An Injection Locking Scheme for Precision Quadrature Generation

R. Melville & D. Long (Agere Systems)
V. Gopinathan (Broadcom Corp.)
P. Kinget (Celight Inc.)
Introduction

• Goal: Generation of accurate high frequency quadrature signals from a single phase input at the same frequency i.e.:
 - 90 degrees phase difference,
 - identical amplitude.

• Applications:
 - Wireless receivers and transmitters,
 - Interleaving, multiphase signal processing.
2 Stage Ring Oscillator

- Inherently good quadrature accuracy
 - only dependent on device matching.
- Ring oscillators are widely tunable.
- But,
 - too high phase noise . . . ,
 - needs to be locked to reference signal.
Injection locking

- **Principle:** injection-lock ring oscillator to incoming clean carrier signal.
 -Injection-locking is equivalent to first order PLL and is always stable.

- **Effect:** phase noise of ring oscillator suppressed within “the loop-bandwidth of the PLL.”
 -Benefits of a PLL without the need to build an HF PLL

- **But:** Injection signal disturbs symmetry in ring and thus the quadrature.

- **Use ‘cascade’:**
 - RC-CR → Ring 1 → Ring 2
 - Gives a progressive improvement of the quadrature to within matching limitations inside the ring.
Injection locking with quadrature inputs
After injection locking, V_{INJ} introduces a simple phase-shift in the oscillator loop.

- The inserted phase-shift in the loop shifts the oscillation frequency from ω_0 to ω_{Inj}.
- The loop adjusts ϕ_1, until oscillation conditions for phase are satisfied for the injected frequency ω_{Inj}.
- Fixed range of frequencies exists for which the above conditions can be satisfied \Rightarrow Finite injection locking range [Adler].
Quadrature Error Transfer

At the center of the lock range

Amplitude imbalance between inj_I and inj_Q lead to:
- Minimum phase imbalance at the output (I' & Q')
- Maximum amplitude imbalance at the output.

Phase imbalance between inj_I and inj_Q lead to:
- Maximum phase imbalance at the output (I' & Q')
- Minimum amplitude imbalance at the output.

Key: Large input amp. & phase imbalances corrected after each stage of injection locking

At the edge of the lock range

Amplitude imbalance between inj_I and inj_Q lead to:
- Maximum phase imbalance at the output (I' & Q')
- Minimum amplitude imbalance at the output.

Phase imbalance between inj_I and inj_Q lead to:
- Minimum phase imbalance at the output (I' & Q')
- Maximum amplitude imbalance at the output.
Phase Error Transfer Function

\[\frac{O/p \Delta \phi}{Inj \Delta \phi} \]

O/p to Inj Amplitude ratio: $10/1$

Middle LBW

Edges LBW

\[1/20 \]

\[1/200 \]
Benefits of Injection Locking over PLL

- Injection locking can be modeled as a 1st-order PLL
- Advantages:
 - No stability issues
 - Extremely wide ‘loop bandwidth’
 - Output phase noise tracks injection signal phase noise over a wide bandwidth
 - Very easy to implement
 - no phase detector, varactor, or loop filter
 - Works up to very high carrier frequencies
- Limitation:
 - Only works for small division ratios (1/1 in this application)
Chip Architecture

- SSB Upconvertor is on chip measurement device
 - phase & amplitude accuracy are mapped to sideband suppression
 - baseband quadrature signals are assumed to be more accurate than LO quadrature signals

[Abidi, JSSC 12-95]
Ring Cascade

- 0.25um BiCMOS technology
- 2.7 GHz center frequency

Ring stage w/ injection port
Mixers & O/P Buffer

Level Shift | I Mixer | O/p Q Mixer | O/P Buffer

\(\text{LO}_i \) | \(\text{BB}_i \) | \(V_{\text{OUT}} \)

(on-chip: from ring) | (external)
Simulation Techniques

• Harmonic balance offers several benefits:
 – 1. Accurate determination of phase between signals
 – 2. Exact computation of locking range
 – 3. Large-signal sensitivity analysis of mismatch effects

• These are possible with transient analysis in Spice, but more difficult and time-consuming

• Difficulties with harmonic balance:
 – 1. Getting a good starting guess - low Q oscillator, so use short transient
 – 2. Can find unstable solutions - also solved by initial transient analysis
Chip Photograph
SSB O/P spectrum

Carrier: 2.7GHz / -10dBm
Baseband: 30kHz
Sideband Suppression = 51.22dB
(sample#1)
O/P Phase Noise Measurement

- Significant Phase noise improvement out to 10MHz
- **Setup:** HP4352B phase noise meter
 - -10dBm Reference is from high Q cavity oscillator
Inj. Power > -20dBm guarantees more than 100MHz lock range

Locking Range Measurement

Inj. Power (dBm)

Locking Range (MHz)
SSB suppression for 16 chips

- All identical bias, input signal, output load etc.
- -10dBm inj. power
- Measured over 100MHz range around 2.7GHz
Conclusions

• Demonstrated a wideband scheme for generation of accurate quadrature signals from a single phase input signal of the same frequency

• Inherently a high frequency scheme for quadrature generation
 – Compact
 – No need for elaborate calibration loops
 – No need for complicated signal processing

• Can be expanded for other multiphase systems by using higher number of stages
Acknowledgements

• T. Banwell, M. Banu, K. Ashby, B. Horton, H. Brachtendorf, N. Krishnapura, P. Feldmann, J. Havens & V. Boccuzzi