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Abstract— For the past several decades, work that develops
and analyzes network routing protocols has assumed that
each network node properly implements the algorithm that
establishes routes through the network. However, there have
been several instances in which a trivial misconfiguration in
a single router’s implementation of the routing algorithm
induced undesirable routes within the majority of the network.
Given the high likelihood of program error or sabotage in
today’s networks, there is an urgent need to develop techniques
that allow properly-configured routers to identify anomalous
behaviors of their misconfigured counterparts.

In this paper, we describe our development of a general the-
ory called Strong Detection that examines routing protocols in
environments where some misconfigured routers “misbehave”
and (intentionally or unintentionally) issue inaccurate reports
that shift routing paths in the network. Application of strong-
detection allows a node to “sense” the presence of any detectable
misconfiguration in the network through an analysis of its
routing state. We also demonstrate a practical algorithm that
allows Strong Detection to be applied to the Distance-Vector
protocol.

I. INTRODUCTION

Over the years, a significant body of research has been
developed to implement distributed routing algorithms that
converge efficiently to an accurate solution. Additionally,
research has produced ways to evaluate and understand the
properties of these routing protocols [1]. The assumption
in this large body of work is that routers implement the
algorithm correctly. However, the distributed, heterogeneous
nature of the routing environment and the fact that no single
organization controls deployment within today’s networks
makes it likely that somewhere in the network, a router is
misconfigured, and is misimplementing the algorithm. Over
the years, there have been several instances where a small
set of misconfigured nodes in a remote region of the network
dramatically shifted the routing paths throughout the entire
network [2]–[5]. While the cause of these misconfigurations
is unclear, it is clear that we are a long way from being able
to protect the network from such misconfigurations.

Ideally, network nodes that participate in a routing pro-
tocol would also implement mechanisms to detect miscon-
figured “rogue” routers elsewhere in the network. Doing
so would facilitate the tracking and identification of rogue
nodes, and would permit appropriate action to be taken
to protect/repair damages caused by the rogues. One way
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to approach developing these mechanisms is reactive: wait
for misconfigurations to visibly affect network routing, then
identify the bug that caused the misconfiguration and take
steps (development of code patches, novel techniques) to
enable future detection and prevention. We believe that a
better approach is to develop pro-active techniques that
detect misconfigurations before they visibly affect routing and
without explicitly knowing the cause. In other words, we
believe that properly-configured routers should be enabled
with mechanisms that can “sense” when some of their routing
state just doesn’t seem right.

Is this more ambitious goal even possible? Can nodes
infer misconfigurations elsewhere in the network from just
inspecting their routing state? Is this computationally feasi-
ble? Are there types of misconfigurations that can be sensed
and types that cannot? This paper investigates these questions
and shows that it is possible to achieve this goal.

We begin by introducing a formalism called Strong-
Detection which, in theory, identifies all detectable mis-
configurations. However, the method in its raw form is
computationally intractable. Hence, it becomes necessary to
refine the method for each routing protocol. We demonstrate
a computationally feasible algorithm for the Distance-Vector
routing-protocol, and show how a node, armed with the
state it receives from its neighbors, can detect any detectable
misconfigurations using only this information.

II. PRIOR WORK

While several works have identified that disruption due to
incorrect implementation in routing-protocols is an important
problem, the approaches to solutions have been different. In
[6] and related work the authors set out to identify nodes
that show erroneous behavior, but in contrast to our work,
they do so by analyzing traffic patterns (in routing parlance,
they analyze data-plane data while we analyze control-plane
data). Others emphasize the need for reliable communication
[7] and use centralized public-key infrastructures or key-
distribution mechanisms to address the problem [8]–[14].
However these works do not attempt to harness the self-
monitoring capabilities that protocols possess.

The authors in [15], [16] address the question of de-
centralized security in networks. They propose a toolkit of
primitives that can be added to a routing-protocol to make it
more secure. Our work differs in that we attempt to detect
incorrect behavior without modifying the protocols. Other



works [17], [18] propose tools that can locate the source of
routing misbehavior in the face of uncertainty and insecure
environments.

Some bodies of work have attacked broadly similar ques-
tions. Among these is competitive routing [19] where selfish
users in a communications network attempt to maximize their
flow by controlling the routing of their flows and the works
attempt to find if there exist equilibrium states. This body
of work differs in that they are concerned with traffic flows
rather than reachability and with a competitive environment
rather than a misconfigured environment.

The brief announcement [20] on strong-detection was
among the first works that provided a technique for detecting
static inconsistencies while being grounded in a theoretical
framework. It complements other studies that have sought to
understand the nature of misconfigurations [21] and yet oth-
ers that aim to detect misconfigurations through observance
of dynamic behavior [6], [22]–[28].

Some recent work that has addressed this problem uses
heuristics to make the best educated guess possible about the
state of the network, but can incorrectly infer that there are
problems when in fact none exist [29]–[32]. Other works take
advantage of simultaneous analysis of multiple perspectives
[33] when nodes are willing to share their routing table
information.

III. DETECTING MISCONFIGURATIONS

In this section, we develop the idea of Strong Detection
which will enable us to understand the types of misconfigura-
tions that various classes of protocols can and cannot detect.

We consider a network G = (V, E, W ) where V is the
set of nodes, E is the set of edges that connect pairs of
nodes, and W the corresponding edge-weights. Each node
n ∈ V is aware of all other nodes in the network and com-
municates directly with a set of neighbor nodes, represented
as N(n) = {N1, · · · , N|N(n)|}. Each node n also maintains
a protocol-specific state, dn where it records some of the
information exchanged. The information contained in dn will
vary depending on the protocol used.

A node n’s state can be thought of as a table of size |V | x
|N(n)|, whose entry, dn(i, j) in the ith row and jth column
is the information reported to it by neighbor nj about the
path to node i. This general framework does fairly well at
classifying a wide variety of routing protocols that “learn
from their neighbors”. An example state for the Distance-
Vector protocol is given in Sec. III-A.

Consider the perspective of node n in the network. Sup-
pose that some other misconfigured or malicious node n̂
in the network incorrectly implements the protocol, and
reports erroneous routing information to its neighbors. This
erroneous information could propagate through the network,
possibly altering dn, and lead other nodes, including n, to
select routes that are non-optimal.

If a node n analyzes route information received from other
nodes for incorrect implementations we call it a monitor. A
monitor node performs its usual routing protocol duties, but
it also self-monitors its own state for misconfigurations.

Before continuing, we state the assumptions we make
to keep the theoretical problem both tractable and well-
specified. We assume that the analysis is conducted after
routes have stabilized, since transient inconsistencies may
exist during stabilization. We also assume that modifications
to the protocol are not allowed, and that the node conducting
the analysis is functioning correctly. Finally we only attempt
to detect the presence or errors. Identifying the source of the
error is beyond the scope of this work.

A. Weak Detection

Can other nodes detect when a misconfigured node n̂
introduces an anomaly? This problem has been studied
previously for specific protocols. For instance, in [34], it is
shown that the triangle inequality can be applied within RIP
[35] (a specific Distance-Vector implementation) to detect
certain misconfigurations.

A shortcoming of this previous method is that it identifies
a specific property (the triangle inequality in the case above)
that the state at a node (or set of nodes) should exhibit,
and then looks for violations only of this specific property
within the node’s state. If a violation of this property is
identified, then clearly this is sufficient evidence that the
network is exhibiting a misconfiguration. However when a
violation is not found, this does not necessarily mean that a
misconfiguration does not exist.

n a b e
a 0 1 12
b 4 0 7
c 12 13 8
d 5 9 6
e 9 6 4
f 12 15 13
g 4 9 2

Fig. 1. Violation of Sym-
metry

n a b e
a 0 1 1
b 1 0 13
c 12 13 8
d 5 9 6
e 1 3 0

Fig. 2. Violation of the
Triangle-Inequality

Consider the example state-table in Fig. 1 where nodes
a, b, c, d, e, f and g execute the Distance-Vector Protocol
in an undirected network. We know that in an undirected
network, the distance d(X, Y ) reported by node X to node
Y must be equal to d(Y, X), the distance reported by
node Y to node X . However in the state-table of Fig. 1,
d(a, b) 6= d(b, a) indicating a misconfiguration. Checking for
the symmetry property identified a misconfiguration in this
example.

Now consider the distance-vector state-table of node n
shown in Fig. 2 where a reports that its shortest-path
distances to nodes a,b,c,d and e to be 0, 1, 12, 5 and 1
respectively. Similarly b reports that its shortest-path dis-
tances to the nodes a,b,c,d and e are 1, 0, 13, 9, 3 while
node e reports its shortest-path distances to be 1, 3, 8, 6
and 0. In this state-table, symmetry is not violated since
a and b both report distances of 1 to each other, b and
e report distances of 3 to each other and a and e report
distances of 1 to each other. We next check the triangle



inequality d(X, Z) ≤ d(X, Y ) + d(Y, Z) where as before
d(X, Y ) indicates the distance reported by X to Y . A simple
check reveals that d(b, e) = 3, d(b, a) = 1, d(a, e) = 1 and
therefore d(b, e) > d(b, a) + d(a, e) violating the triangle-
inequality, indicating the presence of a misconfiguration.

n a b
a 0 2
b 2 0
c 3 1
d 3 3

Fig. 3. Node N’s state

a

b
c

d

Fig. 4. Undetectable Report

To see why checking for properties such as symmetry and
the triangle inequality is weak consider the example state-
table in Fig. 3 where node n executes the Distance-Vector
Protocol along with four other nodes, a, b, c and d. Suppose
that the length of every edge in the network is known to equal
either 1 or ∞ (i.e. no edge). a and b are n’s neighbors and are
connected to it by edges of distance 1. The distance-vector
state-table of node n is shown in Fig. 3 where a reports to
node n that its shortest-path distances to nodes a,b,c and d
are respectively 0, 2, 3, and 3. 1 Similarly, node b reports
distances of 2, 0, 1, and 3 respectively to these four nodes.

In this state-table, symmetry is not violated since a and b
both report distances of 2 to each other. Similarly the triangle
inequality is not violated in node n’s state table. For instance,
a claims its shortest path to node c has length 1. If the sum
of claimed shortest path lengths from a to b and b to c was
less than 3, the triangle inequality would be violated, but in
this graph, this sum equals 3.

However, one can see that a misconfiguration must in fact
exist as we will find that it is impossible to place edges
of length 1 between the nodes pictured in Fig. 4 in a way
to satisfy the state-table of Fig. 3. Consider the following
argument. If all the information in n’s state were correct,
then there clearly is an edge of length 1 from b to c (the only
way to get length 1 between them). Now since a is distance
greater than 1 from the three nodes b, c, d it must attach to b
through n (i.e. through the edges a−n and n−b). So we have
the edges a−n,n− b and b− c. Since b is distance 3 from d
and n and c are distance 1 from b, it must be that d attaches
to a. But then d(a, d) = 1 and not 3 as shown in Table
3. Therefore this network cannot exist! Here, checking the
symmetry and triangle inequality properties failed to identify
the misconfiguration even though it was possible for node n
to detect a misconfiguration through an analysis of its state.

We say that the triangle-inequality based method described
above belongs to a class of methods that apply Weak De-
tection. A method provides Weak Detection when, given a
node’s state, an existing misconfiguration is not detected for

1Note here that we are assuming that the value reported in the table
indicates the distance from the neighbor to the destination. An alternative
form often used is to have the value indicate the distance from the node
n itself to the destination through that neighbor. Since n knows the edge-
length to its neighbor, the two forms provide equivalent information.

one (or more) of two reasons:
• The misconfiguration is undetectable, regardless of what

property is explored.
• The misconfiguration is detectable by checking some

property, but the Weak Detection method did not check
the appropriate property.

B. Strong Detection

Our work investigates what is called Strong Detection [20]
where the goal is to construct methods that, like Weak De-
tection methods, detect misconfigurations. However, Strong
Detection methods must detect any misconfiguration that is
detectable by any property.

We start by providing a bird’s-eye view of how Strong
Detection functions at a node n, and then we show how
it can be practically implemented. The basic idea behind
implementing Strong Detection at a monitor node n is to
try to identify a network that could yield the state dn it
obtained. More formally, let G be the (possibly infinite) set
of valid network configurations, i.e., the actual network must
be described accurately by some G ∈ G. For instance, if
distance is computed in terms of the number of hops, then G
would be the set of networks with edges of length 1. If edge
lengths equal propagation delay, then G could be the set of
all graphs, each of whose edge lengths are all less than 500
(i.e., a conservative upper bound on the propagation delay
between a pair of nodes).

Suppose n checks each network G ∈ G. To check a
particular network G, n builds a “toy” network that describes
G, and then, in its local memory, simulates the routing
protocol upon this (network) graph G to obtain a state, dG

n

for the node in G that corresponds to n. n then compares
the state dG

n in the “toy” network G to its actual state dn in
the real network.

There are two outcomes to consider:
• If no network G ∈ G satisfies dG

n = dn, then a
misconfiguration must have occurred: there is no valid
network that would have generated the obtained state.

• At least one G ∈ G satisfies dG
n = dn. Then n

cannot detect the misconfiguration, if one exists. This
is because, from n’s perspective, the actual network
may be described by G, and when the routing protocol
was run correctly, the returned state was dG

n . On the
other hand, the network might be some other G′ where
dG′

n 6= dn when the routing protocol runs correctly, but
a misconfiguration produced dn.

The problem with Strong Detection, as described above, is
the time needed to either find a G that produces a matching
state, or the (potentially infinite) time needed to demonstrate
that there is no matching graph.

C. Computationally Feasible Strong Detection

We now show, in general, how Strong Detection can be
implemented within a reasonable (i.e., low-degree polyno-
mial) amount of time for a variety of protocols. The key
idea is to identify how to construct a single special graph,
G from within the space of valid graphs, G, which we call



the canonical graph. Node n with state dn pictured in Fig.
5(a) runs the following procedure:

• n executes an algorithm that takes as input its state, dn,
and outputs a particular graph G′ with edge-weights w′,
which we refer to as the canonical graph. This process
is pictured in Fig. 5(b).

• If G′ is a valid graph (G′ ∈ G), then n next simulates
the routing-protocol on G′, producing simulated state
d′n for node n as pictured in Fig. 5(b).

• If d′n = dn, then we have identified a valid graph G′,
and hence there is either no misconfiguration or it is
impossible to detect, since G′ may accurately describe
the network and would cause n to obtain state dn within
a correct implementation.

• If G′ is not valid (G′ /∈ G), or if (G′ ∈ G) but d′n 6=
dn, then there is no graph G ∈ G that would produce
state dn when the protocol is run on it. This is a rather
strong claim and we have proofs for the distance-vector
protocol we consider.

           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

Node

A

B

E

C

D

G

F

Node−State

(a) A Node’s State

           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

           A   B   E

B        1    0     3
C        1    2     3
D        2    1     3

A        0    1     2

G        2     1    1
F        1     2     3
E        2    3     0

(b) The Canonical Graph

Fig. 5. Strong Detection

This procedure applies to the very broad class of graphs
where each pair of nodes i, j has a different set Si,j of
allowable values for w(i, j), making a graph G valid if and
only if w(i, j) ∈ Si,j . The Si,j are assumed to be known a
priori (i.e., node n would know these values, and can be used
as input to the algorithm that constructs the canonical graph).
Each set Si,j can be distinct, and can be any arbitrarily
chosen collection of intervals whose lower boundary is
closed (i.e., the intervals forming Si,j can be of the form
[x, y] or [x, y)). For example SA,C = {1, 3, [4.2− 5.6]} and
SB,C = {2, 4, [5.1 − 7.6)} are valid allowable values for a
single graph. Our procedures apply to this broad class of
graphs unless otherwise stated.

We next describe how the canonical graph G′ mentioned
in Sec. III is constructed for the Distance-Vector protocol.

IV. THE DISTANCE-VECTOR PROTOCOL

In this section we describe the application of the Strong
Detection technique to the popular Distance-Vector routing
protocol which is still widely used in various forms. The
popular RIP protocol was [35] an early implementation of the
Distance-Vector protocol. While RIP is currently not in wide

use, variants of distance-vector remains popular in resource-
constrained settings such as ad-hoc networks and sensor-nets
due to its minimal footprint and simplicity. AODV [36], and
TORA [37] are widely known examples of on-demand, ad-
hoc routing protocols used by mobile networks that are based
on the distance-vector protocol.

We show here, how the Strong Detection technique intro-
duced in Sec. III can be applied by a self-monitoring node
to check for detectable errors introduced by other nodes.
We first briefly outline the operation of the Distance-Vector
protocol, then we describe the state-information contained
in each node when the protocol is executed. Then we
develop a low-complexity algorithm to detect errors and
prove that the algorithm does indeed detect all detectable
misconfigurations. We illustrate the algorithm by applying
it to a small example network that is misconfigured. We
conclude with an analysis of the time and space complexity
of the algorithm.

Throughout, we illustrate the error-detection process using
the example graph of Fig. 6(a). In the figure node n in the
example graph is the self-monitoring node.

A. Model

A node n’s state in distance-vector is a table of size |V | x
|N(n)|, whose entry, dn(i, j) in the ith row and jth column
equals the shortest path distance that neighbor nj claims
exists from itself to node i 2.

B. Canonical Graph Construction

The canonical graph G′ is first initialized with all the
nodes in the network. Then every pair of nodes i, j
in the graph is connected with an edge whose weight
w′(i, j) is the smallest value in Si,j that is no less than
maxk∈N(n) |dn(k, i) − dn(k, j)|. 3 If no such value exists
(in the case where this maximum is larger than any value in
Si,j), then the edge is omitted (or, equivalently, set to ∞).

After all edges are constructed, if G′ ∈ G, the distance
vector algorithm is simulated on G′ producing a state table
d′n for node n. Then d′

n is compared to the original state
table dn within which we are attempting to identify a
misconfiguration.

The state of of node n of the example graph of Fig. 6(a) is
shown in Table 6(b). The graph G′ that results in running the
canonical-constructor algorithm on the state table of Table
6(b) is shown in Fig. 6(c). Note that while the original graph
G is not a complete graph, the reconstructed graph G′ is
a complete graph. It can also be verified that running the
distance-vector algorithm on either of these graphs produce
the same state table of Table 6(b).

2An alternate view has dn(i, j) to be the shortest path distance of node
n to node i through neighbor j. The two views can easily be computed
from one another.

3Note that it is this requirement that we choose a value no less than the
stated value that forces us to impose the requirement that each interval is
closed from below.
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(a) Example Graph

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 4 2

(b) State-
Table
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(c) Canonical Construction

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 6 2

(d) State-
Table with
Error

A
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C

D

E
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1 2
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3
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1
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1

6 5

3
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(e) Canonical Graph with error

A B
A 0 3
B 3 0
C 1 2
D 5 2
E 3 1
F 6 3

(f)
Computed
State

Fig. 6. Distance-Vector

C. Proof

Here we provide the theorem and proof that the canonical-
graph G constructed in Sec. IV for the distance-vector
protocol is indeed the only graph that needs to be considered
among all the graphs in G. We present some preliminary
results as lemmas before we proceed to proving the main
theorem. The reader may skip the proof on first reading
without loss of continuity.

Lemma 4.1: If there exists a graph G ∈ G with edges
of length w(i, j) between nodes i and j so that running
the routing protocol correctly on G produces table dn, then
running the routing protocol correctly on the canonical graph
G′ produces a table d′

n where d′
n(k, i) ≤ dn(k, i) for each

k ∈ N(n) and every node i.
Proof: The proof is by contradiction. Assume there

is a graph G that would produce state table dn, but that
a neighbor k exists for which there is a node i where
d′n(k, i) > dn(k, i) (where a non-existent edge in G′ has
length ∞). WOLG, select i for which dn(k, i) is minimized,
i.e., i is chosen so that d′

n(k, i) > dn(k, i) and for any
other node j where d′

n(k, j) > dn(k, j), we have that

dn(k, i) ≤ dn(k, j). Let x be the node on a shortest path
from k to i in G that immediately precedes i on this shortest
path (x may in fact be node n itself). Since x is closer
(no edges of length 0), by our choice of i, we have that
d′n(k, x) ≤ dn(k, x).

Since (x, i) is an edge in graph G, in the accurate state
table the shortest path distance from any neighbor to node
x can differ from the shortest path distance to node i by no
more than w(x, i), i.e., |dn(m, x) − dn(m, i)| ≤ w(x, i) for
every m ∈ N(n). Thus, w′(x, i) ≤ w(x, i) 4.

Utilizing d′
n(k, x) ≤ dn(k, x), w′(x, i) ≤ w(x, i), and the

fact that the shortest path from k to i in G′ is no longer
than the path from k to x in G′ plus w′(x, i), we have
that d′n(k, i) ≤ d′

n(k, x) + w′(x, i) ≤ dn(k, x) + w(x, i) =
dn(k, i), contradicting d′

n(k, i) > dn(k, i).
Lemma 4.2: Let there exist a graph G ∈ G so that running

the protocol correctly on G produces table dn and let G′

be the canonical graph. Then d′
n(k, i) ≥ dn(k, i) for all

neighbors k ∈ and all nodes i.
Proof: The proof is also by contradiction. Let k be any

neighbor for which the claim does not hold and choose i
where d′

n(k, i) < dn(k, i) and for any j where d′
n(k, j) <

d′n(k, i) implies that d′
n(k, j) > dn(k, j). Let x be the node

on the shortest path in the canonical graph G′ that precedes
i on a shortest path from k to i. By choice of i, we have
that d′n(k, x) ≥ dn(k, x). By construction of G′, we have
that w′(x, i) ≥ dn(k, i)−dn(k, x), so dn(k, i) ≤ dn(k, x)+
w′(x, i) ≤ d′n(k, x) + w′(x, i), which, since x lies one hop
before i on the shortest path to i, equals to d′

n(k, i), hence
dn(k, i) ≤ d′

n(k, i), contradicting our choice of i.
Theorem 4.3: In the distance-vector protocol, dn is a valid

state table for some graph G ∈ G if and only if it is valid
for the distance-vector canonical graph, G′ ∈ G.

Proof: If the state table is valid for no graph G ∈ G,
then clearly it cannot be valid for G′ ∈ G. If it is valid for
some graph G, then by Lemmas 4.1 and 4.2, the state table
d′n of G′ will match the state table dn of G.

D. Misconfiguration Examples

Now let us consider a situation where there is a miscon-
figuration and show how it is detected by node N . Suppose
that node C erroneously reports to A that its distance to node
F is 5 instead of the correct distance 3. Node N ’s state will
change and be as pictured in Fig. 6(d) (A’s distances to F
has changed because of C’s error). Next node N constructs
the canonical graph G′ from its new state shown in Fig.
6(d) that contains the changes resulting from C’s error. This
canonical-graph G′ constructed according to the algorithm
outlined earlier will be as pictured in Fig. 6(e). Note that
the weights on edges eAF , eCF , eEF and eBF have changed
relative to the canonical-graph of Fig. 6(c) constructed from
the correct state. As the final step in the process, node N
executes the distance-vector protocol on the canonical-graph

4Note that because the Claim assumes the existence of valid graph G
and G contains edge w(x, i), it must be the case that w(x, i) ∈ Sx,i, and
hence there is some value in Sx,i larger or equal to |dn(m, x)−dn(m, i)|
for all m.



G′ of Fig. 6(e). This will result in a state d′
N as pictured

in Fig. 6(f). Node N will compare this state to its state
dN of Fig. 6(d) and will notice that dN (F, B) = 2 while
d′N (F, B) = 3. Since dN 6= d′N node N will correctly
conclude that there is a misconfiguration!

As a second example let us apply this methodology to
the sample state of Fig. 3 we considered earlier where
symmetry and the triangle-inequality properties held and the
only allowable edge-weight was 1 (i.e. Sx,y = {1} for all
x, y). In that case we concluded, through a complex logical
argument, that there could be no valid graph that produced
that particular state-table. We illustrate here how we could ar-
rive at the same conclusion using Strong Detection. Applying
the canonical-constructor described above to the state-table
of Fig. 3 would produce a graph with just one edge between b
and c of weight 1. This graph obviously has no path between
a and d and therefore if we ran the distance-vector protocol
on this graph it would definitely not produce the state table
of Fig. 3. We conclude, without the complicated logic needed
earlier, that this state is the result of a misconfiguration.

E. Space and Time-Complexity

In performing Strong Detection, the self-monitoring node
executes two new procedures: one to create the canonical-
graph from its state, and the second to run the routing-
protocol on the canonical graph. The canonical graph con-
structed for distance-vector in Sec. IV is fully-connected so
has |V | nodes and |V | × |V − 1|/2 edges requiring space
of the order of |V |2. Executing the routing-protocol on the
canonical-graph requires the state for each node to be stored.
This requires space of the order of k|V |2 where k is approx-
imately 3 + 2|V |1/d. Therefore the overall space-complexity
is O(|V |2+1/d) with a small proportionality constant.

Constructing each edge requires looking at the information
provided by each neighbor. So it has a time-complexity of
d|V |2 where d is the number of neighbors, or out-degree.
Running the distance-vector routing-protocol on the fully-
connected canonical-graph has time complexity of O(|V |3).
This is because at each node routes need be computed for
|V | nodes by looking at information provided by |V − 1|
neighbors. However the canonical graph constructor of Sec.
IV that produces a fully-connected graph is used in this
paper mainly for ease of exposition. In practice, alternative
canonical-constructors that produce a canonical-graph with
an out-degree d that is closer to that of the original graph will
be used or the fully-connected canonical graph can be pruned
off redundant paths. For such graphs where d << |V |,
executing the protocol has a time complexity of O(|V |2).
Therefore, in practice, the overall time-complexity will be
O(|V |2).

V. FURTHER WORK

We plan to extend our work by applying our theory of
Strong Detection to other protocols and identify classes
of misconfigurations that can be proved detectable or un-
detectable and provide techniques to point out detectable
misconfigurations. Second, we plan to explore if it would be

possible for nodes to identify misconfigured nodes in addition
to detecting that they exist.

A. Application to other Protocols

In this paper we have applied our theory to the Distance-
Vector protocol. We next plan to apply out theory to other
popular routing protocols such as Path Vector and Link State.

There has also been a growth in ad-hoc and on-demand
networks. A node in such on-demand protocols may only
have routes to a small subset of nodes in the network. We
plan to investigate the application of Strong-Detection to
such scenarios with incomplete information. Additionally
distributed algorithms have been used in sensor-networks
to estimate various parameters at each node by iteratively
exchanging information with other nodes within their com-
munication radii [38]–[41]. Even though these algorithms
compute parameters such as geographic location and time
rather than the shortest path, they function in a manner very
similar to distributed routing algorithms. We plan to apply
our theory to these algorithms and attempt to estimate the
amount by which rogue-nodes can distort the parameter that
is being estimated.

B. Identification

We also plan to extend our theory to situations where
multiple well-behaved nodes can cooperate and share in-
formation. We would like to study how such cooperation
changes the classes of detectable and undetectable miscon-
figurations. We also wish to extend our theory so that, in
addition to detecting the presence of misconfigurations, it
provides insight into the identity of the violators. As more
well-behaved nodes cooperate we believe that the location
of rogue-nodes can be determined more accurately. We
plan to explore the theories behind such determination and
implement practical tools that can be used to identify rogues.

VI. CONCLUSION

We have described our development of a theory that
can be used by routers to analyze their routing-states to
sense any detectable misconfigurations. We then develop
an algorithm that allows this theory to be practically ap-
plied to the popular Distance-Vector routing protocol. Our
theory additionally allows classes of misconfigurations in
a protocol to be classified detectable or undetectable. This
allows network researchers and routing protocol designers to
evaluate the robustness of protocols in rogue environments
and to provide insight into possible modifications that would
further limit the sets of undetectable misconfigurations. In a
larger context, this theory contributes to our understanding of
the design and evaluation of self-healing, anomaly-tolerant
networks.
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