An Injection Locking Scheme for Precision Quadrature Generation

R. Melville & D. Long (Agere Systems) V. Gopinathan (Broadcom Corp.) P. Kinget (Celight Inc.)

Introduction

- Goal: Generation of accurate high frequency quadrature signals from a single phase input at the same frequency i.e.:
 - 90 degrees phase difference,
 - identical amplitude.
- Applications:
 - Wireless receivers and transmitters,
 - Interleaving, multiphase signal processing.

2 Stage Ring Oscillator

- Inherently good quadrature accuracy

 only dependent on device matching.
- Ring oscillators are widely tunable.
- But,
 - too high phase noise ...,
 - needs to be locked to reference signal.

Injection locking

- <u>Principle:</u> injection-lock ring oscillator to incoming clean carrier signal.
 - Injection-locking is equivalent to first order PLL and is always stable.
- <u>Effect:</u> phase noise of ring oscillator suppressed within "the loop-bandwidth of the PLL."
 - Benefits of a PLL without the need to build an HF PLL
- <u>But</u>, Injection signal disturbs symmetry in ring and thus the quadrature.
- <u>Use</u> 'cascade' :
 - RC-CR
 Ring 1
 Ring 2
 - Gives a progressive improvement of the quadrature to within matching limitations inside the ring.

- After injection locking, V_{INJ} introduces a simple phase-shift in the oscillator loop.
 - The inserted phase-shift in the loop shifts the oscillation frequency from w_0 to w_{Inj} .
 - The loop adjusts f_1 , until oscillation conditions for phase are satisfied for the injected frequency w_{lnj} .
 - Fixed range of frequencies exists for which the above conditions can be satisfied ⇒ Finite injection locking range [Adler].

Quadrature Error Transfer

At the center of the lock range

I' I Q inj_Q Q'

Amplitude imbalance between inj_I and inj_Q lead to:

- Minimum phase imbalance at the output (I' & Q')
- Maximum amplitude imbalance at the output.
- Phase imbalance between inj_I and inj_Q lead to:
 - Maximum phase imbalance at the output (I' & Q')
 - Minimum amplitude imbalance at the output.

Amplitude imbalance between inj_I and inj_Q lead to:

- Maximum phase imbalance at the output (I' & Q')
- Minimum amplitude imbalance at the output.

Phase imbalance between inj_I and inj_Q lead to:

- Minimum phase imbalance at the output (I' & Q')
- Maximum amplitude imbalance at the output.

<u>Key:</u> Large input amp. & phase imbalances corrected after each stage of injection locking

Phase Error Transfer Function

Benefits of Injection Locking over PLL

- Injection locking can be modeled as a 1st-order PLL
- Advantages:
 - No stability issues
 - Extremely wide 'loop bandwidth'
 - Output phase noise tracks injection signal phase noise over a wide bandwidth
 - Very easy to implement
 - no phase detector, varactor, or loop filter
 - Works up to very high carrier frequencies
- Limitation:
 - Only works for small division ratios (1/1 in this application)

Chip Architecture

- SSB Upconvertor is on
 ^{JT} chip measurement device
 - phase & amplitude
 accuracy are mapped to
 sideband suppression
 - baseband quadrature signals are assumed to be more accurate than LO quadrature signals

Mixers & O/P Buffer

Simulation Techniques

- Harmonic balance offers several benefits:
 - Accurate determination of phase between signals
 - 2. Exact computation of locking range
 - 3. Large-signal sensitivity analysis of mismatch effects
- These are possible with transient analysis in Spice, but more difficult and time-consuming
- Difficulties with harmonic balance:
 - 1. Getting a good starting guess low Q oscillator, so use short transient
 - 2. Can find unstable solutions also solved by initial transient analysis

Chip Photograph

O/P Phase Noise Measurement

- Significant Phase noise improvement out to 10MHz
- <u>Setup</u>: HP4352B phase noise meter
 -10dBm Reference is from high Q cavity oscillator

Locking Range Measurement

Inj. Power > -20dBm guarantees more than 100MHz lock range

SSB suppression for 16 chips

- All *identical* bias, input signal, output load etc.
- -10dBm inj. power
- Measured over 100MHz range around 2.7GHz

Conclusions

- Demonstrated a wideband scheme for generation of accurate quadrature signals from a single phase input signal of the same frequency
- Inherently a high frequency scheme for quadrature generation
 - Compact
 - No need for elaborate calibration loops
 - No need for complicated signal processing
- Can be expanded for other multiphase systems by using higher number of stages

Acknowledgements

 T. Banwell, M. Banu, K. Ashby, B.Horton, H. Brachtendorf, N.Krishnapura, P. Feldmann, J. Havens & V. Boccuzzi