

RF Circuit and System Innovations for a New Generation of Wireless Terminals

Peter R. Kinget

Analog & RF Design Research

Columbia Integrated 🖌 Systems Laboratory /w.cisl.columbia.edu

Outline

- <u>System</u> problem setting: The RF Spectrum Crunch
- <u>Circuit</u> Solutions enabled by <u>Device</u> Scaling
 - Field Programmable Receivers
 - Getting by with Switches and Capacitors ...
- <u>Circuit</u> Solutions assisted by Digital <u>Signal</u>
 <u>Processing</u>

Compressive Sampling for RF Spectrum Scanning

Conclusions

"Data Storm"

More Devices x More Content = 1,000x Data Storm

From: www.qualcomm.com/1000x

Artificial Spectrum Scarcity

Today's Wireless Communications

Spectrum Mobile frequencies are getting crowded Usage Ambulance Defense Radat マ Source: Nokia Frequency **Spectrum Measurements** Sample Time: 2560n in New York City **Power** -20

Overcoming the Artificial Spectrum Scarcity

Today's Wireless Communications

© 2017 Peter Kinget - Columbia bioversity

Cognitive Radio

✓ Dynamic

Source: Nokia

- ✓ Opportunistic
- ✓ Adaptive
- ✓ Spectrum Aware

Modern Mobile Phone

^{© 2017} Peter Kinget - Columbia University

Examples of Next Generation Wireless Systems

"Next-Generation" Receiver

- Next-generation receivers need:
 - Field programmability avoid worst-case design strategy
 - Wideband Operation & out-of-band blocker tolerance with limited off-chip filtering
 - Fast & Low power & Wideband Spectrum Sensing

Desired Circuit Innovations

- Highly Flexible Circuits

 programmable operation:
 f₀, BW, NF, IIP₃, P
- Simplified Antenna FEM
 SW-Cap RF Front End
- Spectral Awareness

 Compressive Sampling
 based Spectrum Scanning

Circuit Techniques	Device Scaling	Signal Processin
		sing

CMOS Device Scaling

Device Gate Length

Device Switching Speed

Device density & speed **↑**

From: ITRS CMOS Roadmap

Field-Programmable Receiver with Hybrid Class-AB-C LNTAs

Rs

- 40nm CMOS LP technology
- 1.8mm x 1.3mm
- Active area: 1.6mm²
- Noise canceling Rx
- FP LNTAs and TIAs
- 4 phase passive mixers
- Cartesian based combiner

Hybrid Class-AB-C: Ultra-Linear LNTA

Field-Programmability for Hybrid Class-AB-C LNTAs

	C	CG I	LNTA	١s			C	S L	NTA	١s		
		1	2		1	2	3	4	5	6	7	8
Low Noise	P:	AB	С		AB							
Mode	N:	С	AB		AB							
		1	2		1	2	3	4	5	6	7	8
High	P:	AB	С		AB	С	AB	С	AB	С	AB	С
Mode	N:	С	AB		С	AB	С	AB	С	AB	С	AB
		1	2		_1	2	3	4	5	6	7	8
Low	P:	AB	С		OFF							
Mode	N:	С	AB		OFF							

- CG-LNTA has 2 slices
- CS-LNTA has 8 slices
- Cascode transistors are shared
- Each transistor slice can be biased separately into class-AC, class-C or OFF

Field Programmable Performance Profile

Measurements @f_{lo}=900MHz

Measured Performance

Desired Circuit Innovations

- Highly Flexible Circuits

 programmable operation:
 f₀, BW, NF, IIP₃, P
- Simplified Antenna FEM
 SW-Cap RF Front End
- Spectral Awareness

 Compressive Sampling
 based Spectrum Scanning

Device Scaling Circuit Techniques

© 2017 Peter Kinget - Columbia University

Signal Processing

RF Front End with Only Switches & Capacitors

Switched-Capacitor RX with High Blocker Tolerance

High selectivity linear tunable filter is required for high blocker tolerance in reconfigurable RX

Blocker-Tolerant RX Design Solutions

Blocker-Tolerant RX Design Solutions

Blocker-Tolerant RX Design Solutions

Switched-Cap. RF Front End

Impedance matching Sampling

N-path filtering

Impedance matching and sampling

f_s=8f_{lo}

High order DT IIR filtering Harmonic-rejecting downconversion $\begin{array}{c} 1/f_{s} \\ p_{1} \\ p_{2} \\ p_{2} \\ \vdots \\ p_{8} \\ \hline p_{8} \\ \hline p_{8} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{1} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{3} \\ \hline p_{4} \\ \hline p_{5} \hline$

Harmonicrejecting downconversion

Switched-Cap RF Front End

Process:
40nm LP CMOS
Active Area:
1.4mm x 1.45mm

Switched-Cap. RF Front End Functional Equivalence

Conversion Gain

Conversion Gain & B1dB

Measured at 200MHz LO frequency

Performance Comparison

	SCRX	N-path	n filter	Mixer-f	irst RX
	This work	[Darvis	shi-16]	[Andrev	ws-10]
Filter order before active circuits	1-4	1		1	
Attenuation (dB)	0	0	8	0	10
Max. B1dB (dBm)	15	7	15	5	15
Noise Figure (dB)	6.8	2.8	10.8	3.5	13.5

Desired Circuit Innovations

- Highly Flexible Circuits

 programmable operation:
 f₀, BW, NF, IIP₃, P
- Simplified Antenna FEM
 SW-Cap RF Front End
- Spectral Awareness

 Compressive Sampling
 based Spectrum Scanning

Device Scaling Circuit Techniques	Signal Processing
--------------------------------------	-------------------

Traditional Spectrum Scanner/Sensors

System Attributes	Sweeping Scanner	Multi-Branch Sensor		
Scan Time	×	✓		
Power Consumption	\checkmark	×		
Hardware Complexity	✓	×		

Energy Consumption = Scan Time x Power = Constant for both approaches

Fixed trade-off between Scan Time & Power

Compressive Sampling (CS) to the Rescue

Quadrature Analog-to-Information Converter (QAIC)

Analog Preprocessing for Compressive Sampling with Pseudorandom (PN) Sequences

Block diagram of a PN Mixer + LPF

Quadrature Analog-to-Information Converter (QAIC)

Quadrature Analog-to-Information Converter (QAIC) **Band-pass CS Approach**

PN Sequence Clock Freq. = 1.26GHz Length = 63

of Branches = 8 I/Q

Energy Consumption

Power Cons. = 80mW Scan Time = 4uSec

47

Rapid Interferer Detector Demonstration

QAIC SYSTEM

ADC/FPGA

SAMPLING SYSTEM

1GHz MULTI-BAND SIGNAL GENERATOR

Wideband Rapid Interferer Detection with a Compressed Sampling QAIC

Wideband Rapid Interferer Detection RF Span=1GHz; T=4.4uS

QAIC Detector Time Agility

Comparison of Spectrum Scanner/Sensor Architectures

System Attributes	Sweeping Spectrum Scanner	Nyquist FFT Spectrum Sensor	QAIC
Scan Time	220µs	4µs	4.4µs ➡ 50x faster
Energy Consumption	50E	50E	E 50x lower
Aggregate Sampling Rate	40MS/s	2GS/s	320MS/s 6.3x compression

RBW=20MHz, 1GHz wideband spectrum ranging from 2.7 to 3.7GHz

Spectrum Scanners/ Sensors Performance Plane

Conclusions

- <u>Device</u> scaling enables new <u>circuit</u> solutions for RF applications
- Advanced <u>signal processing</u> concepts enable novel architectures for RF signal processing
- Reconfigurable performance profiles, on-chip DT filtering, and energy-efficient spectrum scanning, will become critical features in cognitive terminals for next generation wireless <u>systems</u>

"Crossing the boundaries" enables RF circuit and system innovations

References

- T. Haque, R. Yazicigil, J. Wright, and P.R. Kinget, "Theory and Design of a Sub-Nyquist Analog-to-Information Converter for Energy Efficient Wideband Spectrum Sensing," IEEE Transactions on Circuits and Systems I, 2014.
- R. Yazicigil, T. Haque, M. Whalen, J. Yuan, J. Wright, and P.R. Kinget, "A 2.7-3.7GHz Rapid Interferer Detector Exploiting Compressed Sampling with a Quadrature Analog-to-Information Converter," IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2015.
- R. Yazicigil, T. Haque, M. Whalen, J. Yuan, J. Wright, and P.R. Kinget, "Wideband Rapid Interferer Detector Exploiting Compressed Sampling with a Quadrature Analog-to-Information Converter," IEEE Journal of Solid-State Circuits, invited, pp. 3047-3064, Dec. 2015.
- R. Yazicigil, T. Haque, M. Kumar, J. Yuan, J. Wright, and P. R. Kinget, "Time-Segmented Quadrature Analog-to-Information Converter for Rapid Detection of up to 6 Interferers in the 2.7-3.7GHz PCAST Band," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2016.
- R. Yazicigil, T. Haque, J. Zhu, Y. Xu, and P. R. Kinget, "RF Circuit and System Innovations for a New Generation of Wireless Terminals," IEEE International Symposium on Circuits and Systems (ISCAS), invited talk, Special Session on "Design Enhancements and Simulation Methods for Radio Frequency Circuits and Systems in Emerging Applications," May 2016.
- Y. Xu and P. R. Kinget, "A Switched-Capacitor RF Front End with Embedded Programmable High Order Filtering and a +15dBm OB-B1dB," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2015.
- Y. Xu, and P. R. Kinget, "A Switched-Capacitor RF Front End with Embedded Programmable High-Order Filtering," IEEE Journal of Solid-State Circuits, invited, vol. 51, no. 5, pp.1154-1167, 2016.
- Y. Xu and P. R. Kinget, "A Chopping SwitchedCapacitor RF Receiver with Integrated Blocker Detection, +31dBm OBIIP3, and +15dBm OBB1dB," IEEE Symposium on VLSI Circuits, June 2016.
- J. Zhu and P.R. Kinget, "A Field-Programmable Noise-Canceling Wideband Receiver with High-Linearity Hybrid Class-AB-C LNTAs," IEEE Custom Integrated Circuits Conference (CICC), Sept. 2015.

Acknowledgments

Ph.D. Students

Tugce Yazicigil

Jianxun Zhu

Yang Xu

Tanbir Haque

Collaborators

John Wright © 2017 Peter Kinget - Columbia University

Acknowledgments

- Financial support:
 - -NSF ECCS-1002064, ECCS-1343282
 - Wei Family Foundation
 - DARPA CLASIC and RF-FPGA
 - Analog Devices, Silicon Labs
- Silicon Donations:
 - UMC, ST Microelectronics

Thank You for Your Attention

Crossing The Boundaries

