Secure tracerouteteztfaulty or
malicious routing SIGCOMM Comput. Commun. Re83(1):77-82, 2003.

[25] D. Pei, D. Massey, and L. Zhang. Detection of invalidtiog announcements
in rip protocol. InProc. of IEEE Globecom, San Francisco, @ec 2003.

[26] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-dehdistance vector
(aodv) routing, 2003.

[27] P. Radoslavov, H. Tangmunarunkit, H. Yu, R. GovindarSBenker, and
D. Estrin. On characterizing network topologies and anatytheir impact on
protocol design. Technical Report USC-CS-TR-00-731, ©rsity of
SOuthern California, Mar. 2000.

[28] R. K. Rajendran, V. Misra, and D. RubenstédRIEF ANNOUNCEMENT
strong detection of misconfiguratiorrinciples of Distributed Computing
(PODC), page 40, July 2005.

[29] R. K. Rajendran, V. Misra, and D. Rubenstein. Detectirigconfigurations:
The method of strong-detectioRorty-Fourth Annual Allerton Conference on
Communication, Control and Computing (ALLERTOSEptember 2006.

[30] G. Siganos and M. Faloutsos. Analyzing bgp policiestideology and tool.
In IEEE INFOCOM 2004Hong Kong, 2004. IEEE.

[31] B. Smith and J. Garcia-Luna-Aceves. Securing the hagdéeway routing
protocol. InProc. Global Internet'96 November 1996.

[32] N. Spring, R. Mahajan, and T. Anderson. The causes d¢f ppdtation. In
Proceedings of the 2003 conference on Applications, tdobies,
architectures, and protocols for computer communicatigpages 113-124.
ACM Press, 2003.

[33] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz.r@ti@rizing the
internet hierarchy from multiple vantage points.|EEE INFOCOM 2002
New York, NY, June 2002. IEEE.

[34] L. Subramanian, R. H. Katz, V. Roth, S. Shenker, anddicat Reliable
broadcast in unknown fixed-identity networks.RODC '05: Proceedings of
the twenty-fourth annual ACM SIGACT-SIGOPS symposium mtiples of
distributed computingpages 342-351, New York, NY, USA, 2005. ACM
Press.

[35] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and RzKasten and
whisper: Security mechanisms for bgp.Rmoceedings of First Symposium on
Networked System Design and Implementation (NSDI 200dkch 2004.

[36] P. Verissimo. Design of fault tolerant distributed ®rsas: the fail-controlled
approach. IrEW 4: Proceedings of the 4th workshop on ACM SIGOPS
European workshagpages 1-4, New York, NY, USA, 1990. ACM Press.

APPENDIX
A. DISTANCE VECTOR

Here we provide the proof that the canonical-grépbonstructed
in Sec. 4.1 for the distance vector protocol is indeed thg grdph
that needs to be considered among all the graplds We present
some preliminary results as lemmas before we proceed tangrov

the main theorem.

LEMMA A.l. Ifthere exists agraply € G with edges of length
w(i, j) between nodesand j so that running the routing protocol
correctly onG produces tablé,,, then running the routing protocol
correctly on the canonical grapl’ produces a tablel,, where
dy, (k,i) < dn(k, i) for eachk € N(n) and every node.

PROOF The proof is by contradiction. Assume there is a graph
G that would produce state tabdg,, but that a neighbok exists
for which there is a node whered;, (k,i) > d.(k,i) (where a
non-existent edge i’ has lengthoo). WOLG, select for which
d,(k, 1) is minimized, i.e.; is chosen so that), (k,i) > d,(k,1)
and for any other nodg¢ whered;, (k, j) > d.(k, j), we have that
dn(k,i) < dn(k,j). Letz be the node on a shortest path frém
to 7 in G that immediately precedéson this shortest pathc(may
in fact be noden itself). Sincez is closer (no edges of length 0),
by our choice of, we have thatl;, (k, z) < dn(k,).

Since(z, i) is an edge in graply, in the accurate state table the
shortest path distance from any neighbor to nod=n differ from
the shortest path distance to nadey no more thanv(z, i), i.e.,
|dn(m,) — dn(m,i)| < w(z,i) for everym € N(n). Thus,
w' (z,1) < w(z,i)°.

Utilizing d, (k,z) < dn(k,x), w'(x,i) < w(z,i), and the
fact that the shortest path frolto i in G’ is no longer than the
path fromk to z in G’ plus w'(z,4), we have thad;, (k,i) <
dy,(k,z) + w'(z,i) < dn(k,z) + w(z,i) = dn(k,1i), contra-
dictingd,, (k,4) > dn(k,i). O

LEMMA A.2. Let there exist a grapliz € G so that running
the protocol correctly onG produces tablei,, and letG’ be the
canonical graph. Thed,, (k,7) > d.(k,1) for all neighborsk €
and all nodes.

PROOF The proof is also by contradiction. L&tbe any neigh-
bor for which the claim does not hold and choeséhered,, (k, 1) <
dn(k,7) and for anyj whered,,(k,j) < d;,(k,%) implies that
dy(k,7) > dn(k,j). Letx be the node on the shortest path in
the canonical grapli¥’ that precedes on a shortest path frorh
to i. By choice ofi, we have thatl;, (k,z) > dn(k,z). By con-
struction of G, we have that'(x,i) > d,(k,i) — dn(k,x), SO
dn(k, 1) < dn(k, z)+w'(z,i) < d,(k, z)+w'(z, 1), which, since
x lies one hop beforé on the shortest path tig equals tat;, (k, i),
henced., (k,:) < d,,(k, %), contradicting our choice of [J

Theorem 4.1: In the distance-vector protoed),is a valid state
table for some grapty € G if and only if itis valid for the distance-
vector canonical grapl;’ € G.

PROOF If the state table is valid for no grapfi € G, then
clearly it cannot be valid fo6&’ € G. If it is valid for some graph
G, then by Lemmas A.1 and A.2, the state tadjleof G’ will match
the state tabld,, of G. [J

5Note that because the Claim assumes the existence of valith gr
G andG contains edgev(z, i), it must be the case that(z,) €
Sz,i, and hence there is some value $h ; larger or equal to
|dn(m,x) — dn(m,1)| for all m.

