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Abstract. We propose a novel algorithm of counting indistinguishable
objects by a collection of sensors. The information on multiple counting
is recovered from the stochastic correlation patterns.

1 Introduction

One of the tasks fundamental to sensor applications is counting; that is, receiving
and processing often noisy data, and returning the number of objects of interest
located within a given sensor field. Such problems arise, for example, in the
context of ecological or agricultural monitoring where, for example, a sensor
might report the number of animals of a certain kind that it observes. In such
situations, discriminating between different animals is almost certainly infeasible.
Accordingly, we adopt the minimality paradigm (cf. [1]), and postulate that
the sensors have the simplest functionality required to perform their task. In
our case, while sensors can count the objects within their sensing ranges, they
cannot identify them on the basis of location. in particular, locations relative to
the domains of other sensors are unknown. One immediate hurdle to achieving
the goal is then the over-counting of the objects: if one has no means to identify
the objects, näıve summation of the counts reported by different sensors inflates
the total count. Is it possible to correct this over-count without resorting to
explicit identification of the counted objects? At face value, this goal seems to
be completely unattainable, so it may come as something of a surprise that, by
a process of stochastic data fusion, in this case fusing data with noise in the
sensing process, we can design efficient counting procedures.
? Research supported by DARPA DSO # HR0011-07-1-0002 via the project SToMP
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2 Problem Formulation

We assume that the ultimate task of the sensor network is to recover the total
number of objects, henceforth referred to as targets. Targets τ potentially in the
sensor field comprise a set T . The set of targets actually in the sensor field is
given by {τ ∈ T |Xτ = 1}, where the indicator Xτ is 1 or 0 according as τ is or is
not in the sensor field. Let N :=

∑
τ Xτ be the number of targets in the sensor

field, which are to be observed by a collection S of sensors, σ. Typically, the
sensing domain of a sensor is a disk of given radius. The sensor field is usually
modeled as a rectangular subset of the union of the sensor domains, an assump-
tion being that every point of the rectangular field is covered by at least one
sensor. While perhaps useful to keep in mind as describing a canonical model,
these assumptions are not needed in what follows.

We formalize target location relative to sensor domains by introducing an
incidence coefficient Zστ for each σ ∈ S, τ ∈ T , which is 1 or 0 according
as τ is or is not in the sensing area of σ. Thus, τ is in the intersection of∑

σ Zστ sensing domains. We can now define the target count Cσ by sensor σ as
Cσ =

∑
τ∈T ZστXτ , so the task of the sensor network we intend to design and

analyze becomes the following:

Given the counts Cσ of the targets registered by each sensor σ, estimate
the total number N of targets in the area covered by the sensors within
the sensor field.

It is immediately clear that the problem as stated does not have a well-defined
solution; indeed, the total count depends on the number of targets counted
several times by different sensors. We have only the rough bounds maxσ∈S Cσ ≤
N ≤ ∑

σ∈S Cσ. More precisely, as the well-known inclusion-exclusion formula
indicates,

N =
∑

σ

Cσ −
∑

σ1<σ2

Cσ1σ2 + . . . + (−1)`
∑

σ1<···<σ`

Cσ1σ2···σ`
+ . . . (1)

where for an ordered subset σ1 < σ2 < . . . < σ`, Cσ1σ2···σ`
denotes the number

of targets detected simultaneously by the sensors σ1, σ2, . . . , σ`. Recall that the
summation terms can be interpreted as alternately compensating for the total
under and over counts of the partial sums to their left.)

2.1 Model specifications

In the model above, we abstracted to the extreme the properties of sensor count-
ing systems. It is instructive to map the model to some concrete realizations, to
indicate the situations in which the techniques developed in this paper might be
applied.

– Domain coverage Many areas of application of sensor networks involve a
domain, planar or spatial, and a finite collection of subdomains (sensing
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areas), labeled by the sensors, and consisting of the points where a target can
be registered by the labeling sensor. An example of such applications would
be an environmental monitoring system (counting the number of animals),
or area surveillance systems, aiming at keeping track of the total number of
persons or items of equipment in a facility. In this case each count (reading)
returns instantaneous data on the number of targets in the sensed domain.
Realistically, the domains are bound to overlap (to ensure complete coverage)
making the estimation of the total count highly nontrivial.

– Linear coverage In applications to transportation, the sensors can be placed
along a transportation link, and register the number of targets passing by.
In this case, the number of targets registered by a sensor would encompass
the routes crossing the location of the sensor. Notice that in this setting,
the readings need not, and in fact cannot be instantaneous, as the targets
require time to move between the locations of the sensors.

– Communication networks Application to communication networks requires
an extension of the previous case to more general graphs. In this context
targets represent the unique packets (or communication sessions) between
some source-destination pairs, and a sensor corresponds to a counter of such
packets or sessions traversing a router.

In each of these contexts, the problem is nontrivial, because of the overlap issue
described earlier, together with the anonymous nature of the targets.

2.2 Stochastic overlap recovery

The total lack of information describing the overlap of the sensing areas precludes
any rational hypothesis building when it comes to eliminating target over-counts.
On the other hand, one can reason that if the target visibility is not deterministic,
but stochastic, then the contributions to the counts by different sensors coming
from overlapping sensing areas might be correlated in some useful way. One is
led to speculate on whether the extra information given by correlations can in
turn lead to a solution to our problem.

This paper shows indeed that exploitation of this simple idea parlays into a
solution to our counting problem. In a sense, we acquire the ability to detect
overlaps of the sensing areas at a sacrifice in the deterministic nature of the
observations. “Noise is good” in that, by measuring randomly perturbed signals,
we gather additional information, as compared to the situation when the mea-
surements are noiseless; in the latter case, all measurements by a sensor would
be identical and contribute nothing to our knowledge of the target counts.

The basic quantitative measure of correlation between two random variables
is the covariance. We will see that the covariance between the counts by differ-
ent sensors reflects the nature of the intersection between the sensing areas. To
capture intersections of higher orders, however, one needs correlations of higher
order. There are many statistical tools suitable for exploring the correlation
structure of the data. This paper applies the notion of cumulants, which gen-
eralizes that of covariance coefficients, and which carries all the information of
stochastic interdependency of the random variables being observed.
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3 Related Work

The counting problem has been discussed in many papers in the system engi-
neering context, see e.g. [2]. Most of the papers, however, assume that there is
either explicit or implicit identification of the targets, or incremental counting,
where the targets are counted one-by-one.

Earlier work by Marzullo [3] proposed an interval-based algorithm to detect
faults and recover from errors. Assume at most f out of n sensors can be faulty
and each sensor records the interval in which an object is detected. Marzullo
calculates the smallest interval that contains all of the intersections of the n− f
intervals guaranteed to contain the true value that the event occurred. Based
on Marzullo’s work, Iyengar et al [4] propose another interval-based algorithm
that produces a smaller interval under the assumption that the intervals of false
sensing are sufficiently close.

In [5], the author addresses the question of counting anonymous targets in
the context of robotic exploration. This poses challenges quite different from
those arising in the context of this paper.

Brooks pointed out in [6] that integration (or fusion) of sensor readings is
crucial to automating sensor networks, and that such distributed computing
reinforces integrity of the system. To increase the precision of data, Brooks pro-
poses sensor fusion and Byzantine agreement. To overcome faults in sensor read-
ings, Clouqueur el al [7] propose two collaborative signal processing algorithms:
value fusion and decision fusion. Sensors exchange a parameter (this can be con-
sumed energy, required communication bandwidth, etc) to reach agreement as to
whether a decision was correct or not, so recovery from the fault will be possible.
The concept of spatial sensor mining (derivation of conclusions from distributed
information collected over time), is introduced in [8]. They propose a change of
focus from many sensors on a single target to many sensors on many targets.

Natheta [9] addresses the interesting but rather narrow problem of counting
the number of nodes in the sensor network itself.

From our literature survey, it appears that no previous research has consid-
ered how to eliminate redundancy in data, to recover from errors, and hence to
retrieve correct total target counts.

4 Preliminaries

This section introduces the necessary probabilistic tools (see e.g. [10] for greater
detail). For a random variable X define the cumulant generating function as

κ(t) =
∑

n

cn(X)
tn

n!
= lnEetX , (2)

where we make the assumption that the Laplace transform of X is defined in
some neighborhood of 0. In particular, the first two factorial coefficients are the
mean and variance

c1(X) = EX c2(X) = VX (3)
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Given a collection of random variables X = (X1, X2, . . . , Xn), not necessarily
independent, define the cumulants κn(X1, . . . , Xn) as

κn(X1, . . . , Xn) =
∂n

∂t1 · · · ∂tn
g(t)|t=0,

where t = (t1, . . . , tn) and g(t) = ln(E(et·X)) is the logarithm of the Laplace
transform of the vector-valued random variable X. For example, the cumulant
of the first order, κ1(X1) is just the expected value of X1; the joint cumulant of
two random variables equals their covariance,

κ2(X1, X2) = EX1X2 − EX1EX2, (4)

and the cumulant of three random variables X1, X2, and X3 is given by

κ3(X1, X2, X3) = E(X1X2X3)− E(X1X2)E(X3)
− E(X1X3)E(X2)− E(X2X3)E(X1) + 2E(X1)E(X2)E(X3)

(5)

In general, the cumulant κn(X1, . . . , Xn) of order n is a polynomial in joint
moments of the random variables and can be recovered recursively from the
general formula

E
n∏

i=1

Xi =
∑

Π=P1qP2...qPk

k∏

j=1

κ(Pj), (6)

where Π is a partition of the index set {1, 2, . . . , n} into blocks Pj , and c(Pj)
is the cumulant of order |Pj | of the random variables with indices in Pj . Thus,
EX1X2 = κ2(X1, X2) + κ1(X1)κ1(X2) and

EX1X2X3 = κ3(X1, X2, X3) + κ2(X1, X2)κ1(X3) + κ2(X2, X3)κ1(X3)
+ κ2(X1, X3)κ1(X2) + κ1(X1)κ1(X2)κ1(X3).

We will be using the following important facts concerning cumulant functions.

Property 1: The cumulants are symmetric functions of their arguments;
Property 2: The cumulants are multilinear:

κn(X ′
1 + X ′′

1 , X2, . . . , Xn) = κn(X ′
1, X2, . . . , Xn) + κn(X ′′

1 , X2, . . . , Xn);

Property 3: If the random variables X1, . . . , Xn can be split into two
groups, say X′ = (X1, . . . , Xk) and X′′ = (Xk+1, . . . , Xn), so that X′ and
X′′ are independent, then

κn(X1, . . . , Xn) = 0.

Property 4: If the Xi are different notations for the same random variable
X, then κn(X, . . . , X) = cn(X), the n-th factorial coefficient of the cumulant
generating function of X.
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5 Sensing Area Intersections and Cumulants

Let us return to the original problem of estimating the number of targets detected
in the sensing domains of a collection of sensors.

5.1 Bernoulli visibility variables

We introduce the often justifiable assumption that the targets are visible to the
sensors not continuously, but intermittently, in some time-dependent fashion.
Further, we assume that the visibility of the targets is random and independent
across the targets. Situations where such assumptions are valid range from envi-
ronmental deployment of sensor networks, where the targets might be animals
not covered by foliage, to perimeter protection applications, where moving tar-
gets are detected and counted. We do not go into further details here, for our
interest is restricted to the algorithms underlying the solutions to the counting
problem complicated by overlapping sensing areas and imperfect visibility.

Up to this point, Xτ has indicated (deterministically) whether τ was located
somewhere in the sensor field. It is convenient now to consider that all targets
are in the sensor field and let the Xτ model the random visibility of the targets.
Formally,

Xτ =
{

1 if the target is visible;
0 otherwise

are independent {0, 1}-valued random variables. The sensor counts Cσ =
∑

τ ZστXτ ,
then become random variables. Sensing noise is defined precisely by the following
visibility assumption.

The i.i.d. random variables Xτ are Bernoulli(p) distributed, that is,
they independently take the value 1 with probability p, and 0 with proba-
bility 1− p.

We infer that the count Cσ has the Binomial(p, Nσ) distribution, where Nσ =∑
τ Zστ is the number of targets in σ’s sensing area.
To appreciate the basic ideas behind our counting algorithm, we need only

consider a system of two sensors. For this case, if A1 and A2 denote the two
sensing areas, then the sensor-field partition of interest consists of the disjoint
subsets A1 \ A2, A2 \ A1, and A1

⋂
A2, which we denote by A1\2, A2\1, A12.

A similar notation applies to the number of targets in the respective areas,
e.g., N1\2, N12, . . . and to the counts C1\2, C12, . . .. To verify the fact that the
cumulant for the two sensor counts C1 and C2 is simply their covariance, write

κ2(C1, C2) = κ2(C1\2 + C12, C2) = κ2(C12, C2)
= κ2(C12, C2\1 + C12) = κ2(C12, C12)
= N12c2(Bernoulli(p)) = p(1− p)N12

where Properties 2 and 3 have been applied in the first two lines and Property
4 in the last line.
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Fig. 1. Sensor Coverage Area

This simple formula carries two useful messages. Firstly, assuming p is known,
knowledge of the covariance gives information about the size of the intersections
of the sensing areas A1 and A2. Secondly, this information can be recovered only
when target visibility is truly stochastic; that is, when the probability of visibility
is neither 0, in which case the sensor system would not function, nor 1, in which
case we would be left with our original intractable problem.

To recover the counts in intersections of more than two sensing areas (see Fig-
ure 1, for example), one takes higher cumulants. More precisely, using again the
standard properties of cumulants, and the simpler notation cn(p) ≡ cn(Bernoulli(p)),
we have

Lemma 1. For sensors σ1, σ2, . . . , σn (repetitions allowed), let Ck =
∑

τ ZσkτXτ , 1 ≤
k ≤ n, be the corresponding counts. To account for repetitions, suppose that the
sensors can be divided into two groups, say {σ1, . . . , σi} and {σi+1, . . . , σn}, such
that each sensor in the latter group is also a sensor in the former. Then the n-th
order cumulant is given by

κn(C1, C2, . . . , Cn) = N12...i · cn(p).

where, extending earlier notation, N12...i denotes the number of targets in the
intersection of the sensing areas of the first i (i.e., the distinct) sensors.

Thus, to recover the count in the intersection of n sensing areas, A1, A2, . . . , An

(again assuming that the visibility probability p is known), it is enough to esti-
mate the cumulant κn(C1, C2, . . . , Cn) given that the n-th factorial coefficient of
the Bernoulli random variable satisfies cn(p) 6= 0.

But this last condition presents us with a potential problem. The cumulant
cn(p) as a function of p is a polynomial of degree n with zeros at 0 and 1 and
a further (n − 2) interior zeros in the interval (0, 1); a fact that can be easily
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Fig. 2. Cumulants for Bernoulli variables as functions of p: c3(1/2) = 0; in fact, more
generally, cumulants of odd orders vanish at 1/2.

derived from the well-known formula

cn+1 = p · (1− p) · dcn

dp
(7)

which in turn follows from the explicit expression for the cumulant generating
function of Bernoulli random variables,

lnEesBernoulli(p) = ln[pes + (1− p)].

For example, plots of the third and fourth cumulant polynomials in p are shown
in Figure 2. However, it is easy to verify that the interior zeros of consecutive
cumulant polynomials interlace, and hence, if cn(p) = 0, then cn+1(p) 6= 0.
Therefore, if the cumulant of order n vanishes for a given probability of visibility
p, the next cumulant cn+1(p) will be non-vanishing at p, and the size of the
intersection of the sensing areas A1, A2, . . . , An can be reconstructed, by Lemma
1, from the cumulant

κn+1(C1, C2, . . . , Cn, Cn) = N12...ncn+1(p). (8)

5.2 Poisson Counts

The preceding theory addressed the situation where the number of targets in
each sensing domain is fixed and finite and only the visibility patterns are in-
termittent. Another realistic scenario would be that of infinitely many potential
targets in each sensing area, with the measure of a sensing area being quite
general. For simplicity, this measure will be taken here as the classical Lebesgue
measure, in which case the measure is just the area, aσ. Correspondingly, in
lieu of the binomial random variables describing the observed counts visible by
each sensor, one is driven to the assumption that, for each sensor σ, the count
of visible targets is Poisson distributed, with the parameter of the Poisson law
being proportional to aσ. Of course, by extension, the number of targets visible
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in the intersections of the sensing areas is Poisson distributed as well, again with
a parameter proportional to the areas of the intersections.

More formally, we assume that, as before, a finite number of sensors σ ∈ S
are given, and that corresponding sensing domains Aσ have areas Aσ. For any
collection of sensors S ′ ⊆ S, we denote the intersection of their sensing areas
by AS′ , and the area of this intersection by AS′ . The visible objects in Aσ are
counted by Cσ and are assumed to be a sample of a Poisson point process with
intensity λaσ; equivalently, we have an intensity-λ Poisson pattern of points in
the plane, with those points of the pattern falling in Aσ being stochastically the
same as a sample of a rate λaσ Poisson process. Note particularly that, according
to this definition, the counts of the visible targets in non-intersecting areas are
independent. The overall goal is to recover the total number, N , of objects, which
is Poisson distributed with mean EN = λ| ∪σ∈S Aσ| from the individual counts
Cσ, which requires estimates of the counts for all intersections, as before.

As in the case of Bernoulli random variables, the cumulants are ideally suited
to our problem:

Lemma 2. The n-th order cumulant is given by

κn(C1, C2, . . . , Cn) = λa12...n.

The proof of this lemma again follows immediately from the standard properties
of cumulants and the fact that the cumulant generating function for the Poisson
random variable of parameter λa is eλa − 1. In other words, for all cumulants
cn(Poisson(λa)) = λa.

6 Target Count Recovery

The results presented above indicate how a procedure might be designed for
target-count recovery using statistical estimates of the cumulants. We concen-
trate on the more challenging case of Bernoulli visibility variables and start by
giving the algorithm in broad outline; we then flesh it out with details that
depend on specific circumstances.

Target Count Recovery Algorithm
Assume that the counts are sampled at unit rate from the same popula-
tion of targets over a time period of duration, T , a given parameter.
1. For our Bernoulli case, the moments in (3) can be expressed as ECσ =

pNσ, VCσ = p(1− p)Nσ, which imply

p := 1− VCσ/ECσ.

Computing the first two empirical moments and then substituting
into the above gives an estimate for the visibility probability, p.

2. From (7) compute the numbers cn(p) to one greater, say s + 1, than
the maximum depth (order) of intersections in the sensor field.
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Fig. 3. Time trace of estimated target count and estimated visibility probability with
2,3, and 4 sensors.

3. Compute the remaining cumulants κ3, . . . , κs using formulas derived
from (6) (recall that the first two are given by the coefficients com-
puted in step 1).

4. Compute the estimates of the N12...n from (2) unless c(p) is too close
to 0, in which case use (8) instead.

5. Compute the estimate for N from the data in step 4 substituted into
the inclusion-exclusion formula (1).

Remarks: The estimate for p in step 1 can be averaged over several sensors, to
improve its quality.

As the order of cumulants grows, the convergence of sampled values to the
limit becomes slower. Thus, it makes sense to try to limit the order of cumu-
lants needed for estimation by stopping the procedure when the count precision
reaches a desired degree. To this end, the monotone character of the partial sums
in the inclusion-exclusion formula allows one to halt the computations when the
upper and lower bounds are close enough.
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Indeed, as
∑

σ

Nσ ≥
∑

σ

Nσ −
∑

σ1<σ2

Nσ1σ2 +
∑

σ1<σ2<σ3

Nσ1σ2σ3 ≥ . . . ≥ N ≥

≥
∑

σ

Nσ −
∑

σ1<σ2

Nσ1σ2 +
∑

σ1<σ2<σ3

Nσ1σ2σ3 −
∑

σ1<σ2<σ3<σ4

Nσ1σ2σ3σ4 ≥
∑

σ

Nσ −
∑

σ1<σ2

Nσ1σ2 ,

one can iteratively compute the upper bounds (with the deepest intersections
involved of odd order) and lower bounds (with the deepest intersections of even
order) until the required precision is achieved. ¥

7 Experimental Results

In this section, we simulate stochastic count recovery in the two-dimensional
(planar) and one-dimensional sensoria.

7.1 Planar sensorium

Here is our setup:

– 2, 3, and 4 sensors are located in a 50 × 50 area of interest.
– The sensing radius is equal to 35 for all three cases, so that the sensing

regions provide at most a 2-cover of the area of interest.
– 100 targets are distributed uniformly at random over the sensing area and

sensors detect each target with probability p. Each sensor counts the number
of detected targets within its sensing radius.

From the sampled data, we calculate the sample mean and variance to esti-
mate the visibility probability and the sample cumulants to estimate and recover
the total number of targets in sensing area. Experiments are performed with
different p: 0.7 and 0.85 respectively. Over time, the estimated target count-
ing and detection probability converge to the actual value as in Figure 3. This
demonstrates the statements in the preceding sections. Note that as the visibil-
ity probability increases, the estimated target count and the estimated visibility
probability converge faster with smaller errors.

Next we extend our experiment to a more general case. We assume 24 sensors
are distributed uniformly at random over 100 × 100 sensing area. Each sensor
has sensing radius of 15. (This ensure that any point in the area can be covered
by at most 3 sensors.) We assume the visibility probability p is equal to 0.85.

Experiments are performed with 100, 200, 300, and 400 targets respectively.
We have run extensive simulations to get a mean estimated target count and
estimated visibility probability. The standard deviation is provided as a mea-
sure of error. As in the previous experiments, estimated target count, estimated
visibility probability and cumulants are calculated from the collected data of 24
sensors. For comparison, to help understand how well the estimation scheme per-
forms, we provide the simple summation of all counting from 24 sensors. As the



12

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

400300200100

C
ou

nt
in

g

Number of Targets

Estimated Target Count
Simple Summation
Number of Targets

(a) Estimated Target Count

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

400300200100

E
st

im
at

ed
 P

ro
ba

bi
li

ty

Number of Targets

Estimated Visibility Probability

(b) Estimated Visibility Probability

Fig. 4. Estimated target count and estimated visibility probability. 24sensors with
100,200,300, and 400 targets. (p=0.85)

number of target increases, so do the errors, but the error of our proposed scheme
is fairly small compared to that of simple summation. The estimated visibility
probability is reasonably accurate and provides up to double digit precision as
in Figure 4.

7.2 Linear sensorium

Here the substrate sarrying the targets is one-dimensional, with the point-wise
targets. The sensors are indentified with certain intervals on the serorium, count-
ing the number of visible targets falling within the corresponding interval.

Unlike the previous setup, in this set of experiments we randomized also
over the sensor positions. We consider random placements of S = 5 sensors
on an interval so that the total length of the sensors (not necessarily the total
covered length) is equal to the interval length, see Figure 7.2. The intervals are
chosen intependently, with uniformly distributed endpoints in the unit interval;
the targets are uniformly distributed.

targets

sensing areas

We again apply our stochastic count recovery algorithm taking into account
only the cumulants of the second order. We can see that second order cumulants
(via imputed second order overlaps) already give quite reasonabe approximation
of the actual number of targets in the covered area.

The results are shown on Figure 5.
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Fig. 5. The plot shows the scatter plots of the actual number of targets in the linear
sensorium and upper bound (the sum total of the countes by each sensor, in red) and
the estimates based on the inferred overlaps (in green).

8 Conclusion

We have described an algorithm for target count recovery from measurements
by a sensor network, where each sensor is capable of counting the number of
targets of interest in its sensing region. Overlaps of these regions preclude the
possibility of using simple summation of counts as an effective estimate of the
total number of targets.

We show that, by exploiting the stochastic nature of the measurements, and
stochastic independence between sensors and between targets, it is possible over
multiple measurements to arrive at an estimate of the total number of targets
present. To do this we employ a method based on cumulants that quantifies
non-independence between measurements and thereby permits estimation of the
number of targets in the (multiple) overlaps of sensing regions of different sensors.
Together with the inclusion-exclusion these numbers provide the estimated total
number of targets. The method is described for both Bernoulli and Poisson
detection models, and simulations are given to demonstrate the effectiveness of
the method.

In a future work we extend the described methodology to the problem of
Internet traffic measurements and monitoring.
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