LECTURE 11 (Oct. 9)		
MATERIAL	BOOK	RECOMMENDED
Capacitive circuits	pp. 200-203	Exercise 5.5
Differential circuit equation	ns pp. 213-217	Example 5.8

COURSE SCHEDULE UNTIL THE SECOND MIDTERM TEST

LECTURE 12 (Oct. 14)		
MATERIAL BOOK		RECOMMENDED
Natural response, stability	pp. 217-221	Example 5.9
Forced response	pp. 221-225	Exercise 5.13, WEX#6

	LECTURE 13 (Oct. 16)			
	MATERIAL BOOK RECOMMENDED			
	Amplitude and phase	pp. 235-238	Example 6.1	
	Complex numbers	pp. 238-244	Exercise 6.3, 6.4	
• The student must develop a very good working knowledge of using complex numbers.				

LECTURE 14 (Oct. 21)

LECTURE 14 (Oct. 21)			
MATERIAL	MATERIAL		RECOMMENDED
The phasor co	oncept	pp. 245-249	Example 6.4
Impedance an	d admittance	pp. 249-254	Exercise 6.6, 6.7
Generalization	n of memoryless analysis techniques	pp. 254-270	All examples in pp. 254-270
•	It should be crystal clear that all t	he techniques	used so far
	(elementary analysis, superposition	n, proportional	ity, Thevenin-Norton
	circuits, source conversion, node analysis, mesh analysis) applies		
	with:		
1.	Replace all independent sources by	their phasors	
2.	Use voltage phasors in KLVs or no	de analysis.	
3.	3. Use current phasors in KCLs or mesh analysis.		
4.	4. Resistors and controlled sources relate voltage and/or current phasors.		
5.	5. Use impedances for inductors and capacitors.		
•	• For a complete problem you have to go into the phasor domain first,		
	do the calculations there with complex numbers, finally convert the		
results back into time domain.			

LECTURE 15 (Oct. 23)				
MATERIAL BOOK RECOMMENDED				
Example for phasor-domain analysis	WEX#7			
Resonancepp. 271-280Example 6.16				
• Apart from this material, we covered Q factors for				
Capacitors and Inductors, and series-to-parallel transformations a				
little mene extensively then in the	he healt			

little more extensively than in the book.

LECTURE 16 (Oct. 28)		
MATERIAL	BOOK	RECOMMENDED
AC superposition	pp. 281-282	Exercise 6.19
Average and complex power	pp. 295-299, 308-310	Example 7.1

In the book phasors are redefined in terms of RMS values (rather • than amplitudes) in the context of power calculations. We are not going to follow this change of terminology in the lectures.

LECTURE 17 (Oct. 30)			
MATERIAL BOOK RECOMMENDED			
RMS values	pp. 299-301	Example 7.2, Exercise 7.2	
Maximum power transfer pp. 301-303		Example 7.3	

LECTURE 18 (Nov. 6)			
MATERIAL BOOK RECOMMENDE			
Mutual inductances and transformers	pp. 349-352, 360-368	Exercise 8.1, 8.6	

LECTURE 19 (Nov. 11)		
MATERIAL	BOOK	RECOMMENDED
Examples for mutual inductances	pp. 349-352, 360-368	
Balanced 3-phase circuitspp. 316-324		
• No problems related to mutual inductances or balanced 3-phase circuits		

will be part of the second midterm test.

Ideal transformers are part of the second midterm test. •

> LECTURE 20 (Nov. 13) MIDTERM TEST #2