A Theory for Networks with Misconfigured Routers

Raj Kumar Rajendran, Dan Rubenstein
Dept. of Electrical Engineering
Columbia University, New York, NY 10025
Email: {raj,danr} @ee.columbia.edu

Abstract— For the past several decades, work that develops
and analyzes network routing protocols has assumed that each
network node properly implements the algorithm that establishes
routes through the network. However, there have been several
instances in which a trivial misconfiguration in a single router’s
implementation of the routing algorithm induced undesirable
routes within the majority of the network. Given the high
likelihood of program error or sabotage in today’s networks,
there is an urgent need to develop techniques that allow properly-
configured routers to identify anomalous behaviors of their
misconfigured counterparts.

In this paper, we describe our development of a general
theory that examines routing protocols in environments where
some misconfigured routers “misbehave” and (intentionally or
unintentionally) issue inaccurate reports that shift routing paths
in the network. Application of this theory allows a node to “sense”
the presence of a misconfiguration in the network through an
analysis of its routing state. We show, using the Distance Vector
routing protocol as an example, how this theory can be applied
to practical routing protocols. We also describe our plans for a
practical tool based on this theory that can be used by network
administrators to detect anomalies.

I. INTRODUCTION

Routing algorithms, by nature of the task they perform,
are implemented in a distributed setting. Over the years, a
significant body of research has been developed to implement
routing algorithms that converge efficiently to an accurate
solution. In addition, research over the years has produced
appropriate models and methodologies that can be used to
further evaluate and understand the properties of these routing
protocols [14].

The assumption in this large body of work is that routers
implement the algorithm correctly. However, the distributed,
heterogeneous nature of the routing environment and the
fact that no single organization controls deployment within
today’s networks increases the likelihood that somewhere in
the network, a router is misconfigured, and is not performing
the way it is supposed to. In fact, over the years, there have
been several instances where a small set of misconfigured
nodes in a remote region of the network dramatically shifted
the routing paths throughout the entire network [18], [19], [7],
[16]. It is unclear whether these and future misconfigurations
are accidents caused by buggy code, misinterpretation of
proper installation procedure, or are in fact malicious attempts
to subvert traffic. What is clear, however, is that we are a
long way from being able to protect the network from these
misconfigurations.

Ideally, network nodes that participate in a routing protocol
would also implement mechanisms to detect misconfigured
“rogue” routers elsewhere in the network, or, at the very
least, to identify anomalous properties that would indicate the

existence of rogues. Doing so would facilitate the tracking and
identification of rogue nodes, and would permit appropriate
action to be taken to protect/repair damages caused by the
rogues. One way to approach developing these mechanisms is
reactive: wait for misconfigurations to visibly affect network
routing, then identify the bug that caused the misconfiguration
and take steps (development of code patches, novel techniques)
to enable future detection and prevention. We have the more
ambitious goal of developing pro-active techniques that detect
misconfigurations before they visibly affect routing and with-
out explicitly knowing the cause. In other words, properly-
configured routers should be enabled with mechanisms that
can “sense” when some of their routing state just doesn’t seem
right.

Is this more ambitious goal even possible? Can nodes infer
misconfigurations elsewhere in the network from just inspect-
ing their routing state? Is this computationally feasible? Are
there types of misconfigurations that can be sensed and types
that cannot? This paper outlines our preliminary investigation
of these questions where we show that it may be possible to
achieve this goal.

We begin by formalizing our description of this problem.
This formalism identifies misconfigurations that are detectable,
and reveals a method which, in theory, can detect all detectable
misconfigurations. However, the method in its raw form is
computationally intractable. Hence, it becomes necessary to
refine the method for each routing protocol and, in some cases,
to focus on specific sub-classes of misconfigurations.

In addition to the general construction of the theory, we
apply this theory to the distance vector routing-protocol,
showing how a node, armed with the state it receives from its
neighbors, can detect any misconfigurations that are detectable
using only this information. We further describe our plans for
a practical misconfiguration detection tool, that can be used
by network administrators to analyze their nodes and networks
for the presence of misconfigurations.

The rest of the paper proceeds as follows. We start by
describing our theoretical methodology and formalizing it in
Sec. Ill. In Sec. IV we illustrate the theory by applying it
to the distance-vector protocol and outline our experiences in
applying it to the Link-State and Path-\Vector protocols. We
describe our plans for a practical rogue-detection tool and
future work in Sec. V. Sec. VI concludes the paper.

Il. PRIOR WORK

Broadly, the problem of threats posed by compromised or
malicious routers has been categorized into two broad areas
called control-plane attacks and data-plane attacks. When a
router disrupts traffic by advertising false routes, it is known

as an attack on the control-plane; on the other hand if a router
misroutes data, it is known as an attack on the data-plane. Our
work deals with the first of these two classifications: attacks
on the control-plane.

While several works have addressed control-plane attacks
by misconfigured routers, their solutions focus on ensuring
the authenticity of route updates by using encryption based
schemes [4], [8], [10], [13], [27], [1], [11] and on detecting
the consistency of route updates by actively probing the
forwarding-path of advertised routes using secure tools that
locate the source of routing misbehavior[29], [22]. Addition-
ally many current works have focused on misconfiguration
problems in a single protocol: [28] and [3] are empirical
studies about BGP Policy and BGP router response to loads,
while [15] and [9] deal with the problem of BGP convergence.
Some work has focused on attacks by misconfigured routers
on the data-plane [20], [2], [5], [12]. These works propose a
distributed solution where multiple cooperating routers attempt
to detect and avoid the disruptions caused by the misbehaving
routers. These works differ from ours in that they concentrate
on the data-plane and require multiple cooperating nodes.

Yet other bodies of work have attacked broadly similar
questions. Competitive routing [21] is one such approach
where selfish users in a communications network attempt to
maximize their flow by controlling the routing of their flows
and attempt to find if equilibrium states exist. This body of
work differs in that they are concerned with traffic flows rather
than reachability and with a competitive environment rather
than a misconfigured environment.

I1l. THE THEORY

Our theoretical methodology evaluates routing protocols in
environments where nodes can misbehave due to misconfig-
urations in the routing protocol implementation. To detect
misconfigurations, a router examines its routing state which
consists of all the information it has available about the
current routing infrastructure. State is what is constructed via
a combination of communicating with neighboring nodes and
local computation on the exchanged information. Each node’s
state may be complete and contain the topology of the whole
graph as in the Link-State routing algorithm or incomplete as
in the Distance-Vector algorithm, where each node’s view is
limited to the distance to its neighbors and their shortest path
distances to all other nodes in the network.

To facilitate our preliminary study, we make several assump-
tions about the information stored within the router’s state:

« The routing protocol has converged, i.e., the state is
stable.

« The router does not obtain additional information beyond
what resides within its state. If it were to do so, this
additional information would simply become part of its
state.

« Our techniques described below apply to nodes that prop-
erly implement the routing protocol. Clearly, we cannot
make any claims about the validity of our techniques
when applied by misbehaving nodes.

Our assumptions rule out our ability to detect “dynamic”
errors that can be induced by other types of misconfigurations.

For example, by continually changing the distances it reports
to a neighbor, a node can prevent the stabilization of the
routing map within the network. A node could also intro-
duce misconfigurations in the data-plane where it correctly
computes routes but disrupts routing by dropping packets,
modifying packet destinations, introducing phantom packets,
or forwarding packets to incorrect neighbors. Dynamic mis-
configurations and data-pane attacks are beyond the scope of
our work which focuses on static misconfigurations in the
control-plane.

At a high level, the basic procedure we will use to detect
misconfigurations is fairly straightforward. A node n, armed
only with the knowledge of its own state s and the (correct)
implementation of the routing protocol, examines its state and
asks itself “Does a feasible network exist where, if every
node implements the routing protocol correctly, would result
in my having state equal to s?” If no such network exists, then
clearly, then there is no way in which n could wind up with
state s, and hence some node must have reported incorrect
information, indicative of a misconfiguration. On the other
hand, suppose n can identify at least one feasible network.
Then it may be the case that a misconfiguration occurred,
yielding this state, or it may be the case that this feasible
network yielded this state without misconfiguration. In this
latter situation, if a misconfiguration led to this state, n cannot
conclusively determine that a misconfiguration exists.

Using this procedure we can classify the misconfigurations
of each protocol to be detectable or undetectable as shown in
Fig. 1. The plane of the paper, in the figure, represents the
space of possible misconfigurations for a particular protocol
and the axis perpendicular to that plane represents the space
of protocols. The misconfigurations of a particular protocol
are shown to be broken up into two sets: detectable and
undetectable misconfigurations. Ideally, for each protocol, we
would know these two sets. But the ideal is hard to achieve
because the set of all possible misconfigurations may be
enormous. What we can do, however, is to take classes
of misconfigurations and prove them to be undetectable -
represented as ovals in the figure- using the procedure above.
Else, if a class is detectable, we can provide techniques that
detect them -shown as rectangles in th figure. In the next
sections we show in detail how classes of misconfigurations
can be proved to be detectable or undetectable for a proto-
col. We provide an illustrative example, using the distance-
vector protocol, of a technique that identifies the presence of
detectable misconfigurations.

A. Problem-Definition

We now describe our theory in a more formal manner.
Let the network in which the routing protocol operates be
a weighted graph G = (N, E,W) where N is a set of nodes
{n;} and E is a set of edges where each edge e;; uniquely
connects two nodes ¢ and j. W is a set of weights w;;
corresponding to each edge. We let G denote the set of all valid
graphs, G. In this network each node 4 in the graph G applies
a routing protocol, generating its state S;. A routing algorithm
in a correctly-configured network can thus be defined formally
as a function f that maps a weighted-graph G(N, E, W) to the

Path-Vector
Link-State
Distance-Vector
Al'l M sconfigurations Detection
Techniques
Available
Proven
Un-Detectabl
Un-detectable Detectable %'5

Fig. 1. The Space of Misconfigurations

sequence of states (S, ..., S|n|), where the ith component is
the state maintained by node ¢ upon stabilization.

f:G(N,E,W) —)SZ(Sl,...,S“V‘)

We define f;(G) to be the state S; that results at node i when
[is applied to G, i.e., f(G) = (f1(G), f2(G), ..., fin|(G)).
We also define the routing algorithm in a misconfigured
network to be a function h that maps G to an alternate
sequence of states, T = (T1,...,T|n|) where each T; can
be the same as S;, but need not be. We define h;(G) with
respect to A such that h(G) = (h1(G), h2(G), .. ., hin|(G)).

We assume that each correctly-configured node ¢ knows f
(i.e., f can be derived from the routing algorithm), but does
not necessarily know G in its entirety. If, however, a node ¢
is given any graph, G', it can apply f to G' to determine its
state f;(G") (as well as the state of all other nodes in G').

In theory, with unlimited computational resources, node n;
can perform the following process to identify misconfigura-
tions:

1) For each graph G; € G, node i computes f(G;) =
(51,83,...,8n}i)- _

2) If there exists a graph G; for which S} = Tj;, then node ¢
cannot detect the misconfiguration because it is plausible
that the node resides within the valid graph G .

3) If, after exhaustively checking all G; € G, no Gj is
found that satisfies step 2, then the misconfiguration is
detected: there no valid graph with correctly configured
nodes that could produce the state 7; for . The state
can only have been produced via a misconfiguration in
the routing protocol somewhere in the network.

Of course, limited computational resources make the above
procedure infeasible - one cannot expect a node to apply the
above procedure to the potentially infinite number of graphs
in G. To proceed in a computationally feasible manner, we
must either reduce the search space by considering a subclass
of graphs or a subclass of misconfiguration scenarios (or
both). In addition, we can look for specific methods to detect
misconfigurations: for example we can identify properties of
the state that must hold; a violation of this property implies
the presence of a certain class of miconfigurations.

1) Detecting Misconfigurations: There are two methods to
detect misconfigurations for a specific protocol. One method
is by identifying a property of the state that should be
exhibited under a correct operation of the protocol. It is this
approach that we take in our recent technical report [24]
to identify misconfigurations in BGP traffic announcements.
As a simple example, consider a network where a node i
has two neighbors, j, and k¥ with edge-weights w;; and w;y
to them. According to the state of 4, let dj,,, di» be the
distances reported by j and & to a fourth node m. If either
djm > (dem + wi; + Wig) OF dgm > (djm + w;; + wiy,) the
state of node i exhibits a violation of the triangle inequality
dap < dge + dy. indicating a misconfiguration somewhere in
the network.

Another approach would be to significantly limit the space
of graphs G that need to be considered. Then, it becomes
computationally feasible to apply the method described above
to detect misconfigurations. More formally, one must construct
a function ¢; that maps a node’s state 7; to a (small) set of
graphs {G;}, upon which the 3-step process described above
can be applied to identify a misconfiguration. This is the
approach we use to identify misconfigurations in the Distance
Vector Protocol, described below. Of course, if one does not
prove that only this small set of graphs needs to be considered,
this process can falsely detect a misconfigurations since there
may be a graph that has not been considered which would
yield T;.

2) Proving Undetectable Misconfigurations: If we wish to
show that a particular class of misconfigurations cannot be
detected by node ¢, we can extend on our second idea above.
Assume it is possible to define a function & that maps each
valid graph G; to a sequence of states (T7,...,T| ;) Where
h implements the “misconfigured” routing protocol. We then
construct a mapping, ¢; that maps each valid graph G; € G to
another valid graph ¢;(G;) € G, such that h(g;) = fi(¢(G;)).

By doing this, we show for any valid graph G, each
properly-configured node 7 can find some other valid graph
¢;(@) that would have produced the state it holds in a properly
configured network. Hence, it is impossible for node ¢ to
disprove the correctness of the protocol. *

As a simple example, consider a graph where two non-
neighbor nodes m and n both falsely claim an edge e..,
of weight w,,, between them and advertise distances as if
this edge existed. No other node 7 in the network will be
able to detect this misconfiguration because for any graph
G, node i can always construct the new graph ¢;(G;) =
(G Uemn) where f;(¢;(G;)) will produce T}, node i’s state
due to the lies of m and n. Therefore this misconfiguration is
undetectable.

This method is also used to prove that our approach to
identify misconfigurations in the Distance Vector Protocol
catches all misconfigurations that can indeed be observed
using a node’s available state.

INote one subtlety in our construction: a different mapping, ¢; is permissi-
ble for each node. This is because each node uses all the state it has available
to it to form its own view of possible valid graphs. Were two nodes ¢ and j to
exchange notes in such a way to ensure that ¢; = ¢;, this exchange would
be part of the state, and would simply restrict the set of feasible functions
one could consider for ¢; and ¢;.

Definition We define a class of misconfigurations to be un-
detectable if we can derive a sequence of ¢; that satisfy the
above properties for each ¢ for each valid graph G and any
function A that falls within this class of misconfigurations. We
define a class of misconfigurations to be detectable when, for
any function A that falls within this class of misconfigurations,
there is a properly-configured node ¢ such that for any ¢; that
maps valid graphs to valid graphs, f;(¢:(G)) # hi(G).

1V. DETECTING DISTANCE VECTOR MISCONFIGURATIONS

In this section, we apply the general methodology to
the Distance Vector protocol. We consider a network where
each node’s state consists of the information that is immedi-
ately available after the Distance \Vector protocol converges.
Namely, a node knows its immediate distance to each of its
neighbors, as well as each neighbor’s shortest path distances
to all nodes in the network, and its own shortest path distances
to all nodes in the network (note this last group of information
is easily derived from the previous two).

Given a node’s state 7; that results from participating in
Distance Vector routing in the network, we define a function
¢;, described as an algorithm, that maps this state to a single
graph, G'. We call this graph the canonical graph. Distance
vector is simulated by node m; in its memory upon the
canonical graph, G'. If the state of node n; in the simulation
does not match T;, we can prove that a misconfiguration must
exist within the protocol. If the states match, then we can prove
that if a misconfiguration exists, then it cannot be detected
using the state in node n;!

First, we briefly describe distance vector routing. In the
distance vector algorithm, each node ¢ periodically exchanges
a vector of distances to each node in the graph with each
neighbor n. On each exchange, node 4 recomputes its distances
to node j according to d = min(d?, d} +d;,) where d is the
distance to node p according to node g. After a finite number
of rounds of such exchanges, the distance vectors of each node
will stabilize and each node will have a vector of its shortest
distances to every other node in the graph.

Definition When f : G(N,E,W) — S = {Si,...,Sn}
represents the distance vector algorithm, the view or state S;
of each node ¢ consist of |A(i)| vectors of distances to each
node in the graph where each vector corresponds to one of i’s
neighbors denoted as A/ (7).

Each node i’s state is represented by an |N| x |/ (i)] table
where N is the set of all nodes in the network and N (3) is the
set of node 4’s neighbors.2. In node 4’s distance vector table,
the entry in the (n,m)th position indicates the distance from
node m to node n by taking the path with next hop m. We
write the value (distance) of the entry at (n,m) as v(n,m).
Note that we assume that the distance vector table does not
include the edge-distance from ¢ to the neighbor m but that
the table contains v(i,m).

A node ¢ that wishes to identify a misconfiguration con-
structs a graph G’ whose set of nodes is identical to those
in G but whose edges differ significantly. The new graph G’

2For simplicity of presentation, we assume a node maintains state indicating
the distance to itself through its neighbors.

contains edges e;,,,Ym € N (i) from i to each of its neighbors
with weights w;,, as in G. It also contains edges e, ,,» from
each neighbor m € N (i) to every node m' € N in the graph
with weight wy,,,,,» equal to v(m,m'). In other words, i has
a 2-hop path to each destination m' that is not its neighbor,
where the length of this path matches what is reported in its
table.

The construction of a graph G’ from the original G is
pictured in Fig. 2.

O Non-Neighbors
@® Neighbors

O Non-Neighbors
® Neighbors

<

(A) Original Graph G~ (B) Newly Constructed Graph G’

Fig. 2. Constructing G’

Node 7 subsequently computes the shortest path for each
neighbor m € A/ (7) to all destinations within G'. We represent
these values as v'(n, m).

Lemma 4.1: If there is some n,m such that v(n,m) #
v'(n,m) then one or more misconfigurations exists in G. If
there is no such n, m, even if misconfigurations exist in G it
is impossible for ¢ to detect them.

Proof: The proof is provided in Section VI. []

We illustrate the Lemma in Fig. 3. Consider the graph in Fig.
3(A) where the nodes and weights are as indicated (solid-lines
indicate edges). Consider the case where a misconfiguration
causes the node R to report a distance to D of 99 to
its neighbor N1, rather than the true shortest-distance of 3
through F' and N2. Because of this misconfiguration N1
will believe that its shortest-distance to D is 10 through its
direct edge rather than 4 through R, F' and N2. Therefore
v(D,N1) =10 as viewed by I.

To verify if a misconfiguration exists, node I constructs a
graph G' from the view as detailed above. This graph will be
as pictured in Fig. 3. When we run the distance vector protocol
on this new graph G’, the protocol will report v'(D, N1) = 4!
From Lemma 4.1 we will conclude correctly that the original
graph G is misconfigured.

A. Application of the Technique to Other Routing Protocols

We briefly summarize our experiences applying the tech-
niques within the domains of link-state and path-vector (BGP
routing). For link-state routing, since nodes know the entire
topology a priori, the theory is rather trivial. For BGP routing,
the lack of a well-defined policy greatly complicates the con-
struction of a theory to detect misconfigurations. Nonetheless,
we briefly describe our efforts in these two areas:

1) Link-State: OSPF is an example of a protocol that uses
Link-State routing where each node maintains a list of the
neighbors and distances to neighbors for each node in the
network. Periodically nodes exchange their neighbor-list with

|

(A) Misconfigured Graph G

(B) Constructed Graph G’

Fig. 3. The Construction

each neighbor. This process continues until each node is aware
of the neighbors for every node in the network. Each node then
independently computes its distance and shortest path to each
node in the network.

In a link-state routing protocol, each node’s state is a
snapshot of the entire graph. We write S; = G; where G;
is a graph G; = (NV;, E;, W;). This property trivializes the
analysis of detecting misconfigurations for link-state protocols.
In fact, we have that ¢;(G;) = {G;}. In other words, imagine
if node 7 were to enumerate the set of possible network graphs
which, after correctly running the link-state protocol would
produce G;. The only graph in this set would be G;. In fact,
if ny,no,--- ,nyg are neighbors of G; and all neighbor’s states
match i’s state (i.e, G,, = G; for all neighbors j, then
clearly node ¢ cannot detect a misconfiguration. In contrast,
if two neighbors, z and y have states that remain fixed yet
do not match, G, # Gy, (or S, # Sy) then 4 will detect a
misconfiguration.

The above observation can easily be extended to the follow-
ing Lemma by applying the neighbor argument above along
paths of properly-configured nodes:

Lemma 4.2: Let G = (N,E,W) be a graph where a
subset of nodes, N’ C N are properly configured. Then
a misconfiguration is detectable iff there exist two nodes
xz,y € N' where S; # S, and there is a path from z to
y through a series of nodes ni,ns,--- ,n; where n; € N’
for1<j<k.

B. Path Vector Protocols

In the path-vector routing algorithm, each node maintains
paths, or lists of nodes to be traversed, to each node in the
network. Periodically each node exchanges some paths with
each neighbor and recomputes its most-desirable path to each
node in the network based on its individual policies. Therefore
each node’s state or view consists of the most-desirable paths
each of its neighbors claims to subsets of nodes in the network.
BGP is an example of a protocol that uses path-vector routing.

We determine potential misconfigurations in BGP by ana-
lyzing the state of each node for properties that should hold
if the nodes, known as ASes, in a BGP network operate
according to the standard BGP routing policy. We prove that if
a route contains a set of ASes in a certain order and we number
these ASes in increasing order, then another route can never

contain the same ASes in an order that first increases and then
decreases. ASes can use this property to check if other ASes
are indeed operating according to the standard BGP policy.
Details and experimental results can be found in our technical
report [24].

V. FURTHER WORK

We plan to extend our work in two different directions:
theory and practice. We first plan to apply our current theory
to other protocols and identify classes of misconfigurations
that can be proved detectable or undetectable and provide
techniques to point out detectable misconfigurations. Second,
we plan to produce a verification tool, based on our theory,
that can be used by administrators of networks running var-
ious protocols to analyze the state of routers and individual
nodes for the presence of misconfigurations elsewhere in the
network. We describe both below.

A. Extending the Theory

In this paper we have applied our theory to what we call
tight routing-protocols, where each node is required to run
exactly the same algorithm. However loose protocols, such as
BGP, where different nodes may run different algorithms in
choosing and communicating routes are widely used. Since
each node in a loose protocol may run a different routing
algorithm, it is not obvious how misconfigurations can be
defined, let alone verified. In such protocols, it is necessary
to identify “normal” behavior, if they exist, model these
behaviors and then attempt to detect nodes that deviate from
these norms.

There has also been a growth in ad-hoc and sensor networks
which use distributed algorithms to estimate various parame-
ters at each node by iteratively exchanging information with
other nodes within their communication radii [25], [6], [17],
[26]. Even though these algorithms compute parameters such
as geographic location and time rather than the shortest path,
they function in a manner very similar to distributed routing
algorithms. We plan to apply our theory to these algorithms
and attempt to estimate the amount by which rogue-nodes can
distort the parameter that is being estimated.

We also plan to extend our theory to situations where multi-
ple well-behaved nodes can cooperate and share information.
We would like to study how such cooperation changes the
classes of detectable and undetectable misconfigurations. We
also wish to extend our theory so that, in addition to detecting
the presence of misconfigurations, it provides insight into
the identity of the violators. As more well-behaved nodes
cooperate we believe that the location of rogue-nodes can be
determined more accurately. We plan to explore the theories
behind such determination and implement practical tools that
can be used to identify rogues.

B. A Tool for Rogue Detection

We would like to provide a means by which network
practitioners can apply our methodology and protocol-specific
state-checking algorithms in practical situations to verify the
presence of rogues in their networks. To this end we plan to
create a practical tool that implements our theory and makes
it applicable in practical situations. This goal of this tool will

be to provide administrators of networks running well-known
routing protocols the ability to verify the correctness of the
state of individual nodes or routers.

We foresee several challenges in implementing such a tool.
We list some of the issues that we believe need to be solved
to create a practical and useful tool:

« It would be very attractive to have a single tool that
works across all well known protocols. However our
theoretical methodology applies across protocols while
our misconfiguration-detection techniques are protocol-
specific. It it viable or feasible to produce a single tool
that can be used across protocols?

« We plan to continually apply our methodology to new
routing-protocols, identify new classes of misconfigura-
tions and provide algorithms that detect them. How can
we ensure that the tool, once deployed, is kept up to
date with the latest algorithms. Do we need to build in
an ability for the tool to to update itself from a central
location, much like virus software?

« How can this tool read in a node’s state information?
Different implementations of a single protocol may store
their state-information in different formats. Do we need a
way for the network-administrator to describe the layout
of a node’s state information? Are there ad-hoc standards
for the way this information is stored in different proto-
cols?

« In its current form, our methodology is applicable to a
single node. However we plan to extend our theory so that
multiple cooperating nodes can pool their information
to increase the probability of detecting rogues, and to
accurately pinpoint offending nodes. How will the tool
deal with this extension? If the solution is to deploy the
tool at multiple nodes, how will these copies of the tool
communicate? Should they use an overlay network to
share information among themselves since the underlying
network’s routing may get compromised?

We anticipate, as indicated by the challenges listed above,
that building such a practical tool will be a challenging but
satisfying experience.

V1. CONCLUSION

We have described our development of a theoretical method-
ology that evaluates routing protocols in environments where
nodes can misbehave. This theory can be applied by routers to
analyze their routing-states and pro-actively sense misconfig-
urations before these misconfigurations visibly affect routing.
Additionally, the theory allows classes of misconfigurations
in a protocol to be classified detectable or undetectable.
This feature can be used by network researchers and routing
protocol designers to evaluate the robustness of protocols
in rogue environments and to provide insight into possible
modifications that would further limit the sets of undetectable
misconfigurations. In a larger context, this theory contributes
to our understanding of the design and evaluation of self-
healing, anomaly-tolerant networks.

REFERENCES

[1] W. Aiello, J. loannidis, and P. McDaniel. Origin authentication in
interdomain routing. In Proc. of 10th ACM conference on Computer
and communication security, pages 165-178. ACM Press, 2003.

[2]

[3]

[4]

[5]

[6]

[71
(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson.
Detecting disruptive routers: A distributed network monitoring approach.
In 1998 IEEE Sym. on Security and Privacy, pages 115-124, 1998.
D.-F. Chang, R. Govindan, and J. Heidemann. An empirical study of
router response to large bgp routing table load. In Proceedings of the
second ACM SGCOMM Workshop on Internet measurment workshop,
pages 203-208. ACM Press, 2002.

S. Cheung. An efficient message authentication scheme for link state
routing. In ACSAC, pages 90-98, 1997.

S. Cheung and K. Levitt. Protecting routing infrastructures from denial
of service using cooperative intrusion detection. In New Security
Paradigms Workshop, 1997.

J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchro-
nization using reference broadcasts. In Fifth Symposium on Operating
System Design and Implementation (OSDI) 2002, 2002.

J. Farrar. C&w routing instability. nanog mail archives. Available at
http://www.merit.edu/mail.archives/nanog/2001-04/msg00209.html.

M. Goodrich. Efficient and secure network routing algorithms. In Patent
Application, January 2001.

T. G. Griffin and G. T. Wilfong. An analysis of BGP convergence
properties. In Proc. of SGCOMM, Cambridge, MA, August 1999.

Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing
protocol for ad hoc networks. In The 8th ACM International Conference
on Mobile Computing and Networking, September 2002.

Y.-C. Hu, A. Perrig, and D. B. Johnson. Rushing attacks and defense in
wireless ad hoc network routing protocols. In Proceedings of the 2003
ACM workshop on Wireless security, pages 30-40. ACM Press, 2003.
J. R. Hughes, T. Aura, and M. Bishop. Using conservation of flow
as a security mechanism in network protocols. In Proceedings of the
2000 |EEE Symposium on Security and Privacy, pages 132-141. IEEE
Computer Society Press, Los Alamitos CA, USA, 2000.

S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP).
IEEE Journal on Selected Areas in Communications, 18(4), 2000.

J. F. Kurose and K. Ross. Computer Networking: A Top-Down Approach
Featuring the Internet. Addison-Wesley Longman Inc., 2002.

C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability.
IEEE/ACM Transactions on Networking, 6(5):515-528, 1998.

C. Labovitz, G. R. Malan, and F. Jahanian. Origins of internet routing
instability. In Proc. of IEEE INFOCOM 1999, Mar 1999.

J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable
location service for geographic ad-hoc routing. In Proceedings of the 6th
ACM International Conference on Mobile Computing and Networking
(MobiCom ’00), pages 120-130, Aug. 2000.

R. Mahajan, D. Wetherall, and T. Anderson. Understanding bgp
misconfiguration. In Proc. of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM Press, 2002.

S. Misel. Wow, as7007! Available at
http://www.merit.edu/mail.archives/nanog/1997-04/msg00340.html.

A. T. Mizrak, K. Marzullo, and S. Savage. Brief announcement:
detecting malicious routers. In Proc. of the 23rd ACM symposium on
Principles of distributed computing, pages 369-369. ACM Press, 2004.
A. Orda, R. Rom, and N. Shimkin. Competitive routing in multiuser
communication networks. |EEE/ACM Trans. Netw., 1(5):510-521, 1993.
V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect faulty
or malicious routing. SGCOMM Comput. Commun. Rev., 33(1), 2003.
R. K. Rajendran and D. Rubenstein. A theory for
networks with misconfigured routers. Available from
http://www.ee.columbia.edu/ kumar/papers/p2004-03.pdf.

R. K. Rajendran, D. Rubenstein, and M. Wasserman. A
theoetical method for bgp policy verification. Available from
http://www.ee.columbia.edu/ kumar/papers/p2004-02.pdf.

K. Romer. Time synchronization in ad hoc networks. In Proceedings
of the 2nd ACM international symposium on Mobile ad hoc networking
and computing. ACM Press, 2001.

A. Sawvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Mobile Computing and
Networking, pages 166-179, 2001.

B. Smith and J. Garcia-Luna-Aceves. Securing the border gateway
routing protocol. In Proc. Global Internet’96, November 1996.

N. Spring, R. Mahajan, and T. Anderson. The causes of path inflation.
In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 113—
124. ACM Press, 2003.

L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen and
whisper: Security mechanisms for bgp. In Proc. First Sym. on Networked
Systems Design and Implementation, March 2004.

APPENDIX

Lemma 6.1: If there is some n,m such that v(n,m) #
v'(n,m) then one or more misconfigurations exists in G. If
there is no such n,m, even if misconfigurations exist in G it
is impossible for ¢ to detect them.

Proof: First, we show that 7 cannot detect a misconfig-
uration if v(n,m) = v'(n,m) for all » and m. Suppose this
property holds true. Then G’ is a potential topology of the
network. Hence, it is not possible for a misconfiguration to be
detected.

We will now show that the existence of some v(n,m) #
v'(n,m) implies a misconfiguration in G. Our proof will be
by contradiction. First, consider the case where both n and
m are neighbors of 4. Since the graphs are undirected, clearly
we have v'(n,m) = v'(m,n), such that if the reports in G
directly reveal an asymmetry (i.e., v(n,m) # v(m,n)), this
must be the result of a misconfiguration and we are done.

Assume now that v(n,m) = v(m,n) whenever both n and
m are neighbors of 4, and also that there exist n and m where
v(n,m) # v'(n,m) yet no misconfigurations exist in G. Let
p' = (ng,n1,na,---,ng) be a shortest path from node m
to node n (hence ny = n and ng = m) in G' with length
v'(n,m). Since the direct path m,n has length v(n,m) and
v'(n,m) is the length of the shortest path from m to n, it
must be the case that v'(n,m) < v(n,m). Also, note that
in G', there is no edge between two nodes x and y when
z,ymin N (i) U {i}. Hence, if any node n; in p' is not a
neighbor of 4, then n;_; and n;;; both are neighbors of 4.
For each j, since either n;_; or n; is a neighbor of i or i
itself, the length of the shortest path between n;_; and n; is
either given as v(nj_1,n;) (if n; is a neighbor of i) or as
v(nj,nj—1) (if n;_y is a neighbor of) or as both when both
are neighbors of 3. We let t(n;_1,n;) equal this length.

The length of the path p' in G' is therefore
Z;“:l t(nj—1,n;), and since p' has length o'(n,m), we
have that Z;c:l t(nj_1,n;) = v'(n,m) < v(n,m). Consider
a path p in G that starts at node m and follows a path to n
that is a conjunction of sub-paths, pi,p2,--- ,pr Where p;
is a shortest path in G' from n;_; to n;. It is permissible
that p has cycles or “backtracks”, but each p; is cycle-free.
Since there are no misconfigurations in G, the length of path
p in G is given by the (correct) reports of i’s neighbors:
>y tnj—1,n) = v'(n,m) < v(n,m). Hence, we have a
contradiction: path p is a valid path in G of length v'(n, m),
yet node m reports to ¢ that its shortest path to n has length
v(n,m) > v'(n,m). [

