R2: The Future of Embedded SRAM – Cornerstone or Millstone?

Organizers: S. Natraj, Micron
Moderators: K. Ishibashi, STARC
B. Bateman, T-RAM

The six transistor (6T) SRAM has been used as on-chip RAM on systems LSIs because of its high speed and low power operation nature. Low voltage functional operation of the device is another critical factor in addition to area, speed, power and hence 6T SRAMs may not continue to serve the same trend of benefits for future technology generations. The 6T SRAM has issues of (1) low voltage operation due to large leakage by low threshold voltages (2) electrical stability degradation caused by ever-larger mismatches between paired MOSFETs in future advanced technologies and (3) SER sensitivity degradation. Embedded 6T SRAMs are perfectly compatible with current SoCs demands compared to other memory technologies, without additional process cost and the added benefit of compilability. The panel will address the feasibility of SRAMs for on-chip embedded memory macros for future technologies and conclude if the newer proposals of on-chip memory technologies such as PRAM, MRAM, Oronic memories can compete with SRAMs in the future. Will 6T SRAMs last forever or fade away? Are there design solutions that can resolve all of these above issues and allow 6T SRAM to continue as the mainstream embedded memory? How premature are the newer memory technologies and in what capacity can they compete with 6T SRAMs? Will new memory technologies be SoC compatible, if so at what cost?

Panelists:
K. Itoh, Hitachi
S-M Jung, Samsung
S. Masui, Fujitsu
H. Pilo, IBM
P. Rickert, Texas Instruments
A. Subat, Virage Logic

R3: Analog CAD: Computer Aided Design, or, Computer Accelerated Disasters?

Organizers/Moderators: P. Kinget, Columbia University
A. Matsuzawa, Tokyo Inst. of Tech.

Analog and RF interfaces are very critical parts in current ‘System on a Chip’ (SoC) designs. The number of transistors in the interfaces is relatively small but they take a long time to design and often require design re-spins. As a result, design productivity appears poor. The success of a project critically depends on highly experienced circuit designers and they remain a scarce resource. For several decades, there has been an ongoing quest for CAD tools and automated design technologies for analog and RF. Recently several new tools have been brought to the market. This panel will discuss field-tested analog CAD tools and automated analog design technologies. How do they help to shorten time to market? Do they enable a faster migration to small feature size technologies and analog IP block reuse? Or do they replace sound, time proven design techniques with methodologies that (over) rely on CAD technology with disastrous consequences.

Panelists:
P. Daglio, STMicroelectronics
T. Miki, Renesas Technology
D. Mercer, Analog Devices
S. Dousho, Matsushita Electric
M. Ugajin, NTT