

0.5V Analog integrated circuits for nanoscale CMOS technologies

Peter Kinget

kinget@ee.columbia.edu

Collaborators: Shouri Chatterjee, Yannis Tsividis, K.P. Pun

*Chinese University of Hong Kong

Analog & RF

Ultra-low voltage circuits: 0.5V		RF integrated oscillators		Ultra-wideband RF circuits
RF Passives	Injection locked circuits		Device mismatch & its influence on Analog & RF ICs	

www.ee.columbia.edu/~kinget

Outline

- Do we need Analog Integrated Circuits in nanometer CMOS?
- Design Challenges & Opportunities.
- 0.5 V Operational Transconductance Amplifiers & Biasing Circuits.
- 0.5 V Fully Integrated Active RC Filter with onchip Automatic Tuning.
- A 0.5V 74dB SNDR 25kHz CT ΣΔ Modulator with Return-to-open DAC
- Conclusions.

Analog in a *Mixed Signal World*

- Sounds, images, EM waves, are ANALOG.
- Information processing & storage are DIGITAL.
- System-on-chip is powerful <u>economic</u> paradigm.

• Digital drives technology development & choice.

Most Digital ICs <u>need</u> some Analog!

If Analog can be done in a digital technology, it will be done.

CMOS trends: Supply voltage

MOST biasing: CS or VCCS

• Transconductor or Current Source $V_{DS} > 0.15V$ (for V_{GS} - $V_T \le 0.2$)

Switches at 0.5 V

Common source amplifier

Common drain buffer

Common gate amplifier / Cascode

Differential OTA design challenges

Common Mode Feedback requires 'fast' amplifier operating from V_{out,CM}= V_{DD}/2 !?

Challenges at 0.5 V

- V_{DS.sat} related challenges:
 - *Independent* of region of operation!
 - <u>Independent</u> of V_T!
 - Signal swings are limited:
 - Use differential circuits.
 - Avoid transistor stacks:
 - No tail current source: How to achieve CM rejection?
 - No cascodes: How to increase DC gain?
- V_{GS} related challenges:
 - <u>Depend</u> on region of operation & (V_{GS}-V_T).
 - <u>Depend</u> on V_T!
 - Avoid signal swing on gate:
 - How to do overall CMFB?
 - How to achieve strong inversion operation?

Opportunities at 0.5 V

- Body terminal
 - Signal input: [Guz87]
 - V_T reduction & control
 [Kob94], [Von94]
 - Bias control
- Latch-up not an issue
 - Assuming V_{DD} and GND are 'well behaved'.
- Techniques can be ported to 'double gate' devices

0.24µm/0.36µm nMOS in 0.18µm CMOS

0.5 V Gate-input OTA

0.5 V Gate-input OTA stage

Common-mode output of first stage is 0.4 V

Two-stage fully differential 0.5 V OTA with Miller compensation

⊌ reter ruget 19

Setting common-mode voltages

Open loop performance (meas.)

On-chip automatic biasing circuits

On-chip biasing circuits

OTA DC transfer characteristics and V_{NR} generation

Open loop performance (meas.)

0.5 V Continuous time tunable active RC Filter

0.5 V 5th order elliptic LPF

Filter tuning challenges at 0.5 V

- Gm-C
- MOSFET-C
- Switching banks of R's and C's
- Varactor-R techniques

Low-voltage tunable integrator

Die photograph

- 0.18 µm CMOS
- MIM capacitors
- High-res resistors
- Standard V_{T}
- Triple well devices

S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

Measured filter response for different chips

Measured filter response for different tuning voltages

Effect of gain enhancement

Performance summary at 27C

<i>V_{DD}</i> [V]	0.45	0.50	0.55	0.60
-3 dB cut-off frequency [kHz]	135.0	135.0	135.0	135.0
Total current [mA]	1.5	2.2 3.3		4.3
Noise [µV rms]	87	74	68	65
Input [mV rms] (100kHz / 1% THD)	50	50	50	50
In-band IIP ₃ [dBV]	-5	-3	-3	-3
Out-of-band IIP ₃ [dBV]	3	5	3	5
Dynamic range [dB]	55	57	57	58
Tuning range [kHz] $V_{tune} = V_{DD}$	96.5	88.0	84.5	69.0
<i>V_{tune}</i> = 0.0 V	153.0	154.5	148.0	150.5
VCO feed-thru @280kHz [µV rms]	104	85	72	72

- Measured CMRR (10 kHz common mode tone): 65 dB
- Measured PSRR (10 kHz tone on power supply): 43 dB

Functionality tested from 5C to 85C at 0.5 V

0.5 V Body-input OTA

[©] Peter Kinget 39

Two-stage fully-differential OTA

pp.147-150, September 2004. © Peter Kinget 40

Open loop frequency response

	[Bla 98]	[Las 00]	[Leh 01]	[Sto 02]	[Fer 96]	[Pel 98]	B-I	G-I
V _{DD} [V]	1	1	0.8	0.9	1.3	0.9	0.5	0.5
A _{DC} [dB]	49	70	53	70	84	59	52	50/62
GBW [MHz]	1.3	0.2	1.3	6e-3	1.3	4	2.5	10
Power [uW]	300	5	Ι	0.5	460	_	110	75
С _L [pF]	22	7	20	12	-	14	10	10
SE/Diff.	S	S	S	S	S	D	D	D
Techn. [um]	2	0.35	0.5	2.5	0.7	0.5	0.18	0.18
Special Devices	Lat. BJT	-	Lat. BJT	Depl. MOS	-	-	-	-
100 η [1/V]	9.5	28		13			11.4	66.7

S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit Techniques and Their Application in OTA and Filter Design," IEEE Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 -2387, December 2005.

A 0.5V 74dB SNDR 25kHz CT ΣΔ Modulator with Return-to-open DAC

3rd order CT ΣΔ Modulator

Using Active RC integrators

Continuous-time ΣΔ Modulator: Need of Return-to-zero DAC

[©] Peter Kinget 45

Solution: Return-to-open

Solution: Return-to-open

Solution: Return-to-open

Split RTO SDM Architecture

Modulator Details

 Φ_{DAC} High:

© Peter Kinget 58

0.5V Body-input Gate-clocked Comparator

0.5V Fully Differential OTA

[Chatterjee ESSCIRC'05]

[Chatterjee ISSCC'05]

• Measurements on a replica of the 1st OTA:

 $- A_{DC} = 46$ dB, UGB = 4MHz;

Input referred noise:
 33nV_{rms} @10kHz and 12nV_{rms} @1MHz.

Die Photograph

- 0.18µm CMOS
- Standard V_T (0.5V)
- Triple-well devices
- 0.5V operation

K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with *Return-to-Open DAC*" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.

2nd harmonic < 83dBc 3rd harmonic < 88dBc

Measured SNDR versus Vin

Performance Summary at 25°C

Modulator type	1-bit, 3rd order, continuous-time				
Signal bandwidth	25 kHz				
Sampling frequency / OSR	3.2 MHz / 64				
Input range	1 Vppdiff.				
Supply Voltage	0.45V	0.5V	0.8V		
SNDR @ Vin = 1Vppdiff.	71 dB	74 dB	74 dB		
SNR @ Vin = 1Vppdiff.	76 dB	76 dB	74 dB		
Power consumption (total)		370 μW			
Sigma Delta Modulator (filter + comparator + DAC)		300 μW			
Output buffers		70 μW			
Active die area	0.6 mm ²				
Technology	0.18 μm CMOS				
	(standard V_T , triple-well, MIM, and HiRes Poly)				

Performance Comparison

	VDD [V]	Туре	SNDR [dB]	Bandwidth [kHz]	Power [uW]	Area [mm²]	CMOS [um]		FOM [10 ⁹ /J]
Grech 1999	1	SO	56 [*]	3.9	1500	0.9**	0.8		1.3
Keskin 2001	1	RO	78	20	5600	0.41	0.35		23
Matuya 1994	1	СТ	51	192	1560	2.53	0.5	Low VT	36
Dessouky 2000	1	SC	85	25	950	0.63	0.35	Gate boost	381
Yao 2004	1	SC	81	20	140	0.18	0.09		1310
Ueno 2004	0.9	СТ	50.9	1920	1500	0.12	0.13		366
Peluso 1998	0.9	SO	62	16	40	0.85	0.5		410
Sauerbrey 2002	0.7	SO	67	8	80	0.082	0.18		58
Ahn 2005	0.6	SRC	77	24	1000	2.88	0.35	Low VT	138
This work	0.5	СТ	74	25	300	0.6	0.18		340

*=SNR only; ** Estimated from die photograph;

SO = Switched Opamp;

SC = Switched Capacitor;

SRC=Switched-RC

CT = Continuous Time;

RO = Reset Opamp;

 $FOM = resolution \times \frac{BW}{P}$

Analog design techniques at 0.5 V

• How to do CM rejection?

Use local CM feedback & rejection Use CM feedforward cancellation Separate CM signal rejection and CM DC biasing

- How to increase DC gain?
 Use negative load conductance
- How to use strong inversion operation? Forward Body Bias to reduce $V_{\rm T}$

Extensive use of the body terminal Extensive use of on-chip tuning & biasing Architectural changes to eliminate signal path switches

Looking ahead

0.5V 900MHz RF Front-end

- 0.18 μm CMOS
- Low- V_T devices
- LNA/MIXER
 - NF 8.8 dB
 - Gain 11.5 or-7 dB
 - ICP -23 dBm
 - 5 mW(w/ LO Buffers)

N. Stanic, P. Kinget, and Y. Tsividis, "A 0.5 V 900 MHz CMOS Receiver Front End," IEEE Symposium on VLSI circuits, June 2006.

0.5 V 1 Msps 60 dB SNDR Track&Hold

•0.25 µm CMOS

- MIM caps
- High-res resistors
- Triple well nMOS

S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold Circuit," IEEE Symposium on VLSI circuits, June 2006

Other Challenges in nanometer CMOS

- Gate leakage.
- Sub-threshold leakage.
- Reduced body-effect [VonAmin05]:

 $V_T \oplus \ \& \ t_{ox} \oplus \ g_{mb} \oplus$

Other Opportunities in nanometer CMOS

- Many V_T choices !
- Novel devices.
- *Extensive* Digital Calibration & Correction.

CMOS Trends: On chip Clock Speed

© Peter Kinget 74

Acknowledgments

- Analog Devices, Intel and Realtek for supporting parts of this work.
- Europractice and Philips Semiconductors for 0.18um and 0.25um prototypes fabrication.

More details

- [Cha 05] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLLbased tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.
- [Cha 04] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, Sep. 2004.
- [Cha 05] S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit Techniques and Their Application in OTA and Filter Design," IEEE Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 - 2387, December 2005.
- [Pun 06] K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with Return-to-Open DAC" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.
- [Abd 06] M. Abdulai and P. Kinget, "A 0.5 V Fully Differential Gate-input Operational Transconductance Amplifier with Intrinsic Common-Mode Rejection" in IEEE International Symposium on Circuits and Systems, May 2006.
- [Cha 06] S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold Circuit," IEEE Symposium on VLSI circuits, June 2006.
- [Sta 06] N. Stanic, P. Kinget, and Y. Tsividis, "A 0.5 V 900 MHz CMOS Receiver Front End," IEEE Symposium on VLSI circuits, June 2006.

References

- [Guz 87] A. Guzinski, M. Bialko, and J. Matheau, "Body driven differential amplifier for application in continuous-time active-C filter," Proceedings of ECCD, pp. 315--319, 1987.
- [Bla 98] B. Blalock, P. Allen, and G. Rincon-Mora, "Designing 1-V op-amps using standard digital CMOS technology," IEEE Trans. Circuits Syst. II, vol. 45, pp. 769--780, July 1998.
- [Las 00] K. Lasanen, E. Raisanen-Ruotsalainen, and J. Kostamovaara, "A 1-V 5 µW CMOS-opamp with bulk-driven input transistors," 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 1038--1041, 2000.
- [Leh 01] T. Lehmann and M. Cassia, "1-V power supply CMOS cascode amplifier," IEEE J. Solid-State Circuits, vol. 36, pp. 1082--1086, July 2001.
- [Sto 02] T. Stockstad and H. Yoshizawa, "A 0.9-V 0.5-µA rail-to-rail CMOS operational amplifier," IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 286--292, 2002.
- [Fer 96] G. Ferri and W. Sansen, "A 1.3V opamp in standard 0.7µm CMOS with constant gm and rail-to-rail input and output stages," IEEE International Solid State Circuits Conference, pp. 382--383, 478, 1996.

References

- [Pel 98] V. Peluso, P. Vancorenland, A. M. Marques, M. Steyaert, and W. Sansen, "A 900-mV low-power ΔΣ A/D converter with 77-dB dynamic range," IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1887--1897, Dec. 1998.
- [Kob94] T. Kobayashi and T. Sakurai, "Self-adjusting thresholdvoltage scheme (SATS) for low-voltage high-speed operation," in IEEE Custom Integrated Circuits Conference (CICC), May 1994, pp. 271–274.
- [Von94] V. R. Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, *"Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,"* in IEEE Symposium on Low Power Electronics, pp. 78–79, 1994.
- [Kar00] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, *"Low-voltage analog circuit design based on biased inverting opamp configuration,"* IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 176–184, March 2000.
- [Bul00] K. Bult, "Analog design in deep sub-micron CMOS," in European Solid-State Circuits Conference (ESSCIRC), September 2000, pp. 11–17.