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Abstract— Voice traffic on the Internet (VoIP) is poised to grow rapidly
but the Internet is not engineered for such delay-sensitive applications.
We show how the end-user quality of VoIP calls can be improved by
rerouting them in an intermediate overlay network and thought the use
of various path-diversity and error-coding techniques. We introduce our
overlay network (OverPhone) that is tuned to optimize VoIP quality
and provide experimental results of its implementation on the PlanetLab
testbed. We show that re-routing VoIP calls through OverPhone improves
the quality of more than a third of the paths by significant amounts when
using the G.711 codec. We believe that this benefit extends to other well
known and proprietary codecs as well. We also investigated the benefits
and trade-offs of using techniques such as path-diversity and parity-
coding. We found that path-diversity is useful in sustaining throughput
at high loads, and that parity-codes can be used to trade-off bandwidth
for path-quality.

1 Keywords: VoIP, Overlay Networks, Traffic Engineering, Mea-
surement

I. INTRODUCTION

The number of Voice over Internet Protocol (VoIP) telephone calls
is increasing dramatically. The Federal Communication Committee’s
(FCC) latest data indicates that there will be 3-7 million residential
VoIP lines by the end of 2005. It projects that this number will
grow to 27 million by 2010, accounting for approximately 20% of
the 180 million telephone subscribers in the US [8]. The number
of corporate telephone lines that use voice over the Internet is also
projected to leap from 4% today to 44% by 2008 [11]. In addition
Skype [16], the popular Internet telephone company, has recorded
over 10 billion minutes of calls in its first year of inception. In the
face of such rapid potential growth, there is limited knowledge about
techniques and tools that allow the efficient utilization of the Internet
by VoIP streams. There is a clear need for understanding the effect
of techniques such as rerouting, path-diversity and error-coding on
the quality of VoIP calls and on the additional load placed on the
Internet by the use of such techniques.

While VoIP is a delay-critical application and is therefore sensitive
to the paths over which its packets travel, routing over the Internet is
determined by a complex interplay of the routing algorithms that are
run within Autonomous Systems (ASes), and the relationships and
interaction between these ASes. Various tunable parameters affect the
running of routing algorithms within ASes while inter-AS routing is
determined by the relationships of ASes to one another and through
policies determined autonomously by each AS. Such autonomous
routing does not necessarily make for the best routing for specific
time-critical applications. Therefore applications where delay and
packet-loss is crucial need engineer their routing where possible. One
solution that has been suggested is to customize routing by using
overlay networks[3], [14]. The idea is that the overlay nodes run an
application-specific routing algorithm, so that once a packet is handed
to an overlay node, the overlay ensures that the packet makes its way
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through overlay nodes to the target in a way that is better than the
default path.

In addition it has been hypothesized that path-redundancy and
error-coding techniques can be used to improve the quality of VoIP
streams [10]. There however is little information about the conditions
under which quality can be improved, the amounts by which quality
can be improved, and the cost of such improvement on the underlying
infrastructure.

In this paper we introduce OverPhone our overlay network that is
specifically tuned to find routes that maximize the quality of VoIP
calls. It can be used with existing VoIP applications by modifying
the VoIP client to use the overlay. However, the overlay is only
used for a call if it brings significant benefits. We report on the
results of experiments we conducted using OverPhone on re-routing
path-diversity and parity-codes. More specifically we contribute the
following in this paper.

A. Contributions

• We present the system design and the architectural design of a
VoIP-specific overlay network.

• We demonstrate how such an overlay can be deployed on a
system such as PlanetLab.

• We show how path-diversity, packet-duplication and parity-
coding should be implemented on this overlay.

• We design tools and experiments that test the efficacy of re-
routing, path-diversity and coding techniques.

• We provide experimental results that show that
– Re-routing improves the quality of over a third of the paths

and that the quality of 10% of talk-spurts improves from
low to medium while another 10% improves from medium
to high.

– Path-diversity reduces low-quality talk-spurts by 20% at
large loads.

– Packet duplication improves voice quality but at a large
cost.

– Parity-codes can be used to trade-off quality for bandwidth
and that 50% additional bandwidth reduces low-quality talk-
spurts by nearly 30%.

B. Prior Work

The limitations of using standard routing for VoIP applications
has been recognized. In [18] Shu Tao et al show that when multiple
paths are available from source to destination, performance can be
improved by monitoring the paths and choosing the path that offers
the best performance for VoIP. In [2] Yair Amir et al suggest the
use of overlays to improve VoIP performance. They suggest storing
packets in a ring-buffer at the overlay node so that if a packet is
noticed to be missing, it can be retrieved from the closest overlay node
that possesses a copy rather than from the source. The idea behind
this scheme is that in cases where the delay incurred in fetching
a missing packet from the host may render it unusable, it may be



possible to usefully retrieve the packet from the ring buffer of a closer
overlay-node. Our work differs in that unlike their work we are not
buffering packets nor are we attempting to reduce just network error,
rather we attempt to increase the overall quality of the calls instead
of any one aspect of quality. Additionally our experience has been
that network losses are small, and that jitter losses play a far bigger
role in determining the quality of VoIP calls.

In [17] the authors present OverQos, a wide-area overlay network
that can provide Qos guarantees, smooth packet-losses and provide
packet-prioritization. OverPhone differs from OverQos in that it is not
concerned with improving the performance of a small fraction of the
traffic but rather with rerouting all VoIP streams to take advantage of
the particular requirement of these streams. DoNet[19] is an example
of an application-driven overlay network. Nodes use the overlay to
access media-streams not directly available to it. Like OverPhone,
DoNet used the PlanetLab environment for testing.

In [4] the authors look at the advantage of path-redundancy in the
presence of congestion triggered loss and path failure. They conclude
that the advantage redundant-paths provide in these situations is
small. Unlike them we use redundant-paths to reduce both delay
and loss. In [10] the authors improve voice quality by sending the
different descriptions of a Multiple Description Coded (MDC) voice
stream over independent network paths. When all descriptions are
not received in time, the receiver settles for the quality the available
descriptions provide. This work’s approach is similar to our work
where we use parity codes. However we ruled out the use of MDC
coding since it is not clear how approximately reconstructed MDC
packets affect voice quality. In addition their work considers two
static routes in its experiments in contrast to our use of an overlay
network.

Some works [15], [13] have investigated the use of parity codes
to compensate for network loss. Our approach differs in that we
use parity codes to reduce not just network loss but also delay and
jitter-loss. In [12] the authors demonstrate the need to consider the
interactions between adaptive jitter-buffers and FEC codes when they
are used in conjunction and propose new algorithms that take these
interactions into consideration. Our works uses a static buffering
scheme where the interactions are easier to analyze.

The rest of the paper is organized as follows. We introduce VoIP
in Sec. II and OverPhone our overlay network in Sec. III. The
experimental setup is laid out in Sec. IV. In Sec. V we analyze the
performance of the OverPhone overlay. Sec. VI describes our exper-
iments with path-diversity while Sec. VII discusses our experience
with duplication and error-coding techniques. Sec. VIII notes some
of the caveats and limitations of our results while Sec. IX briefly
notes directions for future work. Sec. X concludes the paper.

II. VOIP

In this section we discuss the VoIP process and show how the
R-factor, a measure of the quality of a VoIP call is computed.

A. VoIP Quality

The VoIP software at the user-nodes are responsible for digitizing,
encoding, streaming, decoding and playing out the voice signal. First,
the voice signal is sampled and digitized. Then it is encoded with one
of many available codecs ( G.711, G.723.1, G.729, etc.), packetized
and transmitted using RTP/UDP/IP. At the receiver’s side, data is de-
packetized and forwarded to a jitter buffer, which smooths out the
variation in network delay (jitter). The voice data is then reconstructed
and delivered to the listener. Packet loss and delay affect the perceived
quality of a VoIP stream in a complex manner. Packet loss and

delay are caused by both the network and the VoIP application itself.
Packets can be lost in the network or be dropped by the playout buffer
due to large delay jitter. Delay is caused in the packetization process,
in encoding and decoding data, and in the jitter buffer. Perceived
quality is also affected by the nature of losses. Packet losses that
are randomly distributed along the stream are perceived to be less
of an impairment than losses that are clustered together. Since the
delays caused by encoding and packetization are fixed for a particular
codec, the goal of routing the call is to minimize the negative impact
caused by network delay, network loss, jitter delay, jitter loss and the
clustering of errors.

The ITU-T E-Model [1] is an analytic model of voice quality
that can be used to estimate the relative voice quality between two
connections. The E-Model can be used to calculate the R-factor which
is a simple measure of voice quality ranging from a best case of 100
to a worst case of 0. The R-factor uniquely determines the Mean
Opinion Score which is the arithmetic average of opinion where 1
is “unacceptable” and 5 is “excellent. The R-factor is related in a
non-linear fashion to the MOS through the following equation [6].

MOS = 1 + 0.035R + 7 × 10−6R(R − 60)(100 − R) (1)

The relationship of R-factor values to MOS and the typical
categorization of R-factor values are tabulated in Table I. It can be
seen that connections with R-factors of less than 60 are expected
to provide “poor” quality while R-factors of 80 and above provide
“high” quality.

R-factor Quality of Voice Rating MOS

0 < R < 100 Best 4.34 - 4.5
80 < R < 90 High 4.03 - 4.34
70 < R < 80 Medium 3.60 - 4.03
60 < R < 70 Low 3.10 - 3.60
50 < R < 60 Poor 2.58 - 3.10

TABLE I
R-FACTOR AND MOS

According to the E-model the R-factor is made up of many
parameters. Choosing ITU-T default values for parameters not related
to our discussion it reduces to:

R = 94.2 − Ie − Id (2)

where Id is the impairment caused by the mouth-to-ear delay of the
path, and Ie covers the impairments caused by all types of losses.

B. Estimating the Impact of Delay

The end-to-end delay d, determines the interactivity of voice
communication. As d goes up the impairment to the perceived quality
of the voice communication goes up as well. For one-way delays of
less than 177 ms, conversations occur naturally, whereas at delays of
177 ms or more, conversations begin to strain and breakdown and
often degenerate into simplex communication[6]. This impairment
due to delay Id has been quantified and captured as a function of the
delay d and is given by:

Id = 0.024D + 0.11(D − 177.3) ∗ H(D − 177.3) (3)

where D is the one-way-delay in milliseconds, and H(x) is the
Heavyside or step function where H(x) = 0 if x < 0 and 1
otherwise.



The delay D is made up of three components:
• Network delay (dnetwork) is the propagation and queuing delay

introduced by the network.
• Codec-related delay (dcodec), includes the delay incurred in

packetization, in look-ahead processing and encoding itself.
• Jitter buffer delay (djitter−buffer) is the delay incurred in the

jitter buffer at the receiver in the process of smoothing out the
variation in network delay.

One component dcodec, is associated with the codec used. For
example the G.711 codec samples voice data every 15 ms and
constructs a frame of data which is then encapsulated into one RTP
packet. Since it cannot transmit the data until all that information for
the frame is available, the encoder introduces a packetization delay
of 15 ms. So dcodec for G.711 is 15 ms. Other codecs may introduce
different dcodec values. For example the G.729 codec samples voice
every 10 ms, packetized two frames in an RTP packet and uses a
5ms lookahead buffer for an encoding delay of 25 ms.

The delay introduced by the jitter buffer at the receiver
djitter−buffer helps smooth out the delay jitter introduced in the
network and is specific to the implementation of the playout buffer.
Two kinds of jitter-buffers are popularly used: static buffers and
dynamic buffers. In a static scheme, djitter−buffer is chosen to be a
constant value (e.g. 60 ms) and the buffer is sized to contain twice the
number of packets that can be generated (2b) in time djitter−buffer

to avoid buffer overflow ( 4 packets for the G.711 codec). In the static
scheme the first packet within a given talk spurt is buffered until
the bth and b + 1th packets arrive. Upon the receipt of the b + 1th

packet the decoder will start playing out the speech samples from the
first packet. In a dynamic buffering scheme, the receiver continuously
adapts the size of the jitter-buffer and attempts to control the loss-rate
due to jitter-loss. However such a dynamic scheme reduces jitter-loss
at the cost of increasing the delay at the jitter-buffer.

In our analysis and experiments, we will assume a static jitter-
buffer and assume that the receiver uses a static buffer of 8 packets.
Therefore when 4 packets are in the buffer, playout starts. Because of
this buffering a delay of 4 packets or 4×15 ms = 60 ms is assumed.

C. The Impact of Packet Loss

Three elements contribute to Ie the impairment factor due to
packet loss. First we have the channel packet-loss. Second the de-
jitter buffer smooths out delay variations at the expense of increased
packet-loss and delay. And third, the codec uses an error-concealment
algorithm. All three factors contribute to Ie. No analytic expressions
are available for Ie but instead it must be obtained from subjective
measurements of voice quality for different codecs and various
operating conditions. It has been shown that an expression of the
form

Ie = γ1 + γ2 ∗ ln(1 + γ3E) (4)

where E is the total loss rate, and the γi are fitting parameters,
fits measured data well for various codecs. The specific values of
γi for different codecs are tabulated in Table II [7]. The equipment
impairment factor Ie as a function of packet-loss % for various codecs
is charted in Fig. 1(A).

In this paper, we focus on G.711 as the reference codec and use
the parameters for the G.711 codec provided in Table II to estimate
the impact of loss on voice quality for a given path.

D. The Impact of Clustering

While it is known that the burstiness of packet-loss affects the
perceived quality of voice data, it is not well understood [6].

The G.711 codec has been studied under random and bursty loss
conditions [5]. For low loss conditions (E < 0.04) the measured
values of Ie (G.711 with packet loss concealment) under random and
bursty loss conditions are similar. However for larger loss conditions
(E ≥ 0.04), Ie differs dramatically as shown in Fig. 1(B), and the
bursty loss causes a marked degradation in the voice quality. In the
case of bursty loss a different set of γi values were shown to fit
the observed Ie [6] and are tabulated in Table II. We take this into
account in the calculation of R-factors throughout this paper.
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Fig. 1. Effects of Packet Loss

We can now calculate the R-factor given the codec, the delays
due to the network, codec and jitter-buffer, and the losses due to
the network and jitter-buffer. We also need an indication whether the
losses are random or bursty. The R-factor under random and bursty
loss conditions are given by Id−(30ln(1+15E)) and Id−(19ln(1+
70E)) for the G.711 codec where Id is given by Eq. 3. Therefore
the R-factor can be computed given just the total delay, the total loss
rate, and burstiness.

Codec condition γ1 γ2 γ3

G.711 random loss 0 30 15
G.711 bursty loss 0 19 70
G.729 random loss 11 40 10

TABLE II
γi VALUES FOR VARIOUS CODECS

III. THE OVERPHONE SYSTEM

We envision a VoIP application where machines play the roles of
user-nodes, beacon-nodes and overlay-nodes (a machine may play
more than one role). The roles and responsibilities of the different
nodes are summarized below.

• [User-node] Runs VoIP application. On startup, searches for
and registers with closest beacon-node which gives it the list of
overlay-nodes to use as entry-points to the overlay. Routes data
directly to overlay-nodes.

• [Beacon-Node] Special user-node that enhances scalability by
serving as an administrative intermediary between user and
overlay nodes. Responds to queries for beacon-nodes from user-
nodes. Represents all user-nodes registered with it to the overlay
for routing purposes. Works in conjunction with overlay-node to
periodically assess the quality of the network channel between
them. Does not route data streams.

• [Overlay-Node] Special beacon-node that has the resources and
capacity to route VoIP streams. Responsible for calculating the
best routes between beacon-nodes and for routing VoIP streams
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from and to user-nodes. Uses best routes between beacon-nodes
to route data-streams for all user-nodes registered with beacon-
node. Serves as entry-point to the overlay, and receives and sends
data-streams directly to user-nodes.

The nodes and their interactions are shown in Fig. 2. It should be
noted that every overlay-node is also a beacon-node.

A. Architecture

The overlay-network is architected in the layered fashion illustrated
in Fig. 3.

1) User-Nodes: User-nodes run the VoIP application which is
made up of a Beacon-layer that on initialization sends out a limited
broadcast (one that dies after a predetermined number of hops) query-
ing for beacon-nodes. It chooses the first beacon-node to respond,
registers with it, and receives a list of overlay-nodes to use as entry-
points to the overlay. User-nodes also have a Data-layer that transmits
and receives VoIP streams from the Data-layer of overlay-nodes.

2) Beacon-Nodes: Beacon-nodes contain a Path-probe layer (sim-
ilar to that of the overlay-node) that is used to evaluate the quality
of the channel to overlay-nodes. It also contains a User-layer that
responds to limited-range broadcasts from user-nodes querying for
beacon-nodes. The beacon-node provides the overlay-nodes the list
of user-nodes registered with it. The overlay-routing for all user-
nodes registered with a beacon-node is the same as that computed
for the beacon-node. It must be emphasized that beacon-nodes act as

administrative intermediaries between user-nodes and overlay nodes,
and do not handle data-streams.

3) Overlay-Nodes: Overlay-nodes contains four layers: the
Control-layer, the Route-compute layer, the Data-layer and a Path-
probe layer. The Control-layer of each node communicates routing
information to other overlay-nodes. It broadcasts requests for route
information and processes route-information that has been sent to it.

The Route-compute layer is responsible for computing the best
routes to overlay-nodes. It uses the Control-layer to broadcasts
routes and route-requests and to receives route-information from other
overlay-nodes. It also uses the Path-probe layer to asses the quality
of the links to each beacon node. It then computes the best routes
based on the link information and routing information received form
other overlay-nodes.

The Data-layer is responsible for the receipt and routing of
VoIP packets. It periodically receives route-updates from the Route-
compute layer which indicates the next-hop overlay-node (or an
indication that the direct-path is best) of the best route to each beacon-
node.

The Path-probe layer is used to evaluate the quality of the link to
overlay-nodes.

B. Estimating Link Quality

We now look at the details of how overlay-nodes and beacon-
nodes assess the quality of the link between them (a link is the
network channel between overlay-nodes or between overlay-nodes
and beacon-nodes). Recall that the link-quality is measured by the
R-factor which is a function of delay, the network-loss rate, the jitter-
loss rate, and cluster-factor. We define each of these parameters, then
discuss how we measure them for a individual link.

• [Delay (d)] d = r − s where s and r are the packet send and
receive-time in milliseconds. Note that d is network-delay while
the total delay used in the calculation of the R-factor is D =
d+dcodec+djitter−buffer. For our experiments dcodec = 15ms
and djitter−buffer = 60ms. So D = d + 75.

• [Network-loss rate (n)] n = P (packet-is-not-received) and is
computed as (packets-sent−packets-received)/packets-sent.

• [Jitter-loss rate (j)] is P ((d − d1) > T ) where T is the jitter-
buffer threshold and d1 is the delay of the first packet in a
talk-spurt (we will discuss talk-spurts in the next section). T in
our experiments is 60ms.

• [Cluster-factor (c)] is P (pi+1 is lost |pi is lost), where pi

indicates the ith packet.
We next discuss how we measure each of these parameters for an

individual link with our path-quality probe. We start by describing
the probe itself.

1) The Quality Probe: All overlay-nodes and beacon-nodes posses
a Path-probe which they use to periodically assess the quality of
the channel between them. The Path-probe works by transmitting
an 8 second VoIP talk-spurt and observing the loss and delay on
this spurt. The talk-spurt consists of 5 initialization control packets,
followed by 1000 132-byte data packets p1 . . . p1000 sent at 15 ms
intervals, followed by 5 more control packets indicating the end of
the spurt. Each data packet pi contains i its sequence-number in the
talk-spurt and the send time si. Upon receipt of the initialization
control-packets, the receiving Path-probe begins recording statistics
about the spurt. In particular, it records network-loss n, jitter-loss j,
and the cluster-factor c. It also estimates the average delay in the
receipt of packets from their time-stamps. Upon receipt of the last
packet of the stream the server returns the network-loss, jitter-loss and
the loss cluster-factor to the transmitting Path-probe. Additionally it



returns the deviation of the delay of the last packet from the average
delay (we explain later why it sends this information rather than just
the average delay). The transmitting Path-probe uses this information
to calculate the quality (R-factor) of the channel. We discuss each
measurement in detail.

2) Link Delay (d): Since the Path-probes at the overlay-nodes and
the beacon-nodes communicate bidirectionally, multiple options are
available in measuring the path delay. The packets in the talk-spurt
are timestamped just before they are sent out, therefore the Path-
probe at the receiver can compute the average delay by comparing
its current time with the timestamps on the packets. However this
requires that the clocks at the overlay nodes and beacon-nodes be
synchronized to within a millisecond or two, which may not be the
case.

The second option is for the nodes to estimate delay from Round-
Trip Times (RTT). This is possible since the beacon-node responds
to the last packet in the stream by sending back loss statistics. The
client can record the time elapsed from when the last packet in the
talk-spurt is sent out to the time the packet containing loss statistics is
received. This method suffers from the drawback that the return-trip
time may differ from the forward-trip time, and therefore estimating
delay from RTT may be inaccurate. In addition, the last packet may
suffer a delay that deviates from the mean delay.

We use a combination of the two options in estimating delay.
The receiving Path-probe, in addition to calculating average delay
d̄, computes the deviation in delay of the last packet received from
the mean ddev = dlast − d̄ and returns this information back to
the client as part of the returned statistics. The sending Path-probe
then computes the time that elapsed from when the last packet in
the talk-spurt is sent to when the statistics packet is returned. From
this it estimates delay. Then it corrects this estimate by ddev . Such
an estimate of delay, while not exact, provides a measure that we
observed to be reasonably consistent over time.

3) Link Jitter Loss (j): In our experiments we assume that the
receiver use a static buffer that stores 8 frames. Playback of the first
frame starts when the buffer reaches its halfway mark or 4 frames.
Since frames encode 15ms of data in the G.711 codec, the jitter-buffer
delay is 4 x 15 = 60 ms.

We use the time-stamp information contained in the packets in
our talk-spurt to calculate jitter-loss. When a receiving Path-probe
encounters the first packet of a talk-spurt, it calculates and stores the
first-packet delay d1 = r1 − s1. Then for each subsequent packet pi

received, it calculates the jitter-delay to be the delay relative to the
first-packet ji = ri − si −d1. If jitter-delay ji is negative, the packet
arrived ahead of schedule. However if it is positive and larger than
the jitter-delay threshold of 4 x 15 = 60 ms, the packet is determined
to have arrived too late to be of use, and is noted as a loss. At the end
of the talk-spurt, it estimates the jitter-loss rate j = (1000−packets-
lost-to-jitter)/1000.

4) Link Network Loss (n): The Path-probe at the receiver keeps
track of the number of packets received from the sending client.
At the end of the talk-spurt it estimates the network-loss rate n =
(1000−packets-received)/1000.

5) Link Cluster-Factor (c): Packets in the probe-stream contain
their sequence-number i. The Path-probe records these numbers upon
receipt of a packet, and computes the cluster-factor c from these
recorded sequence numbers at the end of the spurt.

Upon receipt of control-packets indicating the end of the talk-
spurt, the Path-probe returns four pieces of information back to the
sender: n, j, c and ddev . The sender records n, j, c and estimates
d = rlast−packet/2 + ddev where rlast−packet is the round-trip time

it recorded for the last packet in the spurt.

C. Estimating Path quality

In the above section we discussed how d, n, j and c for a single
link is estimated. From theses estimates the R-factor of the link can be
computed. However a route or path through the overlay can comprise
multiple links and the routing-algorithm needs to be able to evaluate
the quality of these multi-hop paths to choose the best path among
many available. It therefore needs to to compute the R-factor of
multi-hop paths. However R-factors are non-linear so are not additive.
Therefore to calculate the R-factor of the path, we needs the overall
d, n, j and c for the whole path. Since we do not directly measure
d, n, j and c for multi-hop paths (doing so would be computationally
prohibitive as the number of multi-hop paths increases exponentially
in the number of hops) the solution is to estimate d, n, j and c for the
multi-hop paths from the corresponding values of the individual links
and compute the R-factor for the whole path from these estimate. We
discuss how we do this next.

1) Path Delay (d): Calculating the combined delay is simple.
Assuming that processing delays are small relative to network delays,
the total delay of a multi-hop path is just the sum of the delays of
the individual links dab = da + db.

2) Path Network Loss (n): Network errors are multiplicative. If
two links a and b have loss rates of ea and eb the combined loss rate
along the path comprising of links a and b is 1− ((1− ea)(1− eb)).
For small values of ei the combined loss rate can be approximated by
summing the losses. I.e., for small ei, 1−((1−ea)(1−eb)) ≈ ea+eb.

3) Path Jitter Loss (j): Estimating jitter loss for a multi-hop
path from the jitter-losses of individual links is more complicated.
Consider the static jitter-buffer scenario where all packets that have a
delay larger than the first-packet-delay plus the jitter-buffer threshold
T are considered lost. Suppose packets traversing link i show a delay
distributions pi(t), then the jitter-loss probability is as given below.

ji =

Z

∞

di
1
+T

pi(t)dt

where di
1 is the first-packet-delay and T the jitter-buffer threshold.

Assuming that the distributions are independent, and processing delay
is small compared to the delays, the delay distribution of packets
traversing the two links a and b sequentially is given by pab(t) =
pa(t) ◦ pb(t) where ◦ is the convolution operator. The jitter loss jab

for the two links is given by

jab =

Z

∞

da
1
+db

1
+T

pab(t)dt

Therefore to compute the jitter-loss rate of a multi-hop path, we need
the delay-distributions and first-packet delay of the individual links.

Distributions are cumbersome to pass around, so we experimented
with ways to estimate the multi-hop jitter-loss rate without having
to estimate or store distributions. We captured the delay distributions
from the different suffixes, and conducted experiments on different
methods of estimating the multi-hop rate from the distributions. We
discovered that a simple sum worked sufficiently well. In all cases
where the jitter-loss rate of individual links was significant (> 0.01)
estimating the multi-hop jitter-loss as jab ≈ ja + jb was very close
to the actual value for jab or overestimated it. We concluded that
summing the jitter-losses of the individual links to estimate the jitter-
loss of a multi-hop path is a conservative overestimate and we chose
to use this method in our system rather than storing and exchanging
delay distributions and first-packet delays.



4) Path Cluster-Factor (c): The cluster-factor can be computed for
a multi-hop path as a sum weighted by the loss rate (since the cluster-
factor is only computed for lost packets). So cab = ea×ca +eb×cb.

Since we can estimate d, n, j and c for a multi-hop path from the
values of the individual segments, we can now compute the R-factor
for multi-hop paths and therefore we are in the position to compare
the quality of two routes irrespective of whether they are single-hop
or multi-hop. We next describe our routing algorithm.

D. The Modified Distance-Vector Algorithm

Our routing algorithm is a variant of the Distance-Vector algorithm
[9] where each overlay-node periodically recomputes its best routes.
In each cycle each overlay node first estimates the quality of its link to
each beacon-node using the Path-probe. It then iteratively exchanges
route-information with all other overlay-nodes and computes the best
route to each beacon-node. The exchanged information consists of the
delay d, network loss rate n, jitter loss rate j, cluster-factor c and
next-hop neighbor h. The algorithm works as follows.

• Set the next-hop h to “direct” and estimate (d, n, j, c) for the
links to all beacon-nodes.

• Broadcast this information to all other overlay-nodes.
• Iteratively do the following until the recomputed routes do not

change
– Collect route-information from all other overlay-nodes.
– For each beacon-node, compute (d, n, j, c) through each

overlay-node and calculate the R-factor to it.
– If the R-factor for a beacon-node through another overlay-

node is better than the current route, choose the best
available.

– Reset (d, n, j, c) to be the new values and reset the next-hop
h to be the overlay-node that provides the best route.

– If routes changed during this iteration, broadcast new routes
to all other overlay-nodes.

This modified version of the Distance-Vector algorithm is run
periodically. In each cycle each overlay-node computes the best
route to each beacon-node and records either the next-hop overlay-
node or that the direct-path provides the best route. It then passes
this information to the Data-layer. The algorithm is more formally
described in Fig. 4.

IV. EXPERIMENTAL SETUP

In this section we describe the deployment of our experimental
overlay on the PlanetLab environment and our experimental setup.
We start by briefly introducing the PlanetLab Environment.

A. PlanetLab

PlanetLab is a collection of academic, industrial, and government
institutions cooperating to provide a testbed for Networking research
and consists of 578 machines hosted by 275 sites spanning 25
countries and supporting 275 active research projects. Each research
project is run in a slice. Each slice consists of a set of machines,
running a modified Linux OS that makes it appear that the project
is the only user of the system (when in reality multiple projects are
share the machine’s resources).

Our experimental PlanetLab slice consisted of 115 machines. How-
ever of these only about 40 machines are from unique institutions,
as many institutions contribute multiple machine to the PlanetLab
environment. Since multiple machines from a single institution are
likely to be geographically close and topologically similar, we elim-
inated duplicate machines from the same institution. This left us 31
machines that were alive and from unique institutions at the time of

• For each node i do
– Probe and determine di, ni, ji, ci the delay, network-error and jitter-error

on the link to i.
– Compute ri the R-factor for the link to i.
– Set hi the next-hop neighbor to be direct (hi = i).

• done (for)
• Do

– Broadcast di, ni, ji, ci to other overlay-nodes.
– Collect d
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from other overlay-nodes j.

– Set changes = 0;
– For each set of routes from overlay-node j do

∗ Let dij , nij , jij , cij be the delay, network-error, jitter-error, cluster-
factor to i reported by j.
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done (if)

– done (for)
• Until (changes == 0)

Fig. 4. The Modified Distance-Vector Algorithm

the experiments. The number of hosts in each domain or suffix, the
Round-Trip-Time and bandwidth measured from the home-machine,
and the 15 minute load-average for these machines are tabulated in
Table III.

B. Choosing the Overlay Nodes

In the VoIP System we envision, there are many user-nodes, fewer
beacon-nodes and even fewer overlay-nodes. We needed to apportion
the chosen machines in the PlanetLab environment to these different
roles. Since machines can play multiple roles, we chose all machines
to play the roles of user-node and beacon-node. However we wished
to have a smaller subset of machines play the role of overlay-nodes.

We decided to choose those machines that proved to be the best
routing-intermediaries to be the overlay-nodes. In other words we
chose those machines that provided the best shortcuts between other
nodes on a static snapshot of the network. More specifically, over a
short time-span, each host recorded its R-factor to each of the other
N-1 hosts in the network. Then using all N such snapshots, each
host looked for the best alternative path to each host through single

Domain Category Number RTT (ms) BW (B/s) Load

edu Education 11 30 8.6 15
org Organization 1 16 6.2 5
net Networking 5 62 4.5 8
com Commercial 2 80 3.5 4
uk U.K. 1 72 - -
fr France 2 88 1.8 7
be Belgium 1 107 2.1 8
de Germany 1 96 2.2 9
ch Switzerland 1 91 2.2 14
dk Denmark 1 115 0.9 12
il Israel 2 178 1.4 8
kr Korea 1 317 1.1 -
in India 2 770 - 2
Total 31 104

TABLE III
PLANETLAB NODES IN EXPERIMENTAL SETUP



or multiple intermediate nodes. If the best alternative path provided
a larger R-factor than the direct path, each intermediate host in the
alternative was credited with providing a shortcut. After analyzing all
N2 such host-pairs, we chose the O hosts which figured in the most
shortcuts to be overlay-nodes. We illustrate this selection process with
a simple example. Suppose A,B and C are the three hosts under
consideration and let rAB indicate the R-factor A calculates for a
direct connection to B while rACB be the R-factor for a connection
from A to B through C. If rACB > rAB then C gets a credit for
being a shortcut node. Similarly if rBCA > rBA host C would get
a second credit. Since in a three-host network each node could be
a shortcut for two paths each host has a shortcut-credit of 0,1 or 2.
Similarly hosts A and B would have their shortcut-credits calculated.
The nodes which had the largest number of shortcut-credits would
become the overlay nodes.

In our experiment, we had all hosts record snapshots of their R-
factors to all other hosts over a half-hour period. We then calculated
the shortcut-credit for each host. There were nineteen hosts which
had shortcut-credits and there were eleven hosts which had three or
more shortcut-credits. We chose these eleven hosts as overlay nodes.
The distribution of these nodes by suffixes is given in Table. IV.

C. The G.711 codec

The makeup of VoIP streams, and the analysis of received streams
for quality depends on the specific codec used. Of these, the best
known are the G.723, G.729 and G.711 codecs. The G.723 and the
G.729 are low bandwidth codecs (6 Kbps and 8 Kbps), while the
G.729 codec is is high-bandwidth codec (64 Kbps). Since the Internet
is a relatively high-bandwidth environment (relative to wireless
networks) we use the G.711 codes throughout our experiments.

Throughout, we use the G.711 codec with a 15 millisecond (ms)
sampling interval. This creates frames of size 64, 000/(8 × 15) =
120 bytes. Since each is encapsulated into one RTP packet before
being sent out, a 12 byte RTP header is added making a 132 byte
RTP packet. Frames are generated at a rate of 67 frames/second for a
simplex connection. Since VoIP connections are duplex, 133 packets
of size 132 bytes are generated every second for a call. The system
adds an 8 byte UDP header and a 20 byte IP header creating a 160
byte packet resulting in a bandwidth of 171 Kbps per call. The largest
load we use in our tests is 5 simultaneous calls which uses a total
bandwidth of 855 Kbps. We tabulate these important parameters of
the G.711 codec and related numbers in Table V.

D. The VoIP Tester

For our experiments we created a VoIP-tester (VT) application that
runs on user-nodes. The VoIP-tester (VT) is capable of generating
VoIP calls to other user-nodes. Calls consist of sequences of talk-
spurts of 8 seconds or 1000 packets each (similar to the path-prober).
Each talk-spurt of 1000 packets is surrounded by 5 control packets
on either side, indicating the beginning and end of a talk-spurt. The
whole call, consisting of a sequence of talk-spurts is also surrounded

Suffix # Overlay-Nodes
edu 4
net 3
com 2
de 1
be 1
Total 11

TABLE IV
OVERLAY NODES AND THEIR SUFFIXES

Call beginning Talk−spurt Talk−spurt Call endTalk−spurt

Spurt−beginning Spurt−end1000 packets of 132 bytes every 15 ms

Fig. 5. A VT Call

by 5 control packets on either side indicating the beginning and end
of a VoIP call. The control packets allow the receiving VT application
of setting up and tearing down of calls. It also allows the receiving
VT application to gather statistics. The constituents of a VT call are
pictured in Fig. 5.

The receiving VT application collects statistics for each talk-spurt
and sends it back to the sender at the receipt of the control packets
indicating the end of a talk-spurt. The sender has a asynchronous
process that gathers the returned statistics for the individual talk-
spurts and computes information about the overall quality of the call.
The timeline of this process is pictured in Fig. 6.

V. ROUTING

In this section we describe the performance of the overlay network.
1) Performance: We collected performance information while run-

ning the overlay uninterrupted for a full day. The modified Distance-
Vector algorithm ran to convergence every 10 minutes. Each of the
overlay node recorded the following statistics:

• The percentage of beacon-nodes to which the overlay provided
a better path than the direct link.

• The average amount by which the R-factor increased for those
routes which routed through the overlay rather than directly.

• The percentage of nodes for which the quality of the VoIP
increased from “low” (R-factor < 70 ) to “medium” or better
(R-factor ≥ 70 ).

• The percentage of nodes for which the quality of the VoIP
increased from “medium” or worse (R-factor < 80 ) to high
or better (R-factor ≥ 80 ).

The first statistic indicates how many nodes benefit from the over-
lay. The second statistic indicates whether the benefit is significant.
However an improvement in quality from poorer to poor (say from
an R-factor of 20 to 30) of from high to higher (say R-factor of 80 to

Parameter Value

Codec G.711
Bitrate 64 Kbps
Sampling Rate 15 ms
Frame size 120 bytes
Frame Rate (simplex) 67 frames/sec
Frame Rate (duplex) 133 frames/sec
Packet size (RTP) 132 bytes
Packet Bitrate (duplex+RTP) 141 Kbps
Packet size (RTP+UDP+IP) 160 bytes
Packet Bitrate (duplex+RTP+UDP+IP) 171 Kbps
Jitter Buffer size 8 frames
Jitter Buffer size 960 bytes
Jitter Buffer delay 4 frames
Jitter Buffer delay 60 ms

TABLE V
OVERLAY NODES AND THEIR SUFFIXES
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Fig. 6. Call Timeline

85) is not significant as the perceived quality remains essentially the
same. To take this into account, we captured the last two statistics
which indicate the percentage of calls that improve perceptually rather
than mathematically.

The average values of these parameters from a day’s records of
approximately 150 sample points for each of the overlay nodes is
shown in Table VI. We found that these numbers were quite stable and
did not change significantly over the course of the day. On average
the R-factor of 41% of the paths improved in being routed through the
overlay rather than directly. The R-factor also increased by an average
value of 26 for these paths. Additionally 11% of routes improved in
perceived quality from low (or worse) to medium (or better), and
11% improved from medium (or lower) to high (or better).

While collecting our statistics we noted that some overlay-nodes
were not able to directly communicate with some beacon-nodes.
When an overlay-node does not have a direct-path to a beacon-
node, the channel is assigned an R-factor of 0. These overlay-nodes
however discovered paths to these directly unreachable nodes through
the overlay. In the statistics collected, these nodes would show an
improvement in performance from an R-factor of 0 to the R-factor
of the route through the overlay. It is possible that such routes inflate

node suffix Increase
in

% paths that improve

R-factor from low-
medium

from medium-
high

1 edu 26 42 10 9
2 edu 22 42 8 8
3 edu 39 43 16 16
4 edu 23 42 8 8
5 net 20 40 8 7
6 net 27 46 14 16
7 net 23 42 10 9
8 com 20 35 6 6
9 com 28 41 12 12
10 de 28 39 10 10
11 be 27 43 13 13
Mean 26 41 11 11

TABLE VI
PERFORMANCE IMPROVEMENT DUE TO OVERPHONE

the performance of the overlay, since the improvement in performance
is measured from 0 rather than some other baseline.

Therefore we also collected the above mentioned statistics, dis-
counting increases in performance from 0; i.e, if we noticed that
a node showed an improvement in performance from a R-factor
of 0 to some value, we did not include it in our statistics. The
previously mentioned measures discounting these increases are shown
in Table VII. It should be noted that this statistic understates the
performance of the overlay as it is likely that 30-40% of these
paths not taken into account would have also shown improvement
in performance. The data in the table can be seen as a lower-bound
on the improvement in performance. Even in this underestimate of
performance, 28% of nodes show improved quality by an average
R-factor of 7. Additionally the perceived quality of 2% of the
nodes improved from low (or worse) to medium (or better) and 4%
improved from medium (or lower) to high (or better).

2) Stability: Another area we were concerned about with regard
to the performance of our overlay was the stability of the computed
routes over time. Each overlay-node recomputes the best routes every
10 minutes. The question was whether these routes stayed close
to being the best in the intervening interval. This is an important
question in our case because of the use of talk-spurts to assess
the quality of data channels. When a new routing-cycle starts, the
overlay-node computes the quality of the direct-path to each overlay-
node anew. Since our talk-spurt takes approximately 10 seconds for
each node, the inter-cycle time cannot be reduced dramatically from
the default of 10 minutes used. Therefore the stability and utility of
routes is important.

To assess stability we recorded two statistics for each overlay node
at each route-calculation cycle: the percentage of routes that changed
from the last cycle, and the amount by which it changed. Studying
the statistics recorded over a day, we noted that approximately 43%
of nodes had new routes in each cycle indicating that there was
a fair amount of change in routing between cycles. However the
average change in the R-factor of these changed routes was only
3%. This number is very small compared to the approximately 17%
improvement in R-factor noted earlier for routes over the overlay. This
indicates that the overlay provides multiple routes of similar quality,
and depending on the conditions during the measurement of channels
in each cycle, different routes may be chosen among these routes.
However all these routes provide nearly equivalent performance so
we therefore concluded that the large time-interval between route-
calculation cycles was not an issue of concern.

node suffix Increase
in

% paths that improve

R-factor from low-
medium

from medium-
high

1 edu 4 27 1 2
2 edu 4 29 0 1
3 edu 4 22 1 1
4 edu 4 29 0 2
5 net 5 29 2 3
6 net 7 30 4 9
7 net 6 30 3 5
8 com 5 25 2 3
9 com 4 26 1 4
10 de 6 25 2 4
11 be 11 31 6 8
Mean 7 28 2 4

TABLE VII
LOWER-BOUND OF IMPROVEMENT



VI. PATH DIVERSITY

One of the facilities, not normally available, offered by an overlay
is multiple-paths to a destination. It has been hypothesized that using
multiple-paths increases the bandwidth available from a source to
a destination. In a VoIP application we are interested not just in
increased bandwidth but in increased capacity. This can be measured
as the increase in the number of calls of equal quality that can be
put through, or equivalently the increase in the quality of calls when
the number of calls are held constant.

We used OverPhone to test whether increased path-diversity does
indeed give us more capacity. We compared two channels from the
same source to the same destination where the first used a single-
path and the second used multiple-paths. We fed the same number of
calls to both channels and observed the difference in quality between
the calls in the two channels. We then slowly ratcheted up the the
number of calls sent, correspondingly increasing the path-diversity
of the second channel, and observed the difference in performance
between the two channels. We present the results below.

A. Results

We began by sending two calls through each channel. The first
channel used a single path for both calls, while the packets in the
second channel were passed to two different overlay-nodes. Recall
that each duplex G.711 call uses a bandwidth of 170 Kbps. Therefore
the load in this experiment was 340 Kbps. The source was always a
user-node in the “columbia.edu” domain while the targets were all the
user-nodes in our PlanetLab environment. All calls lasted 5 minutes.

We recorded two parameters in the tests. The first was R, the
average R-factor of talk-spurts in the call, and the second was L
the percent of talk-spurts that were perceived to have low or worse
quality (R-factor < 70). The difference in performance between the
single-path channel and the two-path channel for user-nodes in the
different suffixes is tabulated in the first set of histograms in Figs. 7
and 8. 2

In Fig. 7 the improvement in R of multiple paths is stacked
on top of the R values of the single paths, and in Fig. 8 the
additional L suffered by single-paths is stacked on top of the L
value of multiple paths. It can be seen that path-diversity does indeed
improve performance. Tests in all suffixes showed improvement and
on average the R-factor improved by 4 while low quality talk-spurts
fell by 11%.

We next tested how this improvement in performance changed
as the number of calls and path-diversity increases. The results of
the test with 3 calls (bandwidth of 540 Kbps) is tabulated in the
second set of histograms in Figs. 7 and 8. It can be seen that nearly
all suffixes showed even larger improvements in performance. The
average improvement in R-factor went up to 11, and the low quality
talk-spurts fell by 21%.

We next conducted the tests with a path-diversity of 4 and with 4
calls that used a bandwidth of 680 Kbps. At this bandwidth the test
started breaking down and calls did not complete to some targets.
The results of this test are tabulated in the third set of histograms in
Figs. 7 and 8. The average improvement in R-factor went up to 12,
and the percent of low quality talk-spurts fell by 22, but the channels
started to saturate and the overall quality of the calls dropped.

The improvement in quality as the load and path-diversity increases
is charted in Fig. 9. The first graph shows the average improvement

2When multiple user-nodes were present in a in a suffix, we averaged their
results. We also show the combined value of European suffixes under the label
“eur” to enhance visual clarity.
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in R-factor for the different suffixes and the second records the
reduction in the percent of low-quality spurts (the European suffixes
were combined to make the charts less cluttered).

It can be clearly from the histograms and graphs that the difference
in quality between channels that use path-diversity and those that do
not widens as load and diversity go up.

VII. CODING

We wished to explore if is was possible to improve the quality of
a VoIP call by using additional bandwidth. If the quality of a call
is suffering due to delays, network and jitter-losses, but additional
bandwidth is available, can we improve the quality of the call and if
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so by what amount under what conditions? We wished to also gauge
the consequences of using additional bandwidth on other users since
it has been hypothesized that proprietary codecs use such techniques
to improve quality. We report on experiments that explore these
questions in this section.

The quality of VoIP calls deteriorate due to large delays, network
losses and large jitter. Even in the best route these are unavoidable
at certain times, but perhaps these properties temporally vary along
different paths in an indeterminate manner and at a timescale too
small for the routing algorithms to react to. Is it however possible to
take advantage of these variations?

A simple brute-force solution, since we have an overlay network
available to us, is to send duplicate packets along different paths, and
use the packet that arrives earliest. Such an approach will definitely
use the best available route at a very small timescale. So in our first
experiment we studied the consequences of packet-duplication along
multiple paths.

A. Packet Duplication

We conducted our experiments by comparing the performance of
two channels when two calls were made simultaneously from the
same source to the same destination. The first was “regular” call that
lasted 5 minutes. The second call lasted an equal amount of time but
used packet-duplication. The first experiment used a duplication-ratio
of 2 where every packet was duplicated and both packets were sent to
the target. The VoIP application at the target user-node used the first
of the two duplicates to arrive, and discarded the second. Since we
wished to isolate the effect of packet-duplication in the experiment
we used a path-diversity of 2 for both channels, i.e. the packets in
both calls were randomly handed to two different overlay-nodes for
forwarding to the target. Note that the duplicate-channel utilizes twice
the bandwidth (340 Kbps) of the regular channel (170 Kbps).

In the experiments the source user-node was always in the
“columbia.edu” domain, and the test was conducted to every user-
node in our PlanetLab test environment. We gathered two statistics
for each test: R the average R-factor of each talk-spurt and L the
% of talk-spurts that had a quality perceived to be “low” or worse (
R-factor < 70).

The performance of the two channels and the improvement in per-
formance of the duplicate-channels to targets in the different suffixes
is tabulated in Figs. 10 and 11. When there were multiple nodes in a
suffix, the results were averaged. In Fig. 10 the improvement in the
R-factors due to path duplication is stacked on top of the R-factors of
the regular channel. In Fig. 11 the additional L suffered by the regular
channel is stacked on top of the L for the duplication channels. The
advantages of duplication can clearly be seen. All suffixes showed
improved performance and the R-factor went up on average by 18
and low quality talk-spurts went down by 27%. So there is significant
improvement in quality in sending duplicate packets.

We wished to study the improvement as a function of the duplica-
tion ratio. So we also conducted the experiment where 2 duplicates
were sent out (in addition to the original packet). In this case a path-
diversity of 3 was used for both channels and the duplicate channel
used a bandwidth of 540 Kbps while the regular channel used a
bandwidth of 170 Kbps for a total of 680 Kbps. The results are
tabulated in the second set of histograms in Figs. 10 and 11. The
improvement in R-factor goes up to a very large 34, and the number
of low quality talk-spurts fell by a full 48%.

We also conducted the experiment where the packet and 3 dupli-
cates were sent out. In this case a path-diversity of 4 was used for
both channels and the duplicate channel used a bandwidth of 680
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Kbps while the regular channel used a bandwidth of 170 Kbps for
a total of 850 Kbps. Some calls failed to complete in this scenario
indicating that many channels were saturated by the load. The results
are tabulated as the third set of histograms in Figs. 10 and 11. The
improvement in R-factor goes up even further to 44, and the number
of low quality talk-spurts fell on average by 64%.

However the steady decline in performance of the regular channel
as the number of duplicates go up should be noted. Essentially the
duplicate channel improves at the expense of the regular channel.

B. Error Coding

It is clear that sending duplicate packets improves the performance.
However duplication consumes a large amount of additional band-
width. An obvious question is whether some of the benefits and
improvements in quality that duplication offers can be had for a
smaller increase in bandwidth. In other words, can we have fractional
duplication ratios?

The answer is yes, but we need to group packets together in blocks
of size k and introduce duplicates for each block. For example if we
block every two packets together, and introduce a duplicate packet for
this block of two, we have created a duplication ratio of 0.5. Using
terminology from Error-Correcting-Codes we use a (n, k) scheme if
packets are grouped together in blocks of size k and a total of n
packets are sent out for this block of k packets.

The next question that arises is this. What data do we include in
the duplicate packet? Should we just duplicate one of the packets
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or can we do better. The answer to this question becomes apparent
if we consider the nature of losses in a VoIP channel. Delay and
jitter-losses are the major causes of deterioration in performance of
VoIP channels. Packet duplication brought great benefits because the
target could use the earlier-arriving packet, reducing both delay and
jitter-loss. Therefore we would like to preserve this ability.

Parity Codes lend themselves well to satisfy this requirement. If
we use (k + 1, k) codes, where the duplicate packet is the parity of
the k packets in the block, the receiver can construct all the packets
in the block as soon as any k packets arrive. In particular if the parity
packet arrives ahead of the kth packet, the receiver can use the parity
packet to reconstruct the kth packet. In the following experiments we
test the benefits of using two such parity codes: the (3,2) code and
the (4,3) code.

We first present the results of experiments using the (3,2) code. In
this scenario, an additional parity packet is sent out along with every
second packet in the VoIP stream and the receiver uses the earlier-
arriving packet among the parity packet and the second packet in the
block. The performance of this channel is compared as before with a
simultaneous “regular” call. Both calls use a path-diversity of 3. The
(3,2) channel use a bandwidth of 255 Kbps as opposed to the 170
Kbps used by the regular channel. The R-factors are tabulated in Fig.
12 where the improvement in the R-factor due to coding is stacked
on top of the R-factor of the regular calls. The fraction of low-quality
spurts L is recorded in Fig. 13 where the additional L suffered by
the regular channel is stacked on top of the L for the coded channel.
It can be seen that all suffixes show improved performance for the
(3,2) channel with the average R-factor increasing by 16 and the
number of low quality talk-spurts falling by 27%. This improvement
in performance is only marginally smaller than the performance of
the (2,1) channel (where a duplicate copy of every packet was sent
out) while saving 85 Kbps of bandwidth!

We next tested the performance of the (4,3) code. In this case an
additional parity packet is sent out along with every third packet and
the receiver uses the earlier-arriving packet among the parity packet
and the third packet in the block. The (4,3) channel uses 56 Kbps
more than the regular channel. The results are tabulated in the second
set of histograms in Figs. 12 and 13. The average R-factor increases
by 11 and the number of low quality talk-spurts falls by 20%. This
performance, as expected, performs slightly worse than the (3,2) code
while using about 18 Kbps less bandwidth.

It can clearly be seen that packet-duplication and data-redundancy
improve performance. The improvement in performance as a function
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of the redundancy is shown in Fig. 14.
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One aspect of redundancy that we should note is that while
it improves performance of the redundant channel, it causes the
deterioration of co-existing regular channels by using up more of the
available bandwidth. This is very clearly illustrated in Figs. 10 and 11
where the performance of the “regular” channel steadily deteriorates
as the load due to the redundant channel goes up in. Therefore we
don’t advocate packet duplication. However the coding techniques
do increase performance while consuming less resources and may be
useful if adequate bandwidth is available.

VIII. LIMITATIONS AND CAVEATS

• Experimenters in the PlanetLab environment are not given
control over the priority of processes. Therefore it can take
a process running the OverPhone overlay up to 100ms to get
swapped back in and get executed after a packet arrives. This
can add significantly to the jitter-losses encountered due to a
packet traversing over the overlay instead of directly. Therefore
in a real environment where OverPhone processes can be run
with high priority, jitter losses for packets using the overlay will
be greatly reduced improving OverPhone’s performance.

• Hosts in the PlanetLab environment are occasionally unavail-
able. Our experimental results are gathered from the hosts in our
test environment that are available at the time of the experiment.
Therefore every experiment will not necessarily include all hosts
and all nodes.

• Hosts in the PlanetLab environment experience much larger
loads that one would expect on machines serving VoIP traffic in
the real world. These heavy loads in the PlanetLab environment



makes the OverPhone overlay nodes less efficient. Therefore
OverPhone should run more efficiently in a real environment.

• Because of the changing nature of network conditions, measure-
ments that were carried out over short periods of time such as
the effect of coding and path-diversity varied considerably. For
example the quality of a call between two hosts could vary by as
much as 30% between two measurements. We compensated for
this by comparing the quality to a baseline measurement carried
out simultaneously. This compensated for the large variation.
Our hope is our large number of measurements subsumes this
variation and accurately points to the general trend.

IX. FUTURE WORK

• The performance of OverPhone on the PlanetLab environment is
limited by the large load on the hosts and the inability to set the
priority of the OverPhone node processes. It would be interesting
to observe the additional performance gain when OverPhone is
run on an overlay where hosts are not subject to such limitations.

• While the hierarchy of user-nodes, beacon-nodes and overlay-
nodes introduces scalability in OverPhone, it may not suffice at
very large scales. One of the limitations is our use of a probe that
takes approximately 15 seconds to complete. This introduces a
trade-off between the inter-cycle interval and the ratio between
overlay-nodes and beacon-nodes. For very large scales it may be
necessary to introduce more layers and a deeper hierarchy, or use
a lighter-weight probe. A related question is this. In our scheme
we use the same overlay routing for all user-nodes associated
with a beacon nodes. Is it possible or necessary to fine-tune the
routing for each user-node?

• While we have investigated the use of parity-codes as a method
of increasing redundancy, the field of coding-theory is rich with
codes. It would be interesting to investigate if other codes such
as Hamming codes and MDC codes offer performance gains.
MDC codes sometimes provide incomplete or approximate
reconstruction. It would be interesting to investigate how such
approximate reconstructions affect VoIP quality.

X. CONCLUSION

We presented OverPhone our overlay network for VoIP, and
showed that the quality of VoIP calls can be significantly improved by
engineering the routing through the use of such an overlay network.
More than a third of all paths show improved performance, and
the perceived quality of more that 10% of talk-spurts improved
from low to medium and another 10% improved from medium to
high. Additionally we show that path-diversity offered by an overlay
network can be used to reduce low quality talk-spurts by 20%
under large loads. Finally we show that when adequate bandwidth
is available parity-coding techniques can be used to effectively trade-
off bandwidth for quality. An additional bandwidth of 50% reduces
the percentage of bas talk-spurts by approximately 30%.
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