
Optimizing the quality of scalable video streams on
P2P Networks

Raj Kumar Rajendran,Dan Rubenstein

Dept. of Electrical Engineering
Columbia University, New York, NY 10025

Email: {raj,danr}@ee.columbia.edu

Abstract

The volume of multimedia data, including video, served through Peer-to-Peer (P2P) net-
works is growing rapidly. Unfortunately, high bandwidth transfer rates are rarely available
to P2P clients on a consistent basis. In addition, the rates are more variable and less pre-
dictable than in traditional client-server environments, making it difficult to use P2P net-
works to stream video for on-line viewing rather than for delayed playback.

In this paper, we develop and evaluate on-line algorithms that coordinate the pre-fetching
of scalably-coded variable bit-rate video. These algorithms are ideal for P2P environments
in that they require no knowledge of the future variability or availability of bandwidth, yet
produce a playback whose average rate and variability are comparable to the best off-line
pre-fetching algorithms that have total future knowledge. To show this, we develop an off-
line algorithm that provably optimizes quality and variability metrics. Using simulations
based on actual P2P traces, we compare our on-line algorithms to the optimal off-line al-
gorithm and find that our novel on-line algorithms exhibit near-optimal performance and
significantly outperform more traditional pre-fetching methods.

Key words: P2P, Video, Streaming, Quality, Scheduling

1 Introduction

The volume of multimedia data, including video, served through Peer-to-Peer (P2P)
networks is growing rapidly. Users are often interested in streaming video for on-
line viewing rather than for delayed playback, which requires a bandwidth rate
ranging from 32 kbps to 300 kbps. Unfortunately, such high bandwidth transfer
rates are rarely available to P2P clients from a set of peers on a consistent basis.

A practical solution that allows users with lower bandwidth receiving rates to watch
the video as it is downloaded involves the use of scalable-coding techniques. Using

Preprint submitted to Elsevier Science 1 August 2005



such techniques, the video can be encoded into a fixed number M of lower-rate
streams, called layers, that are recombined to obtain a high fidelity copy of the
video. Only the first layer is needed to decode and playback the video, but results
in the poorest quality. As more layers are added, the quality improves until all
M layers can be combined to produce the original video at full quality. Modern
scalable-coding techniques such as Fine-Grained Scalable coding (FGS) allow the
video to be broken up so that each of the M layers requires a bandwidth uM that is
a constant fraction of the bandwidth u of the original video.

Since P2P systems require users to download content from other users, the avail-
able download rate at a client fluctuates greatly over time. If the client were to
always download as many layers as the current bandwidth rate allows for the cur-
rent portion of the video, the quality of the playback would fluctuate rapidly over
time. Experimental studies [1] show that such fluctuations are considered more an-
noying than simply watching a lower-quality video at a more steady rate. On the
other hand, if all the bandwidth is used to pre-fetch a single layer at a time, then
the client would be forced to watch a large portion of the initial video at the low-
est quality when often there is sufficient bandwidth to watch the entire video at a
higher quality.

In this paper, we develop and evaluate on-line algorithms that coordinate the pre-
fetching of scalably-coded variable bit-rate video components. Our algorithms are
specifically designed for environments where the download rate varies unpredictably
with time. Such algorithms are amenable within current P2P systems which use
multiple TCP streams to download content. In these systems, the rate of download
is a function of number of peers willing to serve the video at that time, the network-
ing conditions and the manner in which TCP reacts to these conditions. The control
of the downloading rate is outside the scope of the control of the application.

Our algorithms pre-fetch layers of future portions of the video in small chunks,
as earlier portions are being played back, with an aim of reducing the following
metrics:

• Waste: the amount of bandwidth that was available but was not used to download
portions of the video that were included in the playback.

• Smoothness: the rate at which the quality of the playback (i.e., the number of
scalably-coded layers used over a period of time) varies.

• Variability: the sum of the squares of the number of layers that are not used in
the playback. This measure decreases as the variance in the number of layers
used is decreased, and also decreases when more layers appear in the playback.

We first design an off-line algorithm which, with knowledge of the future rate of
the bandwidth channel, determines the pre-fetching strategy of layers that mini-
mizes the Waste and Variability metrics, and achieves near-minimal smoothness.
We then construct three “Hill-building” on-line algorithms and compare their per-

2



formance to both the optimal off-line algorithm and to more traditional on-line
buffering algorithms. Our comparison uses both simulated and real bandwidth
data. Actual traces of P2P downloads were collected by us using a modified ver-
sion of the Limewire Open source code. We find that, in the context of the above
metrics, our on-line algorithms are near-optimal while the more traditional methods
perform significantly worse than this optimal pre-fetching strategy.

1.1 Prior Work

As far as we are aware, this problem of ordering the download of segments of
scalably-coded coded videos in P2P networks to maximize the viewer’s real-time
viewing experience has not been addressed before.

The work that most closely relates to our work [2,3] is by Ross, Saparilla and
Cuestos [4–6] where the authors study strategies for dividing available bandwidth
between the base-layer and enhancement-layer of a two-layered stream. They con-
clude that heuristics which take into account the amount of data remaining in the
pre-fetch buffer outperform static divisions of bandwidth. They also conclude that
maximizing just the overall amount of data streamed causes undesirable fluctua-
tions in quality, and provide additional heuristics that produce a smoother stream
while minimally reducing the overall quality. Our work complements and differs
from their work in a number of ways: we consider a more general problem with a
variable bitrate stream and N layers rather than a constant bitrate stream with two
layers, and our quality measures take into account first and second order variations,
borne out in subjective experiments detailed in [1].

In addition we abstract the problem into a discrete rather than continuous model,
and most importantly, establish a theoretical performance bound that acts as a base-
line for the comparison of the efficiencies of algorithms. Furthermore our work con-
siders the problem in the context of P2P networks where bandwidth is much less
predictable than traditional client-server environments and our on-line algorithms
are designed specifically with such variations in mind. For instance, we refrain
from making the assumption that the long-term average download rate is known in
advance, and our simulations specifically use traces obtained from P2P networks.

A second work that is closely related is by Kim and Ammar [7] which considers
a layered video with finite buffers for each layer. Based on the size of each buffer,
they determine the decision intervals for each layer that maximizes the smoothness
of the layer. They take a conservative approach to the question of allocating band-
width among layers and allocate all available bandwidth to the first layer, then to
the second layer, and so on. Our work differs in that we assume that buffer space is
relatively inexpensive, and therefore infinite implying constant decision-intervals.
Secondly we optimize utilization and smoothness for all layers at once, rather than

3



one layer at a time. Another related work is from Taal, Pouwelse and Lagendijk [8]
, where the authors describe a system for multicasting a video over a P2P network
using Multiple Description Coding. Their system aims to maximize the average
quality experienced by all clients. Unlike them we concern ourselves with unicast
streams.

Several works also address the challenges of streaming a popular video simulta-
neously to numerous clients from a small number of broadcast servers using tech-
niques such as skimming [9], periodic broadcast [10], and stream merging [11,12].
These works assume that the server’s transmission rate is predictable, and that the
major challenge is to find methods that allow clients that wish to view the video at
different but overlapping times to pre-fetch portions from the same transmission.
Our work differs in that we consider only a single receiver who must pre-fetch in
order to cope with a download channel whose rate is unpredictable.

CoopNet [13] augments traditional client-server streaming with P2P streaming when
the server is unable to handle the increased demands due to flash crowds. In Coop-
Net clients cache parts of recently viewed streams, and stream them if the server
is overwhelmed. They use Multiple-Description Coding to improve robustness in
the wake of the frequent joining and leaving of peers. CoopNet does not address
the issue of variance in video quality and does not do pre-fetching. We suspect that
our results could easily be worked into a CoopNet system to improve the viewing
experience.

[14] propose layered coding with buffering as a solution to the problem of vary-
ing network bandwidth while streaming in a client-server environment. Buffering
is used to improve video quality, but it is assumed in this work that the congestion
control mechanism is aware of the amount of video buffered and can be controlled.
In contrast, our work does not attempt to control the bandwidth rate, but rather
builds on top of existing P2P systems that already have mechanisms such as mul-
tiple TCP streams, that dictate the rate. We maximize quality purely by making
decisions on the order in which segment of a video stream are downloaded, a sub-
tle but important difference.

In addition practical multi-chunk P2P streaming systems like BitTorrent [15] and
Coolstreaming [16] exist and are very popular. However these systems aim to
optimize the download of generic files and videos through chunking and peer-
downloads. We deal with the more specific problem of streaming layered video.

The rest of the paper is organized as follows. Section 2 briefly introduce Peer-to-
Peer overlay networks and Scalable Coding. In Section 3 we quantify our perfor-
mance metrics, and model the problem and its solutions. In Section 4 we present
performance bounds on the solutions to the problem. Section 5 presents our on-line
scheduling algorithms, then compares their performance to the bounds and of naive
schedulers through the use of simulations in Section 6. In Section 7 we list some

4



issues for further consideration, and conclude the paper in Section 8.

2 Scalably Coded videos in Peer-to-Peer Networks

We use the existing P2P infrastructure as a guide for our network model. P2P sys-
tems are distributed overlay networks without centralized control or hierarchical or-
ganization, where the software running at each node is equivalent. These networks
are a good way to aggregate and use the large storage and bandwidth resources
of idle individual computers. The decentralized, distributed nature of P2P systems
make them robust against certain kinds of failures when used with carefully de-
signed applications that take into account the continuously joining and leaving of
nodes in the network.

Our work focuses on the download component of the P2P network. Our results
are independent of the search component used to identify sources for download,
so any existing searching method applies [17–21]. What is important is that, un-
like traditional client/server paradigms, serving sources frequently start and stop
participating in the transmission, causing abrupt changes in the download rate at
the receiver. In addition, like the traditional paradigm, the individual connections
utilize the TCP transport protocol whose congestion control mechanism constantly
varies the transfer rate of the connection.

2.1 Scalable Coding

Fine-Grained Scalable Coding (FGS) is widely available in current video codecs,
and is now part of the MPEG-4 Standard. It is therefore being increasingly used in
encoding the videos that exist on P2P networks. Such a scalable encoding consists
of two layers: a small base-layer that requires to be transmitted and a much larger
enhancement-layer that can be transmitted as bandwidth becomes available. FGS
allows the user to adjust the relative sizes of the base-layer and enhancement-layer
and further allows the enhancement-layer to be broken up into an arbitrary number
of hierarchical layers.

For our purposes, using the above fine-granular scalable-coding techniques, the
video can be encoded into M identically-sized hierarchical layers by adjusting the
relative sizes of the base and enhancement layers, and breaking up the enhancement
layer into M − 1 identically sized layers. In such a layered encoding the first layer
can be decoded by itself to play back the video at the lowest quality. Decoding an
additional layer produces a video of better quality, and so on until decoding all M
layers produces the best quality. The reader is referred to [22] and [23] for more
details on MPEG-4 and FGS coding.

5



3 Problem Formulation

In this section we formulate the layer pre-fetching problem for which we will
design solution algorithms. We begin by describing how the video segments, or
chunks, the atoms of the video that will be pre-fetched, are constructed. We then
formally define the metrics of interest in the context of these chunks, such that our
optimization problems to minimize these metrics are well-posed. We summarize
the symbols and terms used in this section in Table 1 for easy reference.

3.1 The Model

Our model is discrete. We first partition the video along its running time axis into
T meta-chunks, which are data blocks of a fixed and pre-determined byte size S
(the T th chunk may of course be smaller) 1 . These meta-chunks are numbered 1
through T in the order in which they are played out to view the video. We let ti

be the time into the video at which the ith meta-chunk must start playing. Hence,
t1 = 0, and if a user starts playback of the video at real clock time s0 and does not
pause, rewind or fast-forward, the ith meta-chunk begins playback at time s0 + ti.
We refer to the time during which the ith meta-chunk is played back as the ith
epoch. Note that since the video has a variable bitrate and the meta-chunks are all
the same size in bytes, epoch times (ti+1 − ti) can vary with i. We also include a
0th epoch, where ti ≤ 0: the 0th epoch starts when the client begins downloading
the video and ends at time t1 = 0 when the client initiates playback of the video.

As the video is divided into M equal-sized layers, each meta-chunk can be parti-
tioned into M chunks of size S/M , where each chunk holds the video data of a
given layer within that meta-chunk. These chunks form the atomic units of analysis
in our model. In this formulation, the chunks associated with the ith meta-chunk of
a video are played back in the ith epoch.

Figure 1(A) depicts a chunking of the video. Meta-chunks are the gray areas and are
shown for the first through fifth epochs, and are placed within the epoch for which
they are played back. While the rectangles are shaped differently in the different
epochs, their areas are identical. The chunks of the meta-chunk within the second
epoch are shown for a 3-layer scalably-coded encoding. The curve u(t) is explained
later in this section.

A chunk of video that is played back in epoch i must be downloaded in some earlier
epoch j, 0 ≤ j < i ≤ T . In addition, as chunks are being played back in epoch
i, chunks for a future epoch are being downloaded from sources using the network

1 We assume that epoch-lengths are longer than a GOP, and therefore different meta-
chunks contribute equally to the quality of the video

6



s clock-time

t video time

τ(t) the actual clock-time at which
the viewer watches the tth sec-
ond of the video

b(s) rate at which bandwidth is avail-
able to the client at clock time s

u(t) playback-rate or the rate at
which playback must occur to
view the tth second of the video
at full quality

w(t) download rate

M number of layers in video

chunk atomic unit of video used in our
model = S/M bytes where S is
chosen appropriately

epoch time it takes to playback a chunk
of video

T total number of epochs in video

ti video time when ith epoch be-
gins

bandwidth-slot bandwidth to download 1 chunk
of video data

wi number of chunks of bandwidth
or bandwidth-slots that arrive
during epoch i

W = 〈w0, . . . , wT−1〉 Discretized bandwidth as a vec-
tor of bandwidth-slots

A = 〈a1, . . . , aT 〉 An allocation, where ai is the
number of chunks used in the
playout of the ith epoch of the
video

Table 1
Table of terms and symbols

bandwidth that is available in epoch i. We refer to the bandwidth used during the ith
epoch to pre-fetch chunks to be played back during future epochs as the bandwidth
slots of epoch i where each slot can be used to download at most one chunk. Since
epochs can last for different lengths of time, and since the bandwidth streaming rate
from the sources to the receiver varies with time, the number of bandwidth slots

7



within an epoch varies. Note that it is unlikely that the bandwidth available during
an epoch is an exact integer multiple of the chunk size. This extra bandwidth can
be “rolled over” to the subsequent epoch. More formally, if Wi is the total number
of bytes that can be downloaded by the end of the ith epoch, then the number of
slots for epoch i is bWi/Sc − bWi−1/Sc, with W−1 = 0.

Note that our model is easily extended to account for pauses and rewinds of the
video: the start time of an epoch i is simply the actual clock time that elapses
between when video playback first starts and when the chunks for epoch i are first
needed. Since pausing and rewinding can only extend this time, doing so can only
increase the number of bandwidth slots that transpire by the time the ith epoch is
to be played back.

Figure 1(B) depicts the number of chunks that could be downloaded per epoch. In
epochs 5,6,7,8, and 9, the available bandwidth permitted the download of 4,2,2,4
and 3 chunks respectively, 2 The current playback point of the video is within the
sixth epoch. The arrows pointing from the chunks in the sixth epoch toward the
eighth and ninth epoch are meant to indicate that the bandwidth available during
the sixth epoch is used to pre-fetch two chunks from the eighth and ninth epochs.

We define an available bandwidth vector, W = 〈w0, w1, · · · , wT−1〉, where wi is
the number of bandwidth slots available during the ith epoch, 0 ≤ i < T . An al-
location is also a T -component vector, A =〈a1, . . . , aT 〉, that indicates the number
of chunks that are played out during the ith epoch, 0 < i ≤ T . An allocation A is
said to be ordered when a1 ≤ a2 ≤ . . . ≤ aT . An allocation A =〈a1, . . . , aT 〉 is
called feasible under available bandwidth vector W if there exists a pre-fetching
strategy under the bandwidth constraints described by W that permits ai chunks to
be used in the playback of the ith epoch for all 1 ≤ i ≤ T . We can simply say
that an allocation A is feasible when the available bandwidth vector can be deter-
mined from the context. Feasibility ensures that we only consider allocations that
can be constructed where bandwidth slots from epoch i are used to pre-fetch data
for future epochs j, j > i.

A pre-fetching algorithm is given as input an available bandwidth vector W and
outputs an allocation. An off-line pre-fetching algorithm may view the entire input
at once. An on-line algorithm iterates epoch by epoch, and can only knows the
value of the ith component of the vector after the ith epoch has completed. During
the ith epoch, the only chunks it can download that can be used for playback are
those that lie in epochs j > i, hence, once it sees the ith component wi of W , it has
entered the i + 1st epoch and can therefore only modify components aj, j > i + 1
in the allocation A.

Note that, from the perspective of our model, since partially downloaded chunks

2 The figure also illustrates partial chunks in 7,8 and 9, which for simplicity of analysis
are not used.

8



may not be used in the playback of the video, it never makes sense for an on-line
algorithm to simultaneously download multiple chunks. Instead of downloading r
chunks in parallel, all bandwidth resources would be better served downloading
these r chunks in sequence (the practical details of doing this are discussed in
Section 3.1.2). In addition, there is no reason for an on-line algorithm to “plan”
ahead beyond the current chunk it is downloading: there is no loss in performance
by deciding the next chunk to download only at the time when that download must
commence. Note also that the download of a chunk to be played back in epoch
i (which presumably was started while playback was in some epoch j < i) is
terminated immediately if the download is not complete when the playback enters
epoch i, since then it cannot be used within the playout.

3.1.1 Constructing the Epoch View

The above description of our model is sufficient for the reader to proceed to subsec-
tion 3.2. However, some readers may be concerned with the practicalities of how
the chunks are formed and how their download is coordinated. We describe these
details here:

We assume that the video is a variable bit-rate encoding, with u(t) indicating the
playback-rate: the rate at which the playback must occur to view the tth second
of the video at full quality. Each layer is therefore played back at time t at rate
u(t)/M . Each meta-chunk contains the same pre-determined number of bytes, S.
The epoch times ti are then determined recursively by solving S =

∫ ti
t=ti−1

u(t)dt,
with t1 = 0. Note that if the video is constant bit-rate (u(t) = c), the epoch lengths
are the same. In Figure 1, the curvy line indicates the playback-rate of the video,
u(t). The area of the rectangle in the ith epoch matches the area under the u(t)
curve within that epoch.

Having formally discussed the terminology necessary to describe the playout time
of the video layers, we now turn our focus toward the terminology needed to discuss
the pre-fetching of the video layers. We assume that all sources that transmit chunks
have complete encodings of the video. This is not an unreasonable assumption for
a P2P network, since often a client does not become a source for an object until it
has received the entire object. We use W (t) to represent the aggregate number of
bytes that the collection of sources have forwarded to the client at the time when
the client is viewing the tth second of the video. More formally, if τ(t) indicates the
actual clock-time at which the viewer watches the tth second of the video, b(s) is
the rate at which bandwidth is available to the client at actual clock time s, and the
user initiates the download at actual clock time s0, then W (t) =

∫ τ(t)
s=s0

b(s)ds. Note
that it is possible for W (0) = A > 0, i.e., the client downloads A bytes of data
prior to initiating the viewing of the video. The period of time in which this pre-
fetching occurs is referred to as the zeroth epoch. Recall that the time t0 has a value
x ≤ 0 when the user starts playback of the video x seconds after the download

9



is initiated. W (t) is clearly non-decreasing with t (assuming the client does not
rewind), but need not be piecewise continuous. For instance, pauses in viewing can
cause discontinuities.

Note that, while u(t) is known in advance, w(t) is not, both because the user may
pause the video and because the aggregate downloading rate from the transmission
sources is unpredictable. Hence, the on-line scheduling problem involves determin-
ing the order in which to download chunks to maximize perceived quality, given a
known u(t) and an unknown W (t).

The download-rate w(t) = Ẇ (t) and playback-rate u(t) are also illustrated in Fig-
ure 1(B). The number of chunks that could be downloaded is proportional to the
area under the curve w(t) for that epoch.

3.1.2 Coordinating download of a single chunk

Last, let us discuss how a single chunk can be downloaded efficiently when sev-
eral distributed sources are transmitting the video data to the peer receiver. First,
the number of bytes, S/M allocated to each chunk should be fairly large, on the
order of 100 KB, which represents roughly 5 seconds of video playback. This is
sufficient time to contact all senders to inform them to focus on the download of a
specific chunk. The chunk itself can then be partitioned into micro-chunks where
each micro-chunk fits within a single packet, and the different micro-chunks can
then be scheduled across the multiple servers and delivered using standard tech-
niques [24], or in a more efficient manner using parity encoding techniques [25].
If a server departs, the former scheme must detect the departure and reassign the
micro-chunks that were assigned to the departing server to another server. In the
latter, no reassignment is needed. Any inefficiencies in downloading can easily be
incorporated into our model simply reducing the available bandwidth w(t). When
the download of a chunk is complete, the receiver can indicate to the sources the
next chunk to download.

In practice, to maximize efficiency and reduce overlap, it may be worthwhile to
assign different senders to different chunks. However, one must deal with the pos-
sibility that a sudden drop in bandwidth availability could leave a receiver with
multiple partially downloaded chunks. Evaluating this tradeoff and cost is beyond
the scope of this paper.

3.2 Performance Measures

The performance measures we use in this paper are motivated by a perceptual-
quality study that validates our intuitive notions of video quality [1]. The most
important indicator is the average quality of each image, as measured by the aver-

10



age number of bits used in each image or the average signal-to-noise ratio (PSNR).
However, it is important to consider second-order changes: given two encodings
with the same average quality, the perceptual-quality study shows that users clearly
prefer the encoding with smaller changes in quality. Such variations can be cap-
tured by measures such as variance and the average change in pictorial-quality. The
subjective study further shows that users are more sensitive to quick decreases in
quality while being less sensitive to increases. We use this information in the selec-
tion of our performance measures, and later in the design of our online algorithms.

Of the many possible measures that capture the above mentioned effects, we limit
ourselves to three that we believe capture the essential first and second-order varia-
tions. They are: a first-order measure we call waste that quantifies the utilization of
available bandwidth, a first plus second order measure called variability that mea-
sures both utilization and variance in quality, and a second-order measure called
smoothness that captures changes in the quality between consecutive epochs of the
video. While using these measures, it must be noted that they relate to perceptual
quality in not well understood non-linear fashions, and therefore cannot be com-
pared to one another. However they clearly indicate the efficiency of one algorithm
vis-a-vis one another.

We now define our measures, all of which take as input an allocation.

• [Waste] We define waste for an allocation A = 〈ai, . . . , aT 〉 under an available
bandwidth vector W to be

Waste w(A) = max
B∈F (W )

(
T∑

j=1

bj) −
T∑

i=1

ai

where F (W ) is the set of all feasible allocations under W . That is, we measure
an allocation’s waste by comparing it to the allocation with the best possible uti-
lization. An allocator wastes bandwidth when it finds that all M chunks for all
future epochs have been pre-fetched. Waste is an indication, typically, that an al-
gorithm has been too conservative in its allocation of early chunks of bandwidth
and should have displayed past epochs at a higher quality. The Variability mea-
sure, described below, also reacts to wasted capacity, but combines the effects of
variance and waste. Hence the separate measure.

• [Variability] The Variability of an allocation A = 〈ai, . . . , aT 〉 is defined to be:

Variability V(A) =
T∑

i=1

(M − ai)
2

Intuitively, a video stream that has near constant quality will be more pleasant to
view than one with large swings in quality. However variance can be a mislead-
ing measure since a stream with a constant quality of zero will have no variance.
What we wish is a measure that increases when the variance of the number of
layers used goes up, and decreases when more layers appear in the playback so

11



that minimizing the metric reduces the variance and improves the mean. Vari-
ability satisfies this requirement.

• [Smoothness] We define smoothness of an allocation A = 〈a1, . . . , aT 〉 to be:

Smoothness s(A) =
T∑

i=2

abs(ai−1 − ai)

We require this measure since Variability does not capture all of our intuitive no-
tions of smooth quality. Consider two video streams of six seconds each where
the number of layers viewed in each of the six seconds is 〈1, 2, 1, 2, 1, 2〉 for
the first video and 〈1, 1, 1, 2, 2, 2〉 for the second. The Variability values of their
qualities is the same but we will clearly prefer the second video over the first, as
it will have fewer changes in quality. To capture this preference, we use smooth-
ness as a measure. Note that smoothness can be quite large: if there are T epochs,
smoothness can be as large as (T − 1)M . Note that an ordered allocation, how-
ever, can have a smoothness no greater than M .

4 An Optimal Off-line Algorithm

In this section we develop an off-line algorithm, Best-Allocator, that allocates chunks
to epochs, creating an ordered allocation A = 〈a1, a2, · · · , aT 〉 and prove that
this allocation that minimizes waste and variability metrics and has near-minimum
smoothness (i.e., no larger than M ) in comparison to all other feasible allocations.
While this optimal off-line algorithm cannot be used in practice, it can be used to
gauge the performance of the on-line algorithms we introduce in the next section.

Best-Allocator is fed as its input an available bandwidth vector W =
〈w0, w1, · · · , wT−1〉. Recall that a chunk that is to be played back in epoch i must be
downloaded during an epoch j where j < i. Hence each bandwidth slot of epoch i
should only be used to download a chunk from epoch j > i, when there exist such
chunks that have not already been assigned to earlier bandwidth slots. The algo-
rithm proceeds over multiple iterations. In each iteration, a single bandwidth slot is
considered, and it is either assigned a chunk, or else is not used to pre-fetch data for
live viewing. The algorithm proceeds over the bandwidth slots starting with those
in the T − 1st epoch, and works its way backward to the 0th epoch. The chunk
to which that slot is assigned is drawn from a subsequent epoch with the fewest
number of chunks to which bandwidth slots have already been assigned. If two or
more subsequent epochs ties for the minimum, the ties are broken by choosing the
later epoch. If all subsequent epochs’ chunks are already allocated, then the current
bandwidth slot under consideration is not used for pre-fetching.

More formally, let the vector A(j) = 〈a1(j), a2(j), · · · , aT (j)〉 represent the num-
ber of chunks in each epoch that have been assigned a download slot after the jth

12



iteration of the algorithm. Let X(j) = 〈x0(j), x1(j), · · · , xT−1(j)〉 be the numbers
of bandwidth slots that have not yet been assigned in epochs 0 through T − 1. Note
that A(0) = 〈0, 0, · · · , 0〉 and X(0) = W .

During the jth iteration, we perform the following, stopping only when X(j) =
〈0, 0, · · · , 0〉:

(1) If all x(j) > 0 set k = T . Else set k = ` that satisfies x`(j) > 0 and xm(j) = 0
for all m > `.

(2) Set X(j + 1) = 〈x0(j), x1(j), · · · , xk−1(j), xk(j) − 1,
0, 0, · · · , 0〉

(3) Set n equal to the largest ` that satisfies both ` > k and a`(j) = minm>k am(j)
(4) If an(j) = M then do nothing. Else A(j + 1) = 〈a0(j), a1(j), · · · ,

an−1(j), an(j) + 1, an+1(j), · · · , aT (j)〉.

We now proceed to prove results about the optimality of the allocation produced
by Best-Allocator. We begin by proving that no other feasible allocation has less
waste, then show the allocation has a low smoothness, and last prove, using the
theory of majorization, that no other allocation has a lower Variability V.

Claim 1 The allocation formed by Best-Allocator minimizes waste.

Proof: Consider any bandwidth slot b in epoch i that is not used by Best-
Allocator to download a chunk. Clearly, this slot can only be used to play back
chunks whose playback epoch is i + 1 or greater. This bandwidth slot b was con-
sidered by Best-Allocator during some iteration j in which k was set to i and the
“do nothing” option was selected. This means that an(j) = M , and it follows from
step 3 that Best-Allocator had already allocated chunks for playback of all M lay-
ers for all epochs ` > k. In other words, any chunk that bandwidth slot b would be
permitted to download (i.e., its playback would occur in a later epoch) had already
been scheduled by the jth iteration, and scheduled to a slot that cannot play chunks
before or during epoch i. Hence, the only way that an allocation can use b to down-
load a chunk is to “waste” one of the slots that Best-Allocator uses for download.

Claim 2 The allocation A = 〈a0, a1, · · · , aT 〉 formed by Best-Allocator is non-
decreasing, i.e., a0 ≤ a1 ≤ · · · ≤ aT .

Proof: Assume the claim is false. Then there exists an earliest iteration j
where there is an i for which ai(j) > ai+1(j). Since j is the earliest iteration
with such a property, it must be that ai(j − 1) ≤ ai+1(j). Since a component is
incremented by at most one in an iteration, ai(j − 1) = ai+1(j − 1). Since the
ith component was selected to be incremented in the jth iteration, during step 1, k
must have been set to value where k < i. Since ai(j − 1) = ai+1(j − 1), there is no
way that step 3 would set n = i, since i cannot be the maximum l > k for which
a`(j) is minimal (` = i + 1 would satisfy the minimal property whenever ` = i

13



did). This is a contradiction.

Using this claim, we can now bound the smoothness of the Best-Allocator alloca-
tion:

Corollary 4.1 The smoothness of allocation A formed by Best-Allocator is aT −a0.

Clearly, this is not the feasible allocation with minimum smoothness (the allocation
〈0, 0, 0 . . . , 0〉 has lower smoothness. But no allocation that uses aT layers in any
epoch can have lower smoothness.

Claim 3 Let X = 〈x0, x1, · · · , xT−1〉 and
Y = 〈y0, y1, · · · , yT−1〉 be vectors of bandwidth slots where xi ≤ yi for each i.
Then, for a given video, the minimum Variability value V(X) over all feasible al-
locations under X is no less than the minimum Variability value V(Y ) over all
feasible allocations under Y .

Proof: Any allocation that is feasible under X is also feasible under Y .

Claim 4 Let B = 〈b1, b2, · · · , bT 〉 be any feasible allocation. Let C = 〈c1, c2, · · · , cT 〉
be the allocation constructed by reordering the components of B such that C is or-
dered. Then C is also a feasible allocation.

Proof: (Sketch) Since we are only reordering the components, B and C have
identical amounts of waste. To convert B to C, we repeat the following described
procedure until it can no longer be performed. Find a pair of components bi and
bi+1 (when such a pair exists) where bi > bi+1. Since all the bandwidth slots that are
assigned to chunks in epoch i are drawn from epochs j < i, any of those slots could
be assigned instead to a chunk in epoch i + 1. Doing so converts the allocation B
to the feasible allocation 〈b0, b1, · · · , bi−1, bi − 1, bi+1 + 1, bi+2, bi+3, · · · , bT 〉. By
repeating this process as long as such an i exists, we eventually wind up producing
an ordered allocation C. Since each time the procedure is applied to a feasible
allocation, the resulting allocation is feasible, C - the final allocation generated is
also feasible.

Definition A vector A = 〈a1, a2, ..., aT 〉 majorizes a vector B = 〈b1, ..., bT 〉 (written
A � B) if

∑T
i=1 ai =

∑T
i=1 bi and for all j,

∑j
i=1 ai ≥

∑j
i=1 bi.

Claim 5 Let A = 〈a1, a2, · · · , aT 〉 and B = 〈b1, b2, · · · , bT 〉 be ordered alloca-
tions where A � B and A 6= B. Then V(A) < V(B).

Proof: (Sketch) Since A and B are both ordered allocations, we can convert
A to B by iterating through a series of allocations A(0) = A, A1, A2, · · · , Ak = B
where Ai+1 is formed from Ai = 〈α1, · · · , αT 〉 by decreasing a component αi by
1 and increasing another component αj by 1 where i < j and where αi < αj such
that Ai+1 remains ordered and is majorized by Ai. Note that V(Ai+1) = V(Ai) +

14



(M − (αi − 1))2 + (M − (αj + 1))2 − ((M − αi)
2 + (M − (αj))

2) > V(Ai).
By repeating this process continually, we eventually convert A to B, and since
the resulting vector after each step has a larger Variability than its predecessor, it
follows that V(A) < V(B).

Claim 6 Let A be the allocation generated by Best-Allocator and B be any other
feasible, ordered allocation with identical waste. Then A � B.

Proof: We begin by producing an algorithm that builds B using the following
iterative process that constructs ordered allocations B(0), B(1), B(2), · · · until we
eventually produce B: for allocation B(j), take a chunk from the last epoch that is
pre-fetched by B but for which a bandwidth slot has not yet been assigned within
B(j − 1), and assign it to a bandwidth slot in as late an epoch as possible such that
B(j) is both feasible and ordered. Letting A(j) be the vector described in the Best-
Allocator algorithm, we will show that A(j) � B(j) for all j. Since the wastes are
equal, A and B are achieved on the same iteration, and the result holds.

Initially, A(0) and B(0) are empty, hence equal, and trivially A(0) � B(0). To
show A(j) � B(j), first consider the case where A(j − 1) = B(j − 1). Best-
Allocator chooses its next chunk for download in the earliest epoch that does not
violate the conditions that A(j) is ordered and feasible. In other words, B cannot
choose a chunk in an earlier epoch without violating similar conditions, and hence,
regardless of the epoch from which B(j) selects its chunk, A(j) � B(j).

Finally, assume the claim is false. Then there is some minimum j for which A(i) �
B(i) for all i < j, but where A(j) does not majorize B(j). For this to happen, the
epoch of the chunk chosen by B during the jth iteration must be from an earlier
epoch than the chunk chosen by A during the jth iteration. In this jth iteration,
define tB to be the epoch chosen by B, and define tA be the epoch chosen by A,
where tB < tA. Since B selected a chunk in epoch tB , the bandwidth slot that
was assigned to the chunk must be from an epoch earlier than tB , otherwise B’s
selection would not be feasible. The fact that A did not select a chunk in front of tA

means that atB(j − 1) = atB+1(j − 1) = · · · = atA(j − 1). Let h be the value of
these components.

Since ai(j − 1) = ai(j) for all i < tA and bi(j − 1) = bi(j) for all i < tB , since
A(j − 1) � B(j − 1), and since A(j) does not majorize B(j), it must be the case
that ai(j − 1) = bi(j − 1) for all i < tB such that

∑k
i=0 ai(j) =

∑k
i=0 bi(j) for

all k < tB . Also, since A(j − 1) � B(j − 1) and one and only one component
grew at or in front of the tAth component in both A and B, we must still have that∑k

i=0 ai(j) ≥
∑k

i=0 bi(j) for all k ≥ tA. It follows that the smallest value of k that
prevents A(j) from majorizing B(j) must have the value tB ≤ k < tA, i.e., there
exists k, tB ≤ k < tA where

∑k
i=0 ai(j) <

∑k
i=0 bi(j). We call the value of k the

go-ahead position since it represents the first position of the component where A(j)
does not majorize B(j) for the first time.

15



The proof proceeds via several observations involving this go-ahead position, k:

• Observation 1:
∑k

i=0 ai(j − 1) =
∑k

i=0 bi(j − 1). This holds since
∑k

i=0 ai(j) <∑k
i=0 bi(j) =

∑k
i=0 bi(j − 1) + 1 ≤

∑k
i=0 ai(j − 1) + 1 =

∑k
i=0 ai(j) + 1, since

no component ai, i < tA changes value between the j − 1st and jth rounds.
• Observation 2: bk(j − 1) ≥ h. If bk(j − 1) < h, then bk(j) ≤ h. But we must

have bk(j) > ak(j) for it to be the go-ahead position, but since tB ≤ k < tA, we
have that ak(j) = h.

• Observation 3: bk(j − 1) ≤ h. If bk(j − 1) > h, then, since B(j − 1) is ordered,
we have that bk+1(j − 1) > h. Since tB < k + 1 ≤ tA, we therefore have
ak+1(j − 1) = h, hence bk+1(j − 1) > ak+1(j − 1). Since, from observation 1,
we have that

∑k
i=0 ai(j − 1) =

∑k
i=0 bi(j − 1), it follows that

∑k+1
i=0 bi(j − 1) >∑k+1

i=0 ai(j − 1), contradicting A(j − 1) � B(j − 1).

By Observation 3, we have that k = tB . Otherwise, since only the tBth component
in B changes during the jth iteration, bk(j) = bk(j−1) = h. Since B(j) is ordered,
we must have bi(j) ≤ bk(j) for all i < k, hence bi(j) ≤ h for all i < k. Since,
bi(j) = ai(j) for all i < tB , and all bi(j) ≤ bk(j) = h = ai(j) for all tB <
i ≤ k, we would have

∑k
i=0 ai(j) ≥

∑k
i=0 bi(j), contradicting k being the go-ahead

position.

With k = tB , we must have bk(j − 1) < bk+1(j − 1), otherwise the kth component
cannot be incremented without violating the ordering property. But Observations 2
and 3 combined give us that bk(j − 1) = h, so then bk+1(j − 1) > bk(j − 1) =
h = ak+1(j − 1), which, combined with Observation 1, yields

∑k+1
i=0 bi(j − 1) >∑k+1

i=0 ai(j − 1), contradicting A(j − 1) � B(j − 1). This gives a contradiction.

With the four claims above, we can now prove our final result, that Best-Allocator’s
allocation has is a feasible allocation with minimal Variability:

Claim 7 Let A be the allocation generated by Best-Allocator and let B be any
other feasible (not necessarily ordered) allocation with identical waste. Then V(A) ≤
V(B).

Proof: By Claim 4, by reordering B to produce ordered allocation C, C must
be a feasible allocation. In addition, V(B) = V(C) since the order of components
does not affect the value of the Variability metric. Claim 6 gives us that A majorizes
C, and Claim 5 gives us therefore that V(A) ≤ V(C) (note the possible equality
because C may equal A).

Claim 8 Let A be the allocation generated by Best-Allocator and let B be any
other feasible (not necessarily ordered) allocation with possibly different waste.
Then V(A) ≤ V(B).

Proof: Let Y = 〈y0, y1, · · · , yT−1〉 be the original vector of bandwidth slots,
and let X = 〈x0, x1, · · · , xT−1〉 be a vector of bandwidth slots that could be used to

16



feasibly achieve allocation B where every slot is used to achieve B and where xi ≤
yi for all i. Note that such a vector can easily be formed by taking Y , constructing
allocation B, and removing any unused slots from the vector of bandwidth slots.
Since every slot of X is used to construct B, B is an allocation of minimal waste
under vector X . Let A′ be the allocation constructed by Best-Allocator under X .
By Claim 1, A′ also has minimal waste and hence A′ and B pre-fetch the same
number of chunks. By Claim 7, V(A′) ≤ V(B). Then by Claim 3, the minimum
Variability value over all feasible allocations under X is larger than the minimum
Variability value over all feasible allocations under Y , i.e., V(A′) ≥ V(A). Since
we have V(A) ≤ V(A′) ≤ V(B), the result is proved.

5 On-line allocation algorithms

In this section we present five on-line bin-packing algorithms that can be used to
schedule the downloads of scalably-coded coded videos in the context of the model
described in Section 3. The off-line algorithm “Best-Allocation” presented in Sec 4
achieves the best possible performance for the given input by making its allocation
decisions after receiving as input the number of bandwidth-slots that can be down-
loaded in each epoch. In reality, we are not given an advance indication of what the
future bandwidth delivery rate will be. Hence, these on-line algorithms must make
their decision without knowing the future bandwidth availability.

We first look at the tradeoffs involved in the decision making process at the client.
Given that the bandwidth at the client varies, the scheduler at the client is faced
with a choice in each epoch t: whether to use its bandwidth to download and dis-
play as many chunks of the epochs immediately following the current active epoch,
thereby greedily maximizing current pictorial-quality, or to use the current band-
width to download as much of a single layer for current and future epochs, so that
if bandwidth in future epochs prove insufficient, these chunks of data will provide
at least the minimum quality and thereby minimize variance in the quality of the
video.

5.1 Naive allocators

First consider the two allocators that exemplify the two extreme ends of this trade-
off.

• [Same-Index] This allocator allocates all bandwidth to downloading chunks be-
longing to the nearest future epoch for which it has not yet downloaded all the
chunks. With such an allocation, the variance in the quality of the video will be
as large as the variance of the bandwidth to the servers, when the mean of the

17



input is small relative to the capacity of each bin. As the mean increases, it will
produce smoother allocations. This allocator will tend not to waste capacity as it
greedily uses it up.

• [Smallest-Bin] This allocator allocates all bandwidth slots to the epoch with
fewest layers already downloaded. In case of ties it chooses the earliest epoch.
Such an allocation strategy will have the effect of downloading all of layer-1
of the video stream, then downloading all of layer-2 and so on. This approach
will produce unchanging and smooth quality, but will waste capacity and the
overall number of layers viewed will be small. Consider the situation where we
have a constant bandwidth of mt = M for all epochs. Even in such a favorable
bandwidth environment, with the Smallest-Bin allocator, we would watch the
video at full quality only for the last 1/M fraction of the video, and we would
watch the only a single layer of the video for the first 1/M fraction.

5.2 Constrained allocators

Intuitively we would like algorithms that operate somewhere between the two ex-
tremes of the same-index and smallest-bin allocators. Our approach to this prob-
lem is to design algorithms that attempt to maximize the current quality, but with
smoothness constraints based on perceptual quality studies [1] that indicate that
users dislike quick changes in video quality, and are particularly sensitive to de-
creases in quality. We therefore designed a suite of online algorithms with con-
straints on the allowed changes in quality. In particular we constrain the downhill
slope of an allocation; i.e. we specify the maximum allowable downhill slope an
allocation can have. Within this restriction the different online algorithm in our
suite attempt to maximize different desirable qualities all the while ensuring that
the maximum downhill slope remains within the bound.

More formally, constrained downhill slope allocators build allocation B = 〈b1, . . . , bT 〉
such that at any point in the building process, bi − bi+1 < C, 0 ≤ i < T for some
integer constraint C. We present three flavors of these allocators. In describing the
algorithms we will assume that the current epoch is ti and the algorithm is allocat-
ing a chunk of bandwidth from the bandwidth slot in epoch ti to a chunk in some
epoch tj, j > i, where bi indicates the number of chunks allocated to epoch ti. To
help the reader visualize this process, consider having an empty “bin” Bj assigned
to hold the chunks in tj that have been allocated for download using a slot from
a previous epoch, ti. bj is the number of chunks in bin Bj , and each time a band-
width slot (from a previous epoch) is allocated to serve a chunk from epoch tj, bj

is incremented.

• [Largest-Hill] This algorithm allocates each chunk of bandwidth to the bin Bj

with the smallest index j such that the constraint bj − bj+1 < C is satisfied
after the chunk has been allocated. The largest-hill allocator attempts to maxi-

18



mize the size of the earliest bin possible while maintaining the slope constraint.
Such a strategy tends to produce “hills” of allocations with a constant downhill
slope; thereby the name. The allocation of this algorithm in response to the input
〈6, 7, 9, 11〉 and a constraint C = 1 is shown in Fig. 2(A). 3

• [Mean-Hill] Given that the average bandwidth seen so far is µw chunks per
epoch, the Mean-Hill allocator uses the following rules to allocate each chunk of
bandwidth.
· Find the bin Bj with the smallest index j such that the slope constraint (bj −

bj+1) < C is satisfied.
· If the size of this bin bj is less than µw, allocate the chunk to this bin Bj .
· Else, allocate the chunk to the most empty bin Bm. In case of ties allocate the

chunk to the most empty bin with the smallest index (the earliest-bin).
The Mean-Hill allocator attempts to maximize the current bin-size while ensur-
ing that the slope-constraint is satisfied. Once the current bin has grown bigger
than µw, it uses its bandwidth to download the full video one layer at a time. This
algorithm operates under the assumption of mean-reversion; that excess current
bandwidth is an aberration which will be compensated by drops in the bandwidth
in the future and therefore current excess bandwidth should be used to download
future parts of the video. The allocation of the Mean-Hill algorithm with a slope-
constraint of C = 1 in response to the input 〈6, 7, 9, 11〉 is shown in Fig. 2(B)
when µw = 3. It can be seen how it downloads future chunks of the video, once
bandwidth exceeds the mean.

• [Widest-Hill] This allocator allocates each chunk to the bin with the smallest
index j that satisfies the slope constraint (bj − bj+1) < C and the height con-
straint bj ≤ µw. This strategy tends to produce allocations that first grow up to
the mean, then widen while satisfying the slope constraint. The allocation of this
Wide-Hill algorithm with a slope-constraint of C = 1 in response to the input
〈6, 7, 9, 11〉 is shown in Fig. 2(C) when µw = 3. Its proclivity to build alloca-
tions up to to the mean, then grow into the future while maintaining the slope
constraint can clearly be seen.

Fig. 2 typifies the allocations of the three algorithms when the slope-constraint C =
1. The example uses the input 〈6, 7, 9, 11〉 and µw = 3. The Largest-Hill algorithm
grows tall hills while maintaining the downhill slope. The Wide-hill grows hills
until they reach the mean, then widens them while maintaining the slope constraint,
and the Mean-Hill algorithm grow hills up to the mean, then uses excess bandwidth
to fill out future bins.

3 All our methodology, analysis, simulation and experiments pertain to variable bit rate
videos. The epoch-lengths vary to account for the variability in the bit-rates of videos re-
sulting in constant-chunk sizes. The constant chunk-size eases analysis, but should not be
mistaken for constant bit-rate video. Further, to simplify visualization, Fig. 2 shows con-
stant epoch-lengths. Again this does not imply that constant bit-rate videos were consid-
ered.

19



6 Results

In this section we present and evaluate the performance of the off-line Best-Allocation
algorithm and five on-line bin-packing algorithms. Comparisons are achieved by
means of two simulations which look at the ability of the five on-line algorithms
and the Best-Allocation to minimize Variability 4 , smoothness and waste.

In the first simulation we chart these measures as functions of the mean and the
variance of the input. Such a study will show us how the algorithms perform under
two interesting condition: when the mean of the bandwidth approaches the mean
bit-rate of the video, and secondly as the network bandwidth shows increasing fluc-
tuations.

In the second simulation we use bandwidth traces obtained by the authors while
downloading videos from the Gnutella network as input. In this simulation we study
the performance as a function of the average epoch length. Such a study will tell us
if our algorithms function in real-life bandwidth conditions, and furthermore give
us an indication about the optimal decision-interval, and if such choices are criti-
cal. As we increase the average epoch-length over which we compute the network
bandwidth, as expected, the variance of the bandwidth steadily falls. Therefore our
chart plots performance as a function of variance.

6.1 Experimental Setup

For our experiments we assume that u(t) the video-bitrate is a known constant
function. In the simulation experiment w(t) is generated for each epoch by drawing
randomly from the distribution specified. The experiments were conducted for 600
epochs, and the result averaged over 100 runs. In the trace experiment a one-second
sampling of w(t) was achieved by tracking the number of bytes of a video that
was downloaded each second. The two traces chosen lasted approximately 3,600
and 11,000 seconds. The chunk-size was chosen such that the overall mean of the
bandwidth corresponded to M/2 chunks and the bandwidths in each epoch were
rounded to an integer number of chunks. A bin-size M of 6 was used throughout
the experiments.

4 We chart the square-root of the Variability rather than the Variability itself, as the square-
root has units of chunks, and is easier to visualize than Variability, which has units of
chunks2.

20



6.2 Simulated bandwidth

To study performance as a function of the mean of the input as it approaches the bin-
capacity, we independently generate inputs using a Uniform distribution, varying
the mean of the distribution over the various experiments (and thereby the varying
the standard-deviations well) to the bin-capacity. We then plot the performance
measures as a function of the mean as illustrated in Fig. 3.

Secondly we study the performance of the different algorithms as the variance of
the input increases. If different algorithms provide different performances under
different mean and variance conditions, such an analysis will allow us to choose the
optimal strategy as a functions of the input’s mean and variance. The inputs in this
experiment are generated independently from a Gaussian distribution. The mean is
held constant to half the bin-capacity and the standard-deviation is increased grad-
ually. Again, the variability, the smoothness and waste are measured as functions
of standard-deviation as illustrated in Fig. 4.

6.2.1 Analysis of Simulations

Here we provide a synopsis of the results as observed from the graphs of Fig. 3 and
Fig. 4.

• The constrained-hill algorithms (Largest-Hill, Mean-Hill and Wide-Hill) vastly
outperform the naive allocators (Smallest-Bin and Same-Index) with regard to
Variability. The Smallest-Bin algorithm produces a smooth allocation as ex-
pected but performs poorly on all other measures. The Same-Index allocator
wastes almost no capacity but produces non-smooth allocations.

• The constrained-hill algorithms perform close to the bound provided by the of-
fline Best-allocation. While the Best allocator wastes almost no chunks in all
situations, the constrained-hill algorithms waste about 1 percent of the chunks
under moderate conditions and 2-5 percent under extreme strain.

• The Same-Index allocator produces less-smooth fillings as the variance goes up,
but produces more smooth fillings as the mean increases. This is because its
variance is the same as the inputs, but capped by the capacity of the bins.

• Of the constrained-hill algorithms, the Wide-Hill allocator produces a smoother
packing but wastes more inputs. The Mean-Hill allocator produces small waste
and good smoothness.

• The Mean-Hill algorithm performs marginally better than the Largest-Hill al-
gorithm for the case of the Uniform distribution where the mean and variance
increase in tandem, and the mean approaches the bin-capacity. The Wide-Hill
tends to waste a slightly larger amount of the input under milder loads.

• The Largest-Hill algorithm wastes fewer inputs, but produces a less smooth pack-
ing than the Mean-Hill and Wide-Hill algorithms for Gaussian inputs where the

21



standard-deviation approaches the mean, and the mean is held to half the bin-
capacity.

The Mean-Hill algorithm is marginally more robust than the Largest-Hill and Wide-
Hill algorithm when the mean of the inputs approach the bin-capacity, while they all
produce similar performances when the mean is half the capacity and the standard-
deviation approaches the mean. The Largest-Hill algorithm wastes less as the stan-
dard deviation increases, while producing a less smooth allocation. This is probably
because the Mean-Hill algorithm is more likely to allocate chunks to the future, and
when the standard-deviation is high, allocating chunks to the future is more likely
to produce wastes due to spikes in the last epochs of the input. The Mean-Hill al-
gorithm always produces a smoother packing than the Largest-Hill, as it tends to
even-out larger hills.

In summary the novel on-line algorithms provide very good performance compared
to the ideal offline case, and vastly outperform naive strategies.

6.3 Bandwidth Traces

In this section we present the results of applying the algorithms to real data. Two
sets of traces were obtained, the first on a T1 network, and the second through
a DSL line. We created a program based on modifying the Limewire Open source
code [26] that continually downloaded videos from the Gnutella network, and traced
the aggregate bandwidths to the servers each second. From these two sets of data
we picked one representative trace each: the first, from the T1 network lasted 3,663
seconds, and the second from the DSL connection lasted 11,682 seconds. We then
computed the performance of the heuristic algorithms when applied to these traces
for an epoch-length of 1 second. We repeated the experiment for increasing epoch-
lengths of 2,4,8,16,32 and 128 seconds, to study the effect of time-scales on the
performance of the heuristic algorithms.

The bandwidths of the two traces for the first 100 epochs is plotted in Fig. 5. It can
be seen that there is large bandwidth variation across all scales. The performance
of the heuristic algorithms on these two traces are charted below.

6.3.1 T1 connection

This trace was run on a computer connected to the Internet through a T1 connection.
The trace lasted for 3,663 seconds and downloaded a 148 MB video. As many as
5 servers were serving the video simultaneously. The algorithms were run on this
trace for different average epoch lengths of 1, 2, 4, 8, 16, 32, 64 and 128 seconds.
The standard deviation of the bandwidth reduced from 1.46 to 1.11 in response.

22



The performances are charted in Fig. 6 as a function of these different standard-
deviations resulting from varying the average epoch-lengths.

6.3.2 DSL Connection

The second trace was run on a computer connected to the Internet through a tele-
phone line using DSL. The trace lasted for 11,682 seconds and downloaded a 80
MB video. Two servers were serving the video simultaneously for large parts of
the download. The algorithms were run on this trace for different average epoch
lengths of 1, 2, 4, 8, 16, 32, 64 and 128 seconds as previously and the standard de-
viation of the bandwidth reduced from 2.97 to 1.64 in response. The performances
are charted in Fig. 7 as a function of these different standard-deviations resulting
from varying the average epoch-lengths.

6.3.3 Analysis of Trace Results

• With both the T1 connection and the DSL connection, the Mean-Hill and Wide-
Hill perform close to the bound provided by the best-allocator. The Largest-Hill
algorithm lags in performance and starts diverging as variance increases.

• The Mean-Hill and the Wide-Hill algorithms show consistent, and sometimes
even improving performance as the variance increases (which correlates to smaller
epoch-lengths). The extra variance, when epoch lengths are small, is probably
compensated by the more accurate bandwidth information used, and the more
frequent decision-making.

• The naive algorithms perform relatively poorly on the Variability measure. The
Same-index algorithm wastes little input as expected but produces non-smooth
fillings, while the Smallest-Bin allocator produces smooth fillings but wastes the
most capacity.

• The Mean-Hill and Widest-Hill algorithms perform at near optimal levels through-
out and waste less than 1% of the input, with very smooth fillings.

In summary the Mean-Hill and Wide-Hill algorithms provide near-optimal per-
formance in real-life bandwidth scenarios. Furthermore they perform consistently
across varying epoch-lengths.

7 Issues

We briefly mention some further issues for consideration and directions of future
work here.

First we consider fast-forwards and rewinds. Our approach handles rewinds well,

23



as all the chunks that correspond to past segments of the video have been down-
loaded and can be viewed frame-by-frame in the reverse direction. We just need to
make sure that we do wait for a time period of k seconds before we discard down-
loads, where k is the amount of time for which rewind is required. Algorithms like
the Mean-Hill algorithm lend themselves well to the support of fast-forwarding as
they use any bandwidth in excess of the mean to download future segments of the
video, one ayer at a time. After and during a fast-forward the viewer may be able
to view the video at a lower quality until the algorithms reschedule and download
the chunks necessary for normal quality downloads.

A couple of issues that warrant consideration in future research are the problem
of scalable-codings where the different ayers are of unequal sizes. It is currently
not obvious how such unequal sized chunks can be scheduled. A second interesting
question concerns the amount of time spent pre-fetching before the user begins
viewing the video. In our model, this time is determined by the length of the zeroth
epoch. It may be worthwhile investigating how this time may be reduced, and the
effects of such a reduction on performance.

In future work we plan to focus energies on implementing our algorithms and pro-
ducing real systems that can be used to download and stream scalably-coded coded
video. We would like to compare the performance of such a system against other
video-streaming algorithms and verify that our algorithms do indeed produce the
most even quality under the constraints.

8 Conclusion

Peer-to-Peer networks are increasingly being used to stream videos where often the
user wishes to view a video at a bandwidth larger than any one server is willing to
devote to an upload. Scalably Coded video, a attractive solution to this problem is
gaining popularity as it distributes the user’s bandwidth requirement across many
peers. We show that in such a scenario, because the user’s bandwidth to multiple
servers will vary widely, it is imperative to pre-fetch downloads to ensure uninter-
rupted smooth viewing and that the quality of the video is sharply affected by the
algorithm used. We present bounds on the performance that can be achieved, then
present on-line algorithms that vastly outperform naive schedulers. Through simu-
lations we show that our solutions perform close to the best possible performance.

References

[1] M. Zink, O. Kunzel, J. Schmitt, R. Steinmetz, Subjective impression of variations in
layer encoded videos, in: International Workshop on Quality of Service, Berkeley, CA,

24



USA, 2003, pp. 137–154.

[2] R. K. Rajendran, D. Rubenstein, Optimizing the quality of scalable video streams on
p2p networks, in: SIGMETRICS 2004/PERFORMANCE 2004: Proceedings of the
joint international conference on Measurement and modeling of computer systems,
ACM Press, New York, NY, USA, 2004, pp. 396–397.

[3] R. K. Rajendran, D. Rubenstein, Optimizing the quality of scalable video streams
on p2p networks, in: Globecom 2004, 47th annual IEEE Global Telecommunications
Conference, November 29th-December 3rd, 2004 - Dallas, USA, 2004.

[4] P. de Cuetos, K. W. Ross, Adaptive rate control for streaming stored rine-grained
scalable video, in: NOSSDAV ’02: Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video, ACM Press,
New York, NY, USA, 2002, pp. 3–12.

[5] D. C. Saparilla, Broadcasting and streaming stored video, Ph.D. thesis, supervisor-
Keith W. Ross (2000).

[6] D. Saparilla, K. W. Ross, Streaming stored continuous media over fair-share
bandwidth, in: NOSSDAV ’02: Proceedings of the 12th international workshop on
Network and operating systems support for digital audio and video, ACM Press, New
York, NY, USA, 2002.

[7] T. Kim, M. H. Ammar, A comparison of layering and stream replication video
multicast schemes, in: NOSSDAV ’01: Proceedings of the 11th international workshop
on Network and operating systems support for digital audio and video, ACM Press,
New York, NY, USA, 2001, pp. 63–72.

[8] J. Taal, J. Pouwelse, R. Lagendijk, Scalable Multiple Description Coding for VIdeo
Distribution in P2P networks, in: 24th Picture Coding Symposium, San Francisco,
CA, 2004.

[9] Y. Zhao, D. Eager, M. Vernon, Network Bandwidth Requirements for Scalable On-
Demand Streaming, in: Proceedings of IEEE INFOCOM’02, New York, NY, 2002.

[10] A. Mahanti, D. L. Eager, M. K. Vernon, D. J. Sundaram-Stukel, Scalable on-demand
media streaming with packet loss recovery, IEEE/ACM Trans. Netw. 11 (2) (2003)
195–209.

[11] H. Tan, D. Eager, M. Vernon, Delimiting the Effectiveness of Scalable Streaming
Protocols, in: Proc. IFIP WG 7.3 22nd Int’l. Symp. on Computer Performance
Modeling and Evaluation (Performance), Rome, Italy, 2002.

[12] J. E. G. Coffman, P. Momcilovic, P. Jelenkovic, The dyadic stream merging algorithm,
J. Algorithms 43 (1) (2002) 120–137.

[13] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K. Sripanidkulchai, Distributing
streaming media content using cooperative networking, in: NOSSDAV ’02:
Proceedings of the 12th international workshop on Network and operating systems
support for digital audio and video, ACM Press, New York, NY, USA, 2002, pp. 177–
186.

25



[14] R. Rejaie, M. Handley, D. Estrin, Quality adaptation for congestion controlled video
playback over the internet, in: SIGCOMM ’99: Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer communication,
ACM Press, New York, NY, USA, 1999, pp. 189–200.

[15] The BitTorrent System, available from http://www.bittorrent.com.

[16] The Coolstreaming System, available from http://www.coolstreaming.org.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A Scalable
Peer-To-Peer Lookup Service for Internet Applications, in: Proceedings of ACM
SIGCOMM’01, San Diego, CA, 2001.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable Content-
Addressable Network, in: Proceedings of ACM SIGCOMM’01, San Diego, CA, 2001.

[19] B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing, Tech. rep., UC Berkeley (April 2001).

[20] A. Rowstron, P. Druschel, Storage Management and Caching in PAST, A Large-scale,
Persistent Peer-to-peer Storage Utility, in: Proceedings of ACM SOSP’01, Banff,
Canada, 2001.

[21] The Gnutella Protocol Specification v0.4, revision 1.2, available from
http://gnutella.wego.com.

[22] Overview of the mpeg-4 standard, available at
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm (2002).
URL
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

[23] H. Radha, M. van der Schaar, Y. Chen, The mpeg-4 fine-grained scalable video coding
method for multimedia streaming over ip, in: IEEE Trans. on Multimedia, 2001.

[24] P. Rodriguez, E. Biersack, Parallel-Access for Mirror Sites in the Internet, in:
Proceedings of IEEE INFOCOM’00, Tel-Aviv, Israel, 2000.

[25] J. Byers, M. Luby, M. Mitzenmacher, Accessing Multiple Mirror Sites in
Parallel: Using Tornado Codes to Speed Up Downloads, in: Proceedings of IEEE
INFOCOM’99, New York, NY, 1999.

[26] Limewire open-source software, available from
http://www.limewire.org/project/www/Docs.html.
URL http://www.limewire.org/project/www/Docs.html

26



Time t

Epoch 5

u(t)

Epoch 1

video
bitrateC1

C3

C2

bi
tr

at
e

t0 t2 t3 t4 t5t1

(A)Formation of chunks

���������

���������������

������������������������������

���������������

������������������

���������	�	�	�	�	


�
�
�
�
�
�
�


�
�
�
�
�
�
�


�
�
�
�
�
�
�


�
�
�
�
�
�
�


�
�
�
�
�
�
�


���������������
���������������
���������������
���������������
���������������

���������
���������
���������
���������
���������
���������
���������


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


Time t

bi
tr

at
e

u(t)

t5 t7 t9t6 t8

bandwidth

w(t)
bitrate
video

Current
playbach epoch

(B)Pre-fetching of chunks

Fig. 1. The Model

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Epochs

Fi
ll

i1
i2

i3
i4

(A) Largest-Hill

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������

���������������
���������������
����������������������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Epochs

Fi
ll

i1
i2 i3

i4
m

ea
n

(B) Mean-Hill

���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

Epochs

Fi
ll

m
ea

n

i1
i2 i3 i4

(C) Wide-Hill

Fig. 2. Three slope-constrained algorithms

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

M
S

U
D

C

Mean (chunks/period)

MUDC vs Mean (Uniform Input, M=6, P=600)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Variability

0

5

10

15

20

25

30

35

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

W
as

te
 (%

 c
hu

nk
)

Mean (chunks/period)

Wasted cpacity vs. Mean (Uniform Input, M=6, P=600)

Best
Same Index
Smallest Bin
Largest Hill

Wide Hill
Mean Hill

% Waste

0

0.5

1

1.5

2

2.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S
m

oo
th

ne
ss

Mean (chunks/period)

Smoothness vs Mean (Uniform Input, M=6, P=600)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Smoothness

Fig. 3. Performance vs Uniform Input’s Mean (P=600)

2.6

2.8

3

3.2

3.4

3.6

3.8

0.5 1 1.5 2 2.5 3

M
S

U
D

C

SD (chunks/period)

MSUDC vs Standard Deviation (Normal Input(Mean=3), M=6, P=600)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Variability

0

2

4

6

8

10

12

0.5 1 1.5 2 2.5 3

W
as

te
 (%

 c
hu

nk
)

SD (chunks/period)

Wasted cpacity vs. Standard-Deviation (Normal Input(Mean=3), M=6, P=600)

Best
Same Index
Smallest Bin
Largest Hill

Wide Hill
Mean Hill

% Waste

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3

S
m

oo
th

ne
ss

SD (chunks/period)

Smoothness vs Standard Deviation (Normal Input(Mean=3), M=6, P=600)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Smoothness

Fig. 4. Performance vs Gaussian Input’s Variance (P=600)

27



0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100
B

an
dw

id
th

(K
B

/s
)

Epochs

Bandwidth(KB/s) vs Epochs (T1 Connectio)

epoch length = 1 s
4 s

16 s
64 s

T1 trace

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
(K

B
/s

)

Epochs

Bandwidth(KB/s) vs Epochs (DSL Connectio)

epoch length = 1 s
4 s

16 s
64 s

DSL trace

Fig. 5. Bandwidth Traces at different time-scales

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

M
S

U
D

C

SD (chunks/period)

MSUDC vs Standard Deviation (Trace Input(Mean=3), M=6, P=30-3000)

Best
Same Index
Smallest Bin

Largest Hill
wide Hill

Mean Hill

Variability

0

1

2

3

4

5

6

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

W
as

te
 (%

 c
hu

nk
)

SD (chunks/period)

Wasted cpacity vs. Standard-Deviation (Trace Input(Mean=3), M=6, P=30-3000)

Best
Same Index
Smallest Bin
Largest Hill

Wide Hill
Mean Hill

% Waste

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

S
m

oo
th

ne
ss

SD (chunks/period)

Smoothness vs Standard Deviation (Trace Input(Mean=3), M=6, P=30-3000)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Smoothness

Fig. 6. Performance vs T1 Trace Input’s Variance (P=30-3000)

28



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

1.6 1.8 2 2.2 2.4 2.6 2.8 3

V
ar

ia
bi

lit
y

SD (chunks/period)

Variability vs Standard Deviation (DSL Trace (Mean=3), M=6, P=70-7000)

Best
Same Index
Smallest Bin

Largest Hill
wide Hill

Mean Hill

Variability

0

1

2

3

4

5

6

7

8

9

1.6 1.8 2 2.2 2.4 2.6 2.8 3

W
as

te
 (%

 c
hu

nk
)

SD (chunks/period)

Wasted cpacity vs. Standard-Deviation (DSL Trace (Mean=3), M=6, P=70-7000)

Best
Same Index
Smallest Bin
Largest Hill

Wide Hill
Mean Hill

% Waste

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
m

oo
th

ne
ss

SD (chunks/period)

Smoothness vs Standard Deviation (DSL Trace (Mean=3), M=6, P=70-7000)

Best
Same Index
Smallest Bin

Largest Hill
Wide Hill
Mean Hill

Smoothness

Fig. 7. Performance vs DSL Trace Input’s Variance (P=100-10000)

29


