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Abstract

We propose a self-organizing sleep-wake sensor system
that is scalable, easily implemented, and energy conserving.
An application of concepts from cellular automata theory
accounts for much of its novelty. As a surprising byproduct
of its self-organizing behavior, the system has additional,
highly desirable properties such as a self-healing capabil-
ity, fault tolerance, asynchronous operation, seamless ac-
commodation of obstacles in the sensor field, and effective-
ness even in the case of intelligent intruders who know sen-
sor design and sensor locations. System performance is a
focus of the paper, along with the inverse problem of cellu-
lar automata, and self-organizing systems in general: How
does one set local rules and initial states so as to achieve
pre-specified behavior? Our experimental studies show that
broad classes of behavior can be achieved by design, espe-
cially by the placement of artificial nucleation centers.

1 Introduction

A low-cost, low-energy sensor deployed in large num-
bers is a characteristic of many applications of wireless sen-
sor networks. Limited energy is usually accompanied by
limited memory, a small sensing range, and a small com-
munication range. To adapt to these constraints, a sleep-
wake protocol is commonly implemented, whereby sensors
alternate between a low-power sleep mode and a relatively
high-power wake mode. The system life-time is propor-
tional to the sleep-period duty cycle of this process. A
distributed algorithm defined by a local rule coordinates
sleep-wake schedules via communications between neigh-
boring sensors within communication range; these com-
munications account for a large part of total energy con-
sumption. Our specific approach focuses on minimalist self-
organizing techniques, i.e., those making minimal demands
on resources, and communication requirements in particu-
lar.

In [1, 10], we introduced a class of cellular automata
to serve as such a technique. The specific automaton was
a generalization of the classical Greenberg-Hastings cyclic
cellular automaton on Z2 to a continuous, but still syn-
chronous version on R2. In this paper, we make a fun-
damental extension to an asynchronous automaton, which
we shall refer to simply as the asynchronous Greenberg-
Hastings automaton, or AGHA, and in so doing we elim-
inate the extensive communication overhead of distributed
synchronization algorithms, both in the initialization stage
and in re-synchronization stages created by excessive phase
drift or by the redeployment of damaged or expired sen-
sors. By means of extensive experimentation, we illustrate
both similarities and certain striking changes in behavior
relative to the synchronous GHA. We further illustrate re-
finements of the techniques for designing AGHAs to meet
pre-specified modes of behavior. The planting of seeds, or
artificial nucleating centers, provides the tool for solving
these inverse problems of cyclic cellular automata.

The next section defines a GHA and shows how it can
be used in sleep-wake scheduling. This presentation is fol-
lowed by a brief discussion of relevant background in sleep-
wake scheduling. The phase and signaling models are intro-
duced in Section 3. This section also illustrates the dynam-
ics of the asynchronous Greenberg-Hastings Automaton in
R2 under these models. Depending on parameters, striking
contrasts can be seen in the wave dynamics; explanations
of these effects and the basic differences in synchronous
and asynchronous wave dynamics are given in Section 4.
Finally, Section 5 presents samples of the results of exten-
sive experiments with a focus on the properties of scalabil-
ity, fault tolerance, effectiveness against intelligent intrud-
ers, and seamless accommodation of obstacles in the sensor
field. We conclude by summarizing our findings and by
illustrating design of sweep techniques with desirable prop-
erties related to intruder detection, forced exit, and entrap-
ment.
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2 The Greenberg-Hastings Automaton

Each unit square aligned with the regular lattice, is a
cell(or site) in a cellular automaton; cell x has a discrete
value, typically an integer, as its state, and a neighbor set
Nx defining the cells with which x can “communicate.” For
example, a commonly studied neighbor set is the von Neu-
mann set consisting of x and the adjacent cells to the north,
east, south, and west of x. The state transitions of all cells
are synchronized, i.e., they occur at discrete time steps, and
they are defined by a universal local rule. Specifically, the
transition at cell x at time step t depends on the states of the
cells in its neighborhood Nx at time t.

A special class of automata called cyclic cellular au-
tomata is useful in the design of sleep-wake protocols,
and within this class the Greenberg-Hastings Automaton
(GHA), defined as follows. Let ξt(x) be the state of cell
x at time step t. The state transitions of cell x ∈ Z2 in the
basic GHA follow the local rule:

1. If ξt(x) = i > 0, then ξt+1(x) = i + 1 mod k.

2. If ξt(x) = 0 and at least 1 neighbor in Nx is in state
1, then ξt+1(x) = 1; otherwise, there is no change in
state: ξt+1(x) = 0.

The state of a cell is said to be incremented automatically if
it is nonzero, but only by contact if it is 0.

Discretized sensor fields are not normally useful models
of actual sensor fields; instead, the sensor locations should
be modeled as points in R2, and in the applications (scales)
of interest here, point (cell) locations are reasonably taken
as i.i.d. uniform random draws from the sensor field, and
hence, at the scales of interest here, they will be well ap-
proximated by Poisson patterns in two dimensions. Cell x
now has a neighborhood Nx defined by all those cells within
a disk of given (communication) radius centered at x.

The new GHA model was investigated in [1] and shown
to have a periodic behavior very similar to that of the
model on Z2. Figure 1 illustrates typical cellular-automata
graphics in which states are mapped one-to-one onto col-
ors, and a finite, but large, square represents R2. Unless
stated otherwise, default parameters are unit sensor den-
sity, and respective communication and sensing ranges of
rc = rs = 1.5. Snapshots of the evolution of a GHA with
20 states are shown. Bear in mind the convention: the color
black always denotes state 0. The initial state is a sample
from the uniform product measure on {0, . . . , k − 1}. This
is commonly called primordial soup with reference to mod-
els in biology. Emergent behavior begins by a convergence
to state 0 (color black), where the cells stay until they find a
neighbor in state 1, an event that will eventually occur by the
periodic, expanding circular-shaped figures that originate at
groups of cells forming nucleating centers. For purposes

(a) t = 0 (b) t = 10

(c) t = 15 (d) t = 50

Figure 1. Greenberg-Hastings Automaton in
R2 (k=20)

of mathematical analysis, it is useful to “close” the finite
field by joining opposite edges. Here, however, we shall
just ignore edge effects, as the scale of our experiments and
the applications of interest is large enough to make these
effects relatively negligible.

Turning to our sensor application, point-cells are now
sensors; state 0 represents the wake state in which the sensor
is actively sensing events within sensing range; and state 1
is the state in which a sensor signals all sensors within com-
munication range that it is in state 1, so that those neighbors
in state 0 can transition into state 1. States 2 through k − 1
are called sleep states since no sensing or communication
takes place in these states. Figure 2 shows just the sensors
in state 0 at t = 100 with k = 12 and k = 20. They form
many small, generally curved line segments when k = 12
as in Figure 2(a) but they form the closed periodic waves
when k = 20 as in Figure 2(b). In the appendix Figure
13 helps visualize wave dynamics by giving closely spaced
snapshots of the state. Note the important fact that commu-
nication, the high-energy sensor function, can be turned off
completely once stable periodic behavior is reached, which
happens quickly for the designs of practical interest.

With reference to Figure 2(b) consider the occurrence of
an event (a fire, appearance of an intruder, . . . ) at some
point of the sensor field. It will be detected (i.e., sensed)
immediately if it occurs within sensing range of a sensor
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(a) k=12 (b) k=20

Figure 2. Greenberg-Hastings Automaton in
R2 (k = 12, 20)

in state 0. Otherwise, it will be sensed as soon as the next
wave of wake sensors gets within sensing range. This may
never happen if the wake sensors have large enough gaps
between them, but designs where detection is almost certain
to happen are easily found by taking the sensor density or
sensing range large enough. Of course, if the “event” can
move, then it can avoid detection, but eventually it must
move out of the sensor field. We cover these details in later
sections.

Nucleating centers, i.e., natural seeds, play a key role.
If k is chosen too large (greater than about 26) then from
primordial soup the GHA will fixate almost certainly with
all sensors permanently in the wake state, i.e., state 0 (the
graphic will be all black). In this case there is no natural
nucleation in the emergent behavior of the GHA. Classi-
cal results show an exponential scaling of the probability of
fixation relative to the number, k, of states and the commu-
nication area defining neighbor sets. For purposes of the
sensor-system application, our interest focuses on values of
k that are indeed beyond those for which nucleating cen-
ters can be expected to form naturally. In this case, artifi-
cial seeds can be planted as a natural, easily implemented
extension of the GHA. This technique, introduced in [1],
is covered in Section 4 and greatly extended in subsequent
sections, especially for intruder entrapment.
Background. The literature dealing with sleep-wake pro-
tocols is large, both for synchronous systems [9, 16, 21, 3,
12, 14, 15, 11, 19] and asynchronous [18, 20, 17, 4, 13, 7]
systems. These protocols can be classified by general ob-
jectives and by the constraints under which they must op-
erate. For example, there exist protocols requiring that
link connectivity be preserved [21, 13] and others that re-
quire full, or nearly full, coverage of the field at all times
[9, 16, 21, 12, 14, 18, 17, 7, 4, 19], and yet others that
constrain the delivery of sensing data to centralized clear-
ing points [3]. The techniques used vary from simple ran-
domization methods [9, 13, 7] to LP-formulations of sleep-

schedule optimization [3, 11] and the domatic partition ap-
proach [12, 14]. As is to be expected, the implementation
complexity of optimization techniques is substantially, and
in applications of interest here, prohibitively greater than
that of a minimalist cellular automaton.

Some protocols [21, 18, 20] implement wake-sensor
density control, while others [15] implement ”sweep” pro-
tocols in much the same spirit as the technique proposed
here but much more demanding of resources, i.e., much less
of a minimalist protocol for maximizing system lifetime.
Wake-sensor wave-propagation provides a flexible and sys-
tematic trade-off between energy consumption and time-to-
detection or entrapment.

Many Self-organizing schemes were introduced for sleep
scheduling. They are similar in that those schemes use dis-
tributed algorithm to achieve self-organization. However
most schemes are different from our scheme in that they
are based on the clustering or they consider full coverage
of wake sensors. Note that our scheme is flat protocol and
provides partial coverage with guaranteed detection delay.
Many references can be found in [8, 2, 5, 6].

3 The Asynchronous Greenberg-Hastings
Automaton

3.1 Phase and Signaling Models

The sensors in the Asynchronous GHA (AGHA) share
the same local rule as in the synchronous case; and they
are controlled by the same parameters, i.e., the number of
states, the communication radius, the sensing radius, and
the sensor density. We adopt the restricted model of asyn-
chronous systems in which sensor-clock cycles have con-
stant durations, but differ in their relative phases. We adopt
a standard, baseline probability model: The phases of the
sensor clocks are chosen independently and uniformly at
random from a discrete set; these sets will be varied and will
be stipulated in due course. To keep simulation state spaces
small (and experiments not too time-consuming), the size of
these sets is kept as small as possible consistent with their
purpose, i.e., the size is not taken so small that the properties
being studied become unclear or ambiguous.

Compared to synchronous sensor systems, the nature of
the partial overlapping in clock cycles amongst neighbors
plays a crucial role in shaping the wake-sensor waves,
since successful communication must be made during the
overlaps. We propose two different signaling techniques,
with different energy requirements, to investigate how
clock phase affects the dynamics and performance of a
sensor system. Where sensing involves signal detection, we
assume that the sensing and the communication devices do
not interfere with each other (e.g., their frequency spectra
could be well separated), so we may suppose that sensors
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(a) t = 0 (b) t = 20

(c) t = 30 (d) t = 60

Figure 3. Asynchronous Greenberg-Hastings
Automaton in R2 (k=20)

in state 0 can turn on their radios (communication devices)
at any time in the clock cycle while sensing devices are on.

Our first proposed signaling technique is one in which
a sensor in state 1 broadcasts a signal, a short low-energy
burst consistent with the communication range, at both the
beginning and end of the clock cycle. This type-1 clock
structure increases the number of communication signals by
a factor of two, but it also increases the chance of successful
communication when there are large phase differences; in
this sense it is a best-case assumption relative to “catching”
a neighbor in state 1, but a worst-case assumption in terms
of energy dissipation (in that two signals are used instead of
just one).

Our second scheme for comparison is simpler and uses
less energy: a sensor in state 1 broadcasts a signal in the
middle of the clock cycle. Adopting this type-2 scheme
decreases the number of communications, keeping signal-
ing at a minimum, but the needed overlap duration becomes
larger, i.e., as in the previous section, at least half of a clock
cycle must be overlapped to make a successful communica-
tion.

(a) Type-1 Clock Structure (b) Type-2 Structure

Figure 4. AGHA with Different Clock Structure
(k=20)

3.2 Experiments

We begin with a coarse set of possible overlaps: Assume
that the phases of the sensor clocks are chosen so that
fractional clock-period overlaps are independently and
uniformly distributed on {0, 1/5, 2/5, 3/5, 4/5}.

Figure 3 illustrates the sequential evolution of the AGHA
with 40,000 points placed independently and uniformly at
random within a 200×200 field. The process is started in
primordial soup with k = 20 and rc = 1.5, and type-2 sig-
naling is used. We note that, at this point, there are no strik-
ing differences; similar to the (synchronous) GHA, most
cells experience a delay in state 0 waiting for a neighbor
in state 1; see Figure 3(b) for an illustration of the asyn-
chronous case. Once a neighbor in state 1 appears, cells
start to generate periodic circular wave patterns (or patterns
corresponding to the periphery of intersecting circles) just
as the synchronous GHA did. see (Figure 3(d)).

Next, consider the type-1 “double” signaling scheme.
The snapshot of equilibrium in Figure 4 reveals an interest-
ing property of type-1 signaling: the width of a wake-sensor
band is enlarged, and the gaps between successive waves
are correspondingly enlarged. However, as noted earlier the
clock-cycle k-periodicity is preserved, as it must be. Thus,
the broader wake-sensor bands propagate faster than in the
(synchronous) GHA, so all sensors still come awake every
k-th clock cycle. A more detailed explanation of wake sen-
sor bands and their variation with parameters is given in the
next section. Inspection of Figure 13 shows that the type-
2 asynchronous sensor system differs little from the syn-
chronous case. We also explain this somewhat unexpected
phenomenon in the next section.
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4 Detailed Wave Dynamics

Figure 5 illustrates the conditions under which wide
wake-sensor bands are formed, when we assume type-1 sig-
naling and large k (the system fixates without seeding). The
figure considers the sensors in a regular, one dimensional
array orthogonal to the direction of wave motion, as this
framework greatly simplifies the discussion without obscur-
ing the effects to be brought out. Initially, prior to time t1 in
the figure, all sensors fall into state 0 and wait for a state-1
signal to propagate from a seed. At time t1, sensor 1 re-
sponds to a state-1 signal received in the previous clock cy-
cle, increases its state to 1, sends out its first state-1 signal,
and remains in state 1 until t5. At t2, sensor 2 responds to
the state-1 signal from sensor 1, transitions to state-1, sends
out its first state-1 signal and remains in the 1 state until t6.
This process continues until sensors 1 through 4 are all in
state-1 for the last quarter clock cycle of sensor 1; at this
point of the wave dynamic, the width of the wave is created
by 4 sensors. The state as a function of time is summarized
in Table 1.

For greater widths, we need greater densities, as sug-
gested by Figure 6. Figure 6 illustrates how density af-
fects the widths of wake-sensor bands. The parameters
are k = 30, a communication radius of 1.5, sensors are
distributed uniformly at random over a 150 × 150 sensor
field, there is a centrally located artificial seed, and initial
(fractional) phases are selected uniformly at random from

time 1 2 3 4 5
[t1, t2) 1 0 0 0 0
[t2, t3) 1 1 0 0 0
[t3, t4) 1 1 1 0 0
[t4, t5) 1 1 1 1 0
[t5, t6) 2 1 1 1 0
[t6, t7) 2 2 1 1 1

...
...

...
...

...

Table 1. Sensor States

{0, 1/40, . . . , 39/40}. Results are shown for sensor densi-
ties 1 and 4. The wavefronts for the higher density are much
thicker, as is immediately obvious. The waves are far apart
(too far apart to show two of them on the same figure for
density 4) and move correspondingly faster in keeping with
the local k-periodicity. Interestingly, this method of produc-
ing thick and dense wave fronts provides another approach
to ensuring high-security blocking of mobile intruders.

Returning to the similarity between the behavior of syn-
chronous and type-2 asynchronous systems, consider the
comparison available in Figure 7, where the sensor field is
150 × 150, the density is 2, k = 30, rc = 1.5 and there is
a single center seed. Phases (fractional overlaps) are mul-
tiples of 1/5. Recall that the synchronous system evolves
from primordial soup in three stages: a reset stage in which
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(a) Density=1 (b) Density=4

Figure 6. Wake Sensor Band with Different
Node Density

almost all sensors end up in state 0 waiting for a state-1
signal to propagate from the seed, a stabilization stage dur-
ing which the wave dynamics are developed, and finally an
equilibrium stage in which practically all sensors are effec-
tively independently periodic in a global, deterministic pro-
cess. For any sensor, approximate the number of its neigh-
bors with a phase overlap sufficient for communication by
a Poisson random variable with mean given by the product
of the density, the communication area, and the fraction of
phases giving sufficient overlap for successful communica-
tion between two neighbors: 2 · πr2

c · 0.6 = 8.482. Thus,
the probability that there are no such neighbors is 2×10−4.
As a crude estimate, one can expect the fixation rate to be
well below one in a thousand. By our earlier arguments,
the thickening of the wave fronts established earlier in this
section can be expected to be perceptible for type-2 asyn-
chronous systems only for sufficiently large densities, as
in the figure where the density is 2. For densities of 1 or
less, the increased width becomes imperceptible. By this
informal argument then, one should expect that the syn-
chronous and the type-2 asynchronous wave dynamics will
look roughly the same with a small thickening of the wave
front for high densities.

As in the synchronous case, for energy conservation, one
prefers large k. The locations of nucleating centers (seeds)
will be unpredictable as will be the wake-state wave ac-
tion they induce, but good performance is assured. Note
that fixation is in state 0 so that there will be no sacrifice
in surveillance, but the lifetimes of the sensors will be re-
duced. On the other hand, in the interests of low energy
consumption and hence a low duty cycle 1/k, we will want
to take k large. And k does not have to be very large for
practical field sizes (k > 25 will do when we have density
1, rc = 1.5 and a 100× 100 field). Planting seeds, i.e., de-
ploying artificial nucleation centers, is a handy and effective
solution for larger k. Any collection of sensors containing a

(a) Synchronous System (b) Asynchronous System

Figure 7. Comparison Between Synchronous
and Asynchronous System. (1 single-phase
seed at the center of field with k=30 and den-
sity=2.0.)

k − cycle serves as a seed. As the term suggests, a k-cycle
in the asynchronous sensor system is a sequence of sensors
x0, . . . , xk−1, who are synchronized each other, such that,
for all k = 0, . . . , k − 1, ξt(xi) = i and x(i+1)mod k is
in communication range of xi. Clearly, a k-cycle, which
cycles endlessly through the k states, spending one clock
period in each state, is trivial to put together, and renders
fixation impossible

Implementations of this technique can be the same as
in synchronous system, and performance will remain un-
changed except for the wave speed-width details as de-
scribed above: thicker, faster waves, but with k- periodic
equilibria remaining an invariant. Figure 8 illustrates the
new but very similar dynamics. Figure 8(a) and 8(b) shows
the dynamics of system at time step 200 with k = 30 when
1 and 2 artificial seeds with the same state space are planted
and function independently.

To enhance protection against intruders, or to speed up
detection, the use of bi-phase sensors in a two-seed asyn-
chronous system is a technique worth considering. One ob-
tains results like those in Figure 8(c) and 8(d). Recall that
the sensors are now designed to maintain two out-of-phase
AGHAs simultaneously, which means a (near) doubling of
the wake-sensor duty cycle.

5 Experimental Results

As pointed out earlier, the expected delay until detection,
ED , is the same as in the synchronous case (because of the
invariant k-periodicity of a stabilized system). In [1] it is
shown that

ED ≈
(

1− 2rs

krc

)
krc − 2rs

2rc
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(a) Single-Phase 1 Seed (b) Single-Phase 2 Seeds

(c) Bi-Phase 2 Seeds (d) Bi-Phase 2 Seeds: Wake states

Figure 8. Planting artificial seeds with k=30

Experiments for the asynchronous system with a center
seed gave Table 2, which shows, as in the synchronous case,
excellent agreement between the experimental results and
the conservative analytical estimate.

We tested the asynchronous system with a stationary
link-failure probability p to illustrate how link failures af-
fect system dynamics. Link failure probabilities p = .1, .3
are considered in Figure 9. As p increases, the wake-sensor
wavefronts sustain more “hollows” owing to failures to suc-
cessfully receive broadcasts from neighboring sensors in
state 1. The effects on performance of the AGHA are prac-

k Clock Structure 1 Clock Structure 2 Estimates

15 6 7 6

20 8 8 8

25 10 11 11

30 13 13 13

35 16 15 16

Table 2. Estimates of Average Detection Time
(in clock cycles)

(a) p = 0.1, density=2 (b) p = 0.3, density=2

Figure 9. Link Failures in Asynchronous Sys-
tem. (Single seed with k=30)

tically the same as on the GHA, although it should be noted
that wake sensors in the AGHA can receive more state-1
signals from neighboring sensors, no matter where the lat-
ter are relative to the direction of wave motion; they can be
ahead or behind – only the relative phases matter. It is clear
from the figures that substantial robustness in the presence
of link failures requires substantial sensor densities.

Seamlessly accommodating obstacles is another prop-
erty of the GHA that is preserved in the AGHA. To con-
firm this fact, we again experimented with one big obstacle
(40×40) and three small obstacles (20×20) in a 200×200
sensor field. Figure 10 shows that, as in the synchronous
system, our proposed scheme can gracefully work around
both the one huge obstacle and the small obstacles; the sys-
tem continues to pump out periodic waves sweeping the
area outside the obstacles; the wake sensors sweep the ob-
stacle along its boundary and close up the waves beyond the
obstacle.

As stated earlier, one advantage of the asynchronous
system is that sensors can be redeployed without a costly
re-synchronization in an area where sensors have expired
through damage or old age. The operation of newly de-

(a) One Obstacle - All sensors (b) Three Obstacles - All sensors

Figure 10. Working Around Obstacles (k=30)
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ployed sensors is identical to that of sensors in the initial
phase. Newly deployed sensors increase their states until
they reach state 0 and wait for a state 1 signal. Once the
new sensors receive this signal, they increase their state to 1
and subsequently become a part of the periodic wake-sensor
waves. Figure 11 shows some snapshots of system behav-
ior when sensors are redeployed on a small scale. In the
overall field, when it was initialized, 40,000 sensors were
deployed in 200×200 field with k = 40. One artificial seed
is planted at the center of the sensor field and wake sensors
(in state 0) are displayed in black. Figure 11(a) shows the
sensor system as it stabilizes in periodic waves. As illus-
trated in Figure 11(b), assume certain sensors die (identi-
fied as red points with arrows)in two square areas, one in
the upper-left and one in the lower-right region of the field.
These inert areas can be created by external forces such as
local flooding, crushing by vehicles, etc. As sensors die,
the sensor system adapts itself to the new configuration and
begins a self-healing process. Wake sensor waves sweep
along the boundary of the inert areas and keep propagat-
ing wake states without major distortions in the dynamics,
as in Figure 11(c). To recover the surveillance in the inert
areas, new sensors are deployed at random; these eventu-
ally reach state 0, and wait for a state-1 signal, as in Figure
11(d). As wake-sensor waves arrive, new sensors start to
catch state-1 signals, coalesce with incoming waves, and
knit together a new wave dynamic much like the original.
This self-organizing process is complete around 50 clock
cycles after redeployment, as shown in Figure 11(f).

This above illustration is typical of small areas of sen-
sor damage, but as the areas become rather large, the self-
organized knitting together of new structures can introduce
rather chaotic wave formations, depending on area size and
the relative position of the damaged area and the field’s arti-
ficial seeds. Thus, for larger areas, it is best simply to reset
the entire sensor field, so that it regenerates a regular wave
dynamic. This reset control will be part of the centralized
re-deployment mechanism

6 Conclusion

We have presented a self-organizing, asynchronous
sleep-wake protocol for sensor systems that are low-cost,
self-healing and long-lived without sacrificing essential
properties like fault tolerance and smooth accommodations
of obstacles. The method yields an attractive mechanism for
trading off system life-time with detection delay. We have
shown by comparisons with results in [1] that asynchronous
systems are at least as efficient as synchronous ones and
have properties, such as wave thickening, that actually im-
prove on performance. By appropriate placement of seeds
in systems that otherwise fixate, many different wave pat-
terns may be explored. Against the circular waves of the

(a) (b)

(c) (d)

(e) (f)

Figure 11. Sensor Redeployment with k=30

center-seed system, intruders can not penetrate the field “on
the ground” beyond a short distance from the boundaries.
An intruder dropping into the field at any location away
from regions near the boundaries is forced to exit staying
between consecutive waves if he is to remain undetected.

A state of a total entrapment protocol is illustrated in Fig-
ure 12. In the figure, waves are moving up from the bottom
and down from the top; while orthogonal waves are mov-
ing similarly in a different phase from right to left and left
to right. Points of intrusion like the one shown are trapped
within a quadrilateral formed by four approaching waves.
The intrusion is shown to take place at the center of the field.
If it had been chosen off center and the intruder wished to
delay entrapment as long as possible, he would have moved
toward the center at an appropriate speed, whereupon the
same entrapment event would have occurred as shown in
the figure. Some readers might worry about the intrusion
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coming toward the center of sensor field at the border. To
prevent such intrusions and protect a certain area, we place
an artificial seed at that area, as in 8(a), such that circular
wake sensor waves propagate toward boundaries from that
area and intruders will be pushed away.

(a) t=100 (b) t=108

(c) t=116 (d) t=120

Figure 12. Entrapment: Bi-phase, 8 seeds for
each phase, are planted over a 160×160 sen-
sor field with k=25
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Appendix 1

Figure 13 gives some idea of wave motion by showing
closely spaced snapshots, viz., every 4 time steps; the pa-
rameters are those of Figure 1. The emergent behavior can
be seen by focusing on the seed locations and watching evo-
lution from the wave nucleations.

(a) t = 200 (b) t = 204

(c) t = 208 (d) t = 212

(e) t = 216 (f) t = 220

Figure 13. Greenberg-Hastings Automaton
on R2 (k=20)
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