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Abstract— The volume of multimedia data, including video,
served through Peer-to-Peer (P2P) networks is growing rapidly.
Unfortunately, high bandwidth transfer rates are rarely available
to P2P clients on a consistent basis. In addition, the rates are more
variable and less predictable than in traditional client-server
environments, making it difficult to use P2P networks to stream
video for on-line viewing rather than for delayed playback.

In this paper, we develop and evaluate on-line algorithms
that coordinate the pre-fetching of scalably-coded variable bit-
rate video. These algorithms are ideal for P2P environments
in that they require no knowledge of the future variability or
availability of bandwidth, yet produce a playback whose average
rate and variability are comparable to the best off-line pre-
fetching algorithms that have total future knowledge. To show
this, we develop an off-line algorithm that provably optimizes
quality and variability metrics. Using simulations based on actual
P2P traces, we compare our on-line algorithms to the optimal
off-line algorithm and find that our novel on-line algorithms
exhibit near-optimal performance and significantly outperform
more traditional pre-fetching methods.

I. INTRODUCTION

The volume of video-files served through Peer-to-Peer (P2P)
networks is growing rapidly and users are often interested in
streaming video for on-line viewing rather than for delayed
playback. This requires a bandwidth rate ranging from 32
kbps to 300 kbps, which is rarely available consistently to
P2P clients from a set of peers.

A practical solution that allows users with lower bandwidth
availability to watch a video as it is downloaded involves the
use of scalable-coding techniques. Using such techniques, the
video can be encoded into a fixed number, M, of lower-rate
streams called layers that are recombined to obtain a high
fidelity copy of the video. Only the first layer is needed to
decode and playback the video, but results in the poorest
quality. As more layers are added, the quality improves until
all M layers combine to produce the original video at full
quality.

Since P2P systems require users to download content from
other users who may leave during the viewing, the available
download rate at a client can fluctuate greatly over time. Due
to this, if the client were to always download as many layers
as the current bandwidth rate allows for the current portion
of the video, the quality of the playback would also fluctuate
rapidly over time. Experimental studies [20] show that such
fluctuations are more annoying than simply watching a lower-
quality video at a more steady rate. Taking this into account,
if all the bandwidth is used to pre-fetch a single layer at a
time, the client would be forced to watch initial portions of

the video at the lowest quality despite there being sufficient
bandwidth to watch the entire video at a higher quality.

In this paper, we develop and evaluate on-line algorithms
that coordinate the pre-fetching of scalably-coded variable
bit-rate video components. Our algorithms are specifically
designed for environments where the download rate varies
unpredictably with time. These algorithms can be applied
to current P2P systems which use multiple TCP streams to
download content. In such systems the rate of download is a
function of number of peers willing to serve the video at that
time, the networking conditions and the manner in which TCP
reacts to these conditions. The control of the downloading rate
is outside the scope of the control of the application.

Our algorithms pre-fetch layers of future portions of the
video in small chunks, as earlier portions are being played
back. They do this with the aim of reducing the following
metrics:

« Waste: the amount of bandwidth that was available but

was not used to download portions of the video.

« Smoothness: the rate at which the quality of the playback
(i.e., the number of scalably-coded layers used over a
period of time) varies.

« Variability: the sum of the squares of the number of
layers that are not used in the playback. This measure
decreases as the variance in the number of layers used
decreases, and also decreases when more layers appear
in the playback.

We first design an off-line algorithm which, with knowledge
of the future rate of the bandwidth channel, determines the
pre-fetching strategy that minimizes the Waste and Variability
metrics, and achieves near-minimal smoothness. We then con-
struct three “Hill-building” on-line algorithms and compare
their performance to both the optimal off-line algorithm and to
more traditional on-line buffering algorithms. Our comparison
uses both simulated and real bandwidth data. We collected
actual traces of P2P downloads using a modified version of
the Limewire Open source code. We find that our on-line
algorithms are near-optimal in performance as judged by the
metrics stated above, while more traditional methods perform
significantly worse.

As far as we are aware, this problem of ordering the
download of segments of scalably-coded coded videos in
P2P networks to maximize the viewer’s real-time viewing
experience has not been addressed before. Related work by
Ross, Saparilla and Cuestos [2], [13], [14] studies strategies for
dividing bandwidth between the base and enhancement layers
of a 2-layer video. They conclude that heuristics which take



into account the amount of data remaining in the pre-fetch
buffer outperform static divisions of bandwidth and videos
with fewer changes in quality but slightly lower overall quality
make for better viewing. Our work differs in that we consider a
more general problem with a variable bitrate stream, N layers
and employ quality measures that use first and second order
variations. We also establish a theoretical performance bound
that acts as a baseline for the comparison of the efficiencies
of algorithms.

Work by Kim and Ammar [5] considers a layered video
with finite buffers for each layer. Based on the size of each
buffer, they determine the decision intervals for each layer that
maximizes the smoothness of the layer. They take a conserva-
tive approach to the question of allocating bandwidth among
layers and allocate all available bandwidth to the first layer,
then to the second layer, and so on. Our work differs in that we
assume, as is the case in today’s P2P systems, that buffer space
is relatively inexpensive and does not constrain the buffering
strategy. We also optimize utilization and smoothness for all
layers at once, rather than one layer at a time.

Several works also address the challenges of streaming a
popular video simultaneously to humerous clients from a small
number of broadcast servers [19], [7], [16], [1]. These works
find methods that allow clients to view a few video streams
at different but overlapping times.Our work differs in that we
consider only a single receiver who must prefetch in order to
cope with a download channel whose rate is unpredictable.

CoopNet [8] augments traditional client-server streaming
with P2P streaming when the server is unable to handle
increased demands due to flash crowds. CoopNet does not
address the issue of variance in video quality nor does it use
pre-fetching. Our results could easily be incorporated into a
CoopNet system to improve the viewing experience.

[11] proposes layered coding with buffering as a solution to
the problem of varying network bandwidth when streaming in
a client-server environment. In contrast to our approach, they
assume that that the congestion control mechanism is aware
of the amount of video buffered and can be controlled by the
application and therefore differ significantly in their solution.

The rest of the paper is organized as follows. Section 1l
introduces Peer-to-Peer overlay networks and Scalable Coding
while Section 11l quantifies our performance metrics and
models the problem and solution. Section IV outlines the
optimal off-line algorithm while Sections V and VI present our
on-line scheduling algorithms and compare their performance
to the off-line optimal algorithm and naive schedulers through
simulations. Section VII outlines areas for further work and
Section VIII concludes the paper.

Il. SCALABLY CODED VIDEOS IN PEER-TO-PEER
NETWORKS

We use the existing P2P infrastructure as a guide for our
network model. These P2P systems are distributed overlay
networks without centralized control or hierarchical organi-
zation, where the software running at each node is equivalent.
These networks are a good way to aggregate and use the large
storage and bandwidth resources of idle individual computers.
The decentralized, distributed nature of P2P systems make
them robust against certain kinds of failures when used with
carefully designed applications that take into account the

continuous joining and leaving of nodes in the network. Our
work focuses on the download component of the P2P network
instead of the search component [15], [10], [18], [12], [3].
Unlike traditional client/server systems, the servers in P2P
systems frequently start and stop participating in transmission,
causing abrupt changes in the download rate at the receiver. In
addition the TCP transport protocol is used, whose congestion
control mechanism constantly varies the transfer rate of the
connection with time.

Fine-Grained Scalable Coding (FGS) is widely available in
current video codecs, and is now part of the MPEG-4 Standard.
It is therefore being increasingly used in encoding the videos
that exist on P2P networks. Such a scalable encoding consists
of two layers: a small base-layer that is required to be transmit-
ted and a much larger enhancement-layer that can optionally
be transmitted as bandwidth becomes available. FGS allows
the user to adjust the relative sizes of the base-layer and
enhancement-layer and further allows the enhancement-layer
to be broken up into an arbitrary number of hierarchical layers.

For our purposes, using the above fine-granular scalable-
coding techniques, the video can be encoded into M
identically-sized hierarchical layers by adjusting the relative
sizes of the base and enhancement layers, and breaking up
the enhancement layer into M — 1 identically-sized layers. In
such a layered encoding the first layer can be decoded by
itself to play back the video at the lowest quality. Decoding
an additional layer produces a video of better quality, and so
on until decoding all M layers produces the best quality. The
reader is referred to [4] and [9] for more details on MPEG-4
and FGS coding.

I1l. PROBLEM FORMULATION

In this section we formulate the layer pre-fetching problem
for which we will design solution algorithms. We begin by
describing how the video segments, or chunks, the atoms of
the video that will be pre-fetched, are constructed. We then
formally define the metrics of interest in the context of these
chunks, such that our optimization problems to minimize these
metrics are well-posed.

A. The Model

Our model is discrete. We first partition the video along its
running time axis into 7" meta-chunks, which are data blocks
of a fixed and pre-determined byte size S (the T'th chunk may
of course be smaller) *. These meta-chunks are numbered 1
through T in the order in which they are played out to view
the video. We let ¢; be the time into the video at which the ith
meta-chunk must start playing. Hence, ¢; = 0, and if a user
starts playback of the video at real clock time so and does
not pause, rewind or fast-forward, the ith meta-chunk begins
playback at time so + ¢;. We refer to the time during which
the ith meta-chunk is played back as the ith epoch. Note that
since the video has a variable bitrate and the meta-chunks are
all the same size in bytes, epoch times (¢;41 —t;) can vary with
i. We also include a 0th pre-fetching epoch, where ¢; < 0: the
0Oth epoch starts when the client begins downloading the video
and ends at time ¢; = 0 when the client initiates playback of
the video.

IWe assume that epoch-lengths are longer than a GOP, and therefore
different meta-chunks contribute equally to the quality of the video



As the video is divided into M equal-sized layers, each
meta-chunk can be partitioned into M chunks of size S/M,
where each chunk holds the video data of a given layer
within that meta-chunk. These chunks form the atomic units
of analysis in our model. In this formulation, the chunks
associated with the ith meta-chunk of a video are played back
in the sth epoch.
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Fig. 1. The Model

Figure 1(A) depicts a chunking of the video. Meta-chunks
are the gray areas and are shown for the first through fifth
epochs, and are placed within the epoch for which they are
played back. While the rectangles are shaped differently in the
different epochs, their areas are identical. The chunks of the
meta-chunk within the second epoch are shown for a 3-layer
scalably-coded encoding.

A chunk of video that is played back in epoch i must be
downloaded in some earlier epoch 5,0 < j <4 < T. In
addition, as chunks are being played back in epoch ¢, chunks
for a future epoch are being downloaded from sources using
the network bandwidth that is available in epoch i. We refer
to the bandwidth used during the 4th epoch to prefetch chunks
to be played back during future epochs as the bandwidth slots
of epoch 4 where each slot can be used to download exactly
one chunk. Since epochs can last for different lengths of time,
and since the bandwidth streaming rate from the sources to the
receiver varies with time, the number of bandwidth slots within
an epoch varies. Note that it is unlikely that the bandwidth
available during an epoch is an exact integer multiple of the
chunk size. This extra bandwidth can be “rolled over” to the
subsequent epoch. More formally, if T; is the total number
of bytes that can be downloaded by the end of the ith epoch,
then the number of slots for epoch i is |W;/S| — |[Wi-1/S].
with W_1=0.

Note that our model is easily extended to account for pauses
and rewinds of the video: the start time of an epoch 4 is
simply the actual clock time that elapses between when video
playback first starts and when the chunks for epoch ¢ are first
needed. Since pausing and rewinding can only extend this
time, doing so can only increase the number of bandwidth
slots that transpire by the time the ith epoch is to be played
back.

Figure 1(B) depicts the number of chunks that could be
downloaded per epoch. In epochs 5,6,7,8, and 9, the available
bandwidth permitted the download of 4,2,2,4 and 3 chunks
respectively, 2 The current playback point of the video is

2The figure also illustrates partial chunks in 7,8 and 9, which for simplicity
of analysis are not used.

within the sixth epoch. The arrows pointing from the chunks in
the sixth epoch toward the eighth and ninth epoch are meant to
indicate that the bandwidth available during the sixth epoch
is used to pre-fetch two chunks from the eighth and ninth
epochs. The download-rate w(t) and playback-rate w(t) are
also illustrated in Figure 1(B). The number of chunks that
could be downloaded is proportional to the area under the
curve w(t) for that epoch. Details about the practicalities
of how the chunks are formed and how their download is
coordinated is describe in detail in [17].

We define an available bandwidth vector, W =
(wo,wy,--+, wr—_1), where w; is the number of bandwidth
slots available during the ith epoch, 0 < i < T'. An allocation
is also a T-component vector, A =(a4, ..., ar), that indicates
the number of chunks that are played out during the ith epoch,
0 <4 <T. An allocation A =(ay,...,ar) is called feasible
under available bandwidth vector T if there exists a pre-
fetching strategy under the bandwidth constraints described by
W that permits a; chunks to be used in the playback of the
ith epoch for all 1 < ¢ < T'. Feasibility ensures that we only
consider allocations that can be constructed where bandwidth
slots from epoch ¢ are used to pre-fetch data for future epochs
J>J >

A pre-fetching algorithm takes as input an available band-
width vector W and outputs an allocation A. An off-line pre-
fetching algorithm may view the entire input at once. An on-
line algorithm iterates epoch by epoch, and only knows the
value of the ith component of the vector after the ith epoch
has completed. During the ith epoch, the only chunks it can
download that can be used for playback are those that lie in
epochs j > 4, hence, once it sees the ith component w; of W,
it has entered the i + 1st epoch and can therefore only modify
components a;,j > ¢ + 1 in the allocation A.

Note that, from the perspective of our model, since partially
downloaded chunks may not be used in the playback of the
video, it never makes sense for an on-line algorithm to simul-
taneously download multiple chunks. Instead of downloading
r chunks in parallel, all bandwidth resources would be better
served focusing the download bandwidth on a single chunk
and downloading these r chunks in sequence (we discuss the
practical details of doing this in [17]). In addition, since future
bandwidth rates are unknown, there is no reason for an on-
line algorithm to “plan ahead” beyond the current chunk it is
downloading: there is no loss in performance by deciding the
next chunk to download only at the time when that download
must commence. Note also that the download of a chunk to be
played back in epoch ¢ (which presumably was started while
playback was in some epoch j < 4) is terminated immediately
if the download is not complete when the playback enters
epoch 4, since then it cannot be used within the playout.

B. Performance Measures

The performance measures we use in this paper are moti-
vated by a perceptual-quality study that validates our intuitive
notions of video quality [20]. The work concludes that the
important indicator of video quality is the average quality of
each image as measured by the number of bits used. However,
it is important to consider second-order changes: given two
encodings with the same average quality, the study shows
that users clearly prefer the encoding with smaller changes



in quality. Such variations can be captured by measures such
as variance and the average change in pictorial-quality. The
subjective study further shows that users are more sensitive
to quick decreases in quality than increases. We use this
observation in selecting performance measures, and later in
the design of our on-line algorithms.

Of the many possible measures that capture the above
mentioned qualities of a video, we limit ourselves to three
that we believe capture the essential first and second-order
variations. These are a first-order measure we call waste that
quantifies the utilization of available bandwidth, a first plus
second order measure called variability that measures both
utilization and variance in quality, and a second-order measure
called smoothness that captures changes in the quality between
consecutive epochs of the video. It must be noted that these
measures relate to perceptual quality in not well understood
non-linear fashions, and therefore cannot be compared to one
another. However they clearly indicate the efficiency of one
algorithm vis-a-vis one another.

We now define our measures, all of which take as input
an allocation A = {a;, ..., ar) under an available bandwidth
vector W.

T T
Waste w(A) = Bg}?a()év)(z b;j) — Zai
i=1

where F'(WW) is the set of all feasible allocations under W.
That is, we measure an allocation’s waste by comparing it to
the allocation with the best possible utilization. An allocator
wastes bandwidth when it has been too conservative in its
allocation of early chunks and it finds that all M chunks for
all future epochs have already been pre-fetched despite having
available bandwidth.

Variability V(A) = i(M - a;)?

i=1

Intuitively, a video stream that has near constant quality will
be more pleasant to view than one with large swings in quality.
What we wish is a measure that increases when the variance
of the number of layers used goes up, and decreases when
more layers appear in the playback so that minimizing the
metric reduces the variance and improves the mean. Variability
satisfies this requirement.

T
Smoothness s(A) = Zabs(ai_l —a;)
=2

Consider two video streams of six seconds each where the
number of layers viewed in each of the six seconds is
(1,2,1,2,1,2) for the first video and (1,1,1,2,2,2) for the
second. The Variability values of their qualities is the same
but we will clearly prefer the second video over the first, as it
will have fewer changes in quality. Smoothness captures this
preference.

1V. AN OPTIMAL OFF-LINE ALGORITHM

In this section we develop an off-line algorithm, Best-
Allocator, that allocates chunks to epochs, creating an ordered
allocation A = {ay,as, -+ ,ar). This allocation minimizes

waste and variability metrics and has near-minimum smooth-
ness (i.e., no larger than A, the number of layers) in compari-
son to all other feasible allocations. While this optimal off-line
algorithm cannot be used in practice, it can be used to gauge
the performance of the on-line algorithms we introduce in the
next section.

Best-Allocator is fed as its input an available bandwidth
vector W = (wg,wy, -+ ,wr—1). Recall that a chunk that is
to be played back in epoch 7 must be downloaded during an
epoch j where j < i. Hence each bandwidth slot of epoch
i should only be used to download a chunk from epoch j >
i, when there exist such chunks that have not already been
assigned to earlier bandwidth slots. The algorithm proceeds
over multiple iterations. In each iteration, a single bandwidth
slot is considered, and it is either assigned a chunk, or else
is not used to pre-fetch data for live viewing. The algorithm
proceeds over the bandwidth slots starting with those in the
T — 1st epoch, and works its way backward to the Oth epoch.
The chunk to which that slot is assigned is drawn from a
subsequent epoch with the fewest number of chunks to which
bandwidth slots have already been assigned. If two or more
subsequent epochs ties for the minimum, the ties are broken
by choosing the later epoch. If all subsequent epochs’ chunks
are already allocated, then the current bandwidth slot under
consideration is not used for pre-fetching.

More  formally, let the wvector A(j) =
(a1(4),a2(j), - ,ar(j)) represent the number of
chunks in each epoch that have been assigned a

download slot after the jth iteration of the algorithm.
Let X(j) = (zo(4),z1(4),-- ,xzr—1(j)) be the numbers of
bandwidth slots that have not yet been assigned in epochs
0 through T — 1. Note that A(0) = (0,0,---,0) and
X(0)=W.

During the jth iteration, we perform the following, stopping
only when X (5) = (0,0,---,0):

1) If all z(j) > 0 set k = T. Else set k = ¢ that satisfies

z¢(j) > 0 and z,,,(5) = 0 for all m > £.

2) Set X(J+ ;) = <$0(j)7$1(j)7 e 71‘]671(.7')71-]9(]-) - 17

0,0,---,0

3) Set n equal to the largest ¢ that satisfies both £ > k and

ar(§) = ming>k am(4)

4) If a,,(j) = M do nothing. Else A(j+1) = {ao(4),a1(j)

[ an_l(j)7an(j) + 17a'n+1(j)7 T ,ClT(j)).

We now state the most important results about the optimality
of the allocation produced by Best-Allocator without proof.
For proofs and other results please refer to [17].

Claim 4.1: The allocation formed by Best-Allocator mini-
mizes waste.

Claim 4.2: The smoothness of allocation A formed by
Best-Allocator is ar —ag and no allocation that uses ar layers
in any epoch can have lower smoothness.

Claim 4.3: Let A be the allocation generated by Best-
Allocator and let B be any other feasible allocation with
identical waste. Then Variability(A) < Variability(B).

V. ON-LINE ALLOCATION ALGORITHMS

In this section we present five on-line bin-packing algo-
rithms that can be used to schedule the downloads of scalably-
coded videos. The off-line algorithm “Best-Allocator” pre-
sented in Sec IV achieves the best possible performance for the



given input but makes its allocation decisions after receiving
all inputs. In reality we will not know future bandwidth
rates, therefore on-line algorithms must be designed to make
decision without knowing future bandwidth.

Given that the bandwidth at the client varies, the scheduler
at the client is faced with a choice in each epoch ¢: whether
to use its bandwidth to download and display as many chunks
of the epochs immediately following the current active epoch,
thereby greedily maximizing current pictorial-quality, or to use
the current bandwidth to download as much of a single layer
for current and future epochs, so that if bandwidth in future
epochs prove insufficient, these chunks of data will provide at
least the minimum quality and thereby minimize variance in
the quality of the video.

A. Naive allocators

First consider the two allocators that exemplify the two
extreme ends of this tradeoff.

« [Same-Index] This allocator allocates all bandwidth to
downloading chunks belonging to the current or nearest
future epoch for which it has not yet downloaded all the
chunks. This allocator will tend not to waste capacity as
it greedily uses it up.

o [Smallest-Bin] This allocator allocates all bandwidth
slots to the epoch with fewest layers already downloaded,
breaking ties by choosing the earliest epoch. Such an
allocation strategy will first download all of layer-1 of the
video, then all of layer-2 and so on. This approach will
produce unchanging and smooth quality, but will waste
capacity.

B. Constrained allocators

Intuitively we would like algorithms that operate somewhere
between the two extremes of the same-index and smallest-bin
allocators. Our solution are algorithms that maximize current
quality, but with smoothness constraints derived from percep-
tual quality studies [20] that indicate that users dislike quick
changes in video quality, particularly decreases in quality.
Our algorithms do so by constraining the downhill slope
of an allocation. Within this restriction the different on-line
algorithms in our suite attempt to maximize different desirable
qualities. More formally, constrained downhill slope allocators
build allocation B = (b, ..., br) such that at any point in the
building process, b; — b;11 < C,0 < i < T for some integer
constraint C.

We present three such allocators. In describing the al-
gorithms we will assume that the current epoch is ¢; and
the algorithm is allocating a chunk of bandwidth from the
bandwidth slot in epoch ¢; to a chunk in some epoch ¢;,5 > 1,
where b; indicates the number of chunks allocated to epoch
t;. To help the reader visualize this process, consider having
an empty “bin” B; assigned to hold the chunks in t; that
have been allocated for download using a slot from a previous
epoch, t;. b; is the number of chunks in bin B;, and each time
a bandwidth slot (from a previous epoch) is allocated to serve
a chunk from epoch t;, b; is incremented.

o [Largest-Hill] This algorithm allocates each chunk of
bandwidth to the bin B; with the smallest index j such
that the constraint b; — b;4; < C is satisfied after
the chunk has been allocated. The largest-hill allocator

attempts to maximize the size of the earliest bin possible
while maintaining the slope constraint. Such a strategy
tends to produce “hills” of allocations with a constant
downhill slope; thereby the name.

« [Mean-Hill] Given that the average bandwidth seen so
far is u,, chunks per epoch, the Mean-Hill allocator uses
the following rules to allocate each chunk of bandwidth.

— Find the bin B; with the smallest index j such that
the slope constraint (b; — b;4+1) < C is satisfied.

— If the size of this bin b; is less than p,,, allocate the
chunk to this bin B;.

— Else, allocate the chunk to the most empty bin B,,.
In case of ties allocate the chunk to the most empty
bin with the smallest index (the earliest-bin).

The Mean-Hill allocator attempts to maximize the current
bin-size while ensuring that the slope-constraint is satis-
fied. Once the current bin has grown bigger than g, it
uses its bandwidth to download the full video one layer at
a time. This algorithm operates under the assumption of
mean-reversion; that larger-than-mean current bandwidth
will be compensated by smaller-than-mean bandwidth in
the future.

o [Widest-Hill] This allocator allocates each chunk to the
bin with the smallest index j that satisfies the slope
constraint (b; — bj11) < C and the height constraint
bj < py. This strategy tends to produce allocations that
first grow up to the mean, then widen while satisfying
the slope constraint.

Fig. 2 shows typical allocations of the three algorithms with
the slope-constraint C' = 1, input (6,7,9,11) and p,, = 3.
The Largest-Hill algorithm grows tall hills while maintaining
the downhill slope. The Wide-hill grows hills until they reach
the mean, then widens them while maintaining the slope
constraint, and the Mean-Hill algorithm grow hills up to the
mean, then uses excess bandwidth to fill out future bins.

VI. RESULTS

In this section we present and evaluate the performance
of the off-line Best-Allocator algorithm and five on-line bin-
packing algorithms. Comparisons are achieved by means of
two simulations which look at the ability of the five on-line
algorithms and the Best-Allocator to minimize Variability 3,
smoothness and waste.

In the first simulation experiment we chart these measures
as functions of the mean and the variance of the input. Such
a study will show us how the algorithms perform under
two interesting conditions: when the mean of the bandwidth
approaches the mean bit-rate of the video, and secondly as the
network bandwidth shows increasing fluctuations.

In the second trace experiment we use bandwidth traces
obtained by the authors while downloading videos from the
Gnutella network as input. In this simulation we study the
performance as a function of the average epoch length. This
study will indicate the performance of the algorithms in real-
life bandwidth conditions, and indicate appropriate decision-
intervals.

SWe chart the square-root of the Variability rather than the Variability
itself, as the square-root has units of chunks, and is easier to visualize than
Variability, which has units of chunks2.
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For our experiments we assume that u(¢) the video-bitrate
is a known constant function. In the simulation experiment
w(t) is generated for each epoch by drawing randomly from
the distribution specified. The experiments were conducted for
600 epochs, and the result averaged over 100 runs. In the
trace experiment w(t) was derived each second by counting
the number of bytes of a video that was downloaded in that
second. We use two traces which lasted approximately 3,600
and 11,000 seconds. The chunk-size was chosen such that the
overall mean of the bandwidth corresponded to M /2 chunks
and the bandwidths in each epoch were rounded to an integer
number of chunks. Throughout the experiments a value of 6
was used for M.

A. Smulated bandwidth

We first studied the performance of the various algorithms
as the available bandwidth approaches the maximum video
bandwidth. To do this we independently generated the input
bandwidth from a uniform distribution and gradually increased
the mean of the uniform distribution (note that this increases
the standard-deviation as well) to the maximum video band-
width. The performances of the algorithms as measured by the
three metrics are plotted as a function of the mean in Fig. 3.

It can be seen from Fig. 3 that constrained-slope allocators
vastly outperform the naive algorithms. It can be seen that
all three constrained-slope algorithms have robust perfor-
mances when the input bandwidth is half the maximum video-
bandwidth while the Mean-Hill algorithm is marginally more
robust than the Largest-Hill and Wide-Hill algorithm as the
available input bandwidth approaches the maximum video
bandwidth.

We also studied the performance of the different algorithms
as the variance of the input bandwidth increases while the
mean remains the same by using a Gaussian distribution. Such
an analysis will allow us to choose the optimal algorithm
for different bandwidth environments. The results of this
experiment are presented in [17].

In summary the novel on-line algorithms provide very good
performance compared to the ideal offline case, and vastly
outperform naive strategies.

B. Bandwidth Traces

In this section we present the results of applying the
algorithms to real data. Two sets of traces were obtained, the
first through a DSL line and the second on a T1 network. We
created a program, based on modifying the Limewire Open
source code [6], that continually downloaded videos from the
Gnutella network, and traced the aggregate bandwidths to the
servers each second. From these two sets of data we picked one

Three slope-constrained algorithms

representative trace each: the first, from the T1 network lasted
3,663 seconds, and the second from the DSL connection lasted
11,682 seconds. We then computed the performance of the
on-line algorithms when applied to these traces for an epoch-
lengths of 1, 2,4,8,16,32 and 128 seconds, to study the effect
of time-scales on the performance of the heuristic algorithms.
We noticed that the traces showed large bandwidth variation
across all scales.

The first trace was run on a computer connected to the
Internet through a telephone line using DSL. The trace lasted
for 11,682 seconds and downloaded a 80 MB video. Two
servers were serving the video simultaneously for large parts
of the download. The algorithms were run on this trace for
different average epoch lengths of 1, 2, 4, 8, 16, 32, 64 and 128
seconds and the standard deviation of the bandwidth reduced
from 2.97 to 1.64 in response. The performances are charted
in Fig. 4 as a function of these different standard-deviations
resulting from varying the average epoch-lengths.

A second trace was run on a computer connected to the
Internet through a T1 connection. Details of this experiment
can be seen in [17].

With both the DSL connection and the T1 connection,
the constrained-slope allocators vastly outperformed the naive
allocators. The Mean-Hill and Wide-Hill performed close to
the bound provided by the best-allocator. As the variance
of the input bandwidth increased (corresponding to smaller
epoch-lengths) the Mean-Hill and the Wide-Hill algorithms
showed consistent performance, while the Largest-Hill algo-
rithm slightly lagged in performance. Overall, the Mean-Hill
and Wide-Hill algorithms provide near-optimal and consistent
performance in real-life bandwidth scenarios across varying
epoch-lengths.

VII.

Our approach can easily be extended to handle rewinds
while the Mean-Hill algorithm can be adapted to support fast-
forwarding. We plan to work next on scheduling under unequal
sized layers, and determining the optimal pre-fetch interval
before the start of playback. We also plan to implement our
algorithms as an application and verify that they do indeed
produce the most even quality relative to other video-streaming
algorithms.

ISSUES

VIIl. CONCLUSION

Peer-to-Peer networks are increasingly being used to stream
videos where often the user wishes to view a video at a
bandwidth larger than that obtainable in current P2P systems.
Scalably Coded video is an attractive solution to this problem.
We show that in practical P2P settings, because the user’s
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bandwidth to multiple servers will vary widely, it is imper-  [8] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distribut-

ative to pre-fetch downloads to ensure uninterrupted smooth
viewing and that the quality of the video is sharply affected by
the algorithm used. We present bounds on the performance that
can be achieved by developing an optimal offline algorithm,
then present on-line algorithms that vastly outperform naive
schedulers. Through simulations we show that our solutions
perform close to the best possible performance.
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