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Abstract

In this article, we propose a random walk-based model to

predict legislators’ votes on a set of bills. In particular,

we first convert roll call data, i.e. the recorded votes and

the corresponding deliberative bodies, to a heterogeneous

graph, where both the legislators and bills are treated as

vertices. Three types of weighted edges are then computed

accordingly, representing legislators’ social and political

relations, bills’ semantic similarity, and legislator-bill vote

relations. Through performing two-stage random walks

over this heterogeneous graph, we can estimate legislative

votes on past and future bills. We apply this proposed

method on real legislative roll call data of the United States

Congress and compare to state-of-the-art approaches. The

experimental results demonstrate the superior performance

and unique prediction power of the proposed model.

1 Background and Motivation

Humanistic and social studies, including anthropology,
criminology, marketing, sociology, and urban planning
are increasingly turning to data-driven quantitative
methods, informatics, and predictive analytics. Political
science is no different. Politics in democracies are
centered around votes on bills in legislatures. Voting
history, also known as roll call data, is an important
historical record that has been studied statistically since
the 1920s, if not earlier [27].

Following other political science studies, we focus on
the legislature of the federal government of the United
States of America, known as the Congress. An impor-
tant feature of the United States Congress is that leg-
islators are not bound to vote in lockstep with their
party. In contrast to parliamentary governments, such
as those that follow the Westminster system, party affil-
iation is not codified in the constitution and thus is only
one of many factors that go into determining whether
a legislator votes yea or nay. Congress is a bicameral
legislature composed of the Senate with 100 members
known as senators, and the House of Representatives

with 435 members known as representatives.1 A ses-
sion of Congress lasts two years, with the current ses-
sion being the one hundred twelfth. The composition
of Congress changes after every session due to elections.
Within a session, the only changes are due to death or
resignation.

A bill is a proposed law under consideration by
a legislature, that if passed, becomes a law. There
are approximately 700 bills voted upon per session in
the Senate and approximately 1200 in the House of
Representatives. Each bill that comes to a vote in
Congress is sponsored by at least one legislator. Other
legislators may cosponsor the bill if they coauthored it
or if they wish to publicly indicate strong support for
it in advance of the vote. Thus, frequent cosponsorship
of bills reflects collaboration and similarity in ideology
between legislators.

Roll call data can be analyzed to obtain a variety
of descriptive statistics, but can also be used in devel-
oping predictive models. Legislative prediction leads
to a better understanding of government and can also
provide actionable insights to political strategists. It
is a challenging task to predict the votes of all current
legislators on a bill that has not yet been voted upon.
One of the representative models in quantitative politi-
cal science is the ideal point model (IPM), which builds
a one-dimensional “political space” and then places each
legislator and bill in that space [7]. Realizing the lim-
itations of IPM, such as the low-dimension restriction,
researchers from the machine learning and data min-
ing communities have recently proposed some advanced
methods, including the ideal point topic model [13], a
joint model from the temporal perspective [35], and a
multiple kernel learning model [29].

In this article, we propose to leverage both text min-
ing of bills and the social connection between legislators
to predict legislative votes. In particular, we develop a
novel model based on random walks on a heterogeneous

1In this paper, we ignore non-voting delegates in the House of
Representatives from territories such as Guam that are not states.



graph (RWHG) to predict the vote links between legis-
lators and bills. In this formulation, the roll call data is
represented as a heterogeneous graph, where both leg-
islators and bills are treated as vertices. The legislators
are connected based on political relationship, specifi-
cally cosponsorship, and the bills are connected based
on their semantic similarity in the bag-of-words repre-
sentation space. The votes, yea or nay, are treated as
directed edges of a bipartite-style legislator-bill graph
(refer to Figure 1). Based on this formulation, a two-
stage random walk is performed over the heterogeneous
graph to iteratively generate vote links. Experimental
results on predicting random missing votes and sequen-
tially predicting future votes shows the superior perfor-
mance of this method over state-of-the-art algorithms.

In the remaining part of this paper, we describe
the heterogeneous graph formulation in Section 2. In
Section 3, we present the RWHG model to predict
vote links. The experimental results on real roll call
data from the United States Congress are described in
Section 4. We describe our main contributions, related
work, conclusions, and directions for future work in
Section 5.

2 Heterogeneous Graph Formulation of Roll
Call Data

In this section, we use a heterogeneous graph to repre-
sent the roll call data, where both the legislators and
bills are treated as graph vertices. The legislator ver-
tices are connected based on their social and political
relationships, quantified with edge weights. Similarly,
the bills are connected based on their estimated seman-
tic similarity. The votes are treated as the links of a
bipartite-style legislator-bill graph. Overall, this unique
formulation has a heterogeneous-structured graph with
two types of vertices and three types of edges.

2.1 Graph Notations We first define the graph no-
tation for the legislators. Assume there are a total
of L legislators and denote the set of legislator ver-
tices as V(x) = {x1, . . . , xl, . . . , xL} with cardinality
|V(x)| = L. These legislators can be connected based
on attributes such as party, state, age, gender, and
cosponsorship by converting the attributes to a political
similarity measure between legislators. In other words,
the legislators form a graph G(x) = {V(x),E(x)} inde-
pendently, with an edge set E(x) = {e(x)lm

} ⊂ V(x)×
V(x) (l, m = 1, . . . , L). The details for estimating po-
litical similarity, i.e. the weight of the edges, will be
provided in the following subsection.

In addition, we define the set of bills as
V(y) = {y1, . . . , yn, . . . , yN} with cardinality
|V(y)| = N . Given textual content, we reuse the

same symbol to represent the standard bag-of-words
(BOW) model of bills as yn ∈ RB , where B is the
size of the dictionary [14]. Accordingly, the bills form
a graph in the semantic space, where the set of vertices
V(y) represents the bills and the set of edges E(y) =
{e(y)nk

} ⊂ V(y)×V(y) (n, k = 1, . . . , N) connects bills
based on their semantic similarity. Therefore, we now
have the bill graph represented as G(y) = {V(y),E(y)}.

The last piece of information we want to lever-
age into the graph formulation is the initially-given
set of votes, i.e. the yea or nay results for the leg-
islators voting on the bills. Since each vote in-
volves two types of vertices, one legislator and one
bill, the vote can be viewed as a special type of di-
rected edge or link across these heterogeneous vertices.
This gives the third component of the heterogeneous
graph formulation, a bipartite structured vote graph
G(xy) = {V,E(xy)}, where V = V(x) ∪ V(y) and
E(xy) = {e(xy)ln

} ⊂ V(x) × V(y) (l = 1, . . . , L, n =
1, . . . , N).

In summary, the heterogeneous graph G contains
three subgraphs: legislator graph G(x), bill graph G(y),
and vote graph G(xy). In a general form, we can write
G as

G = {V,E},(2.1)
V = V(x) ∪ V(y),

E = E(x) ∪ E(y) ∪ E(xy),

E(x) ⊂ V(x) × V(x),

E(y) ⊂ V(y) × V(y),

E(xy) ⊂ V(x) × V(y).

In other words, graph G has two types of heterogeneous
vertices, i.e. legislators V(x) and bills V(y), and three
types of edges, legislator political relations E(x), bill se-
mantic similarity E(y), and directed vote links E(xy). In
the following subsections, we will detail the estimation
of these edge weights and provide some important graph
quantities.

2.2 Legislators’ Social and Political Relations
Social connections among the members of the House
and Senate have been well-studied in fields like social
science and political science because they illuminate in-
formation for estimating political relevance and reveal-
ing the underlying legislative patterns [11]. Different
kinds of social connections, such as friendship, family,
and acquaintanceship relations, have been identified as
important effects on political positions [3]. However,
predicting roll call data is about understanding legis-
lators’ ideology more than social relationships between
them [11, 26]. Therefore, scholars recently proposed to
use cosponsorship relations as a more robust and di-
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Figure 1: Heterogeneous graph representation of roll call data from the Congress of the United States of America.
The heterogeneous graph contains legislator vertices, bill vertices, edges connecting legislators (cosponsorship
relation), edges connecting bills (semantic similarity), and directed vote edges from legislators to bills. The
thickness of the edges indicates the strength of the corresponding connections.

rect way to understand the voting behavior and polit-
ical influence of each legislator [11, 12]. Briefly speak-
ing, each piece of legislation is uniquely sponsored by a
legislator and publicly cosponsored by a group of legis-
lators. Hence, it is fairly straightforward to reveal the
cosponsorship edge between each cosponsor and the cor-
responding sponsor. In this paper, we are particularly
interested in this kind of cosponsorship information and
use it to connect the legislators and estimate their po-
litical affinity.2

More precisely, the pairwise political similarity
w(x)lm

∈ R refers to the affinity between legislators
xl and xm, i.e. the weight of the edge e(x)lm

. Assume
that legislators xl and xm have a total of clm cospon-
sored bills in common and have Cl and Cm individually
cosponsored bills. Then the value of w(x)lm

computed
from the cosponsorship information is

w(x)lm
=

clm

Cl + Cm
.(2.2)

In addition, the cosponsorship matrix
W(x) = {w(x)lm

} presents an intuitive way to
estimate the political connectivity of the legislators.
Note that the value of w(x)lm

represents the normalized
cosponsorship weight between the legislator xl and xm.
For each legislator xl, the sum of such edge weights
of all the connected legislators shows the political
popularity of this legislator, which is calculated as

d(x)l
=

∑
m

w(x)lm
=

∑
m

clm

Cl + Cm
.(2.3)

2In this paper, we treat sponsorship and cosponsorship rela-
tions equally and use the term “cosponsorship” to represent both.

From the graph formulation perspective, this quantity
is exactly the degree of vertex xl on the graph G(x).
Accordingly, the diagonal degree matrix can be written
as D(x) = diag

[
d(x)1

, . . . , d(x)l
, . . . , d(x)L

]
.

2.3 Semantic Similarity of Bills At a high level,
the BOW model represents the textual context us-
ing the frequency of the words in documents, while
omitting grammar and word order. Given the
BOW representation of the nth legislative bill as
yn = {yn1, . . . , ynb, . . . , ynB}, the bth element ynb de-
notes the count of the corresponding bth entry in the
dictionary appearing in the bill. For such a histogram-
style feature representation, one can use a kernel func-
tion over pairs of vertices to compute the weight w(y)nk

for the edge e(y)nk
in the bill graph. For example, the

Gaussian kernel is often applied to modulate semantic
similarity between bill yn and yk as:

w(y)nk
= exp

[
−dis2(yn, yk)

2σ2

]
,(2.4)

where the function dis(yn, yk) evaluates the dissimilar-
ity or distance between bill yn and yk, and σ is the kernel
bandwidth parameter. Different choices of the distance
function dis(·) have been used in previous research, such
as ℓp (p = 1, 2) distance and χ2 distance [16, 38, 40].
The kernel function based weighting scheme has the
flexibility to adapt to a wide range of data with differ-
ent priors and distributions. However, the determina-
tion of bandwidth σ is fairly heuristic without any theo-
retic guarantee. Another popular weighting function for
histogram-style data representation is cosine similarity,



which is relatively straightforward to compute as

w(y)nk
=

yn · yk

∥yn∥∥yk∥
.(2.5)

Similarly, the degree of the bill vertex yn can be calcu-
lated as d(y)n

=
∑

k w(y)nk
and the corresponding de-

gree matrix is D(y) = diag
[
d(y)1

, . . . , d(y)n
, . . . , d(y)N

]
.

2.4 Legislator-Bill Vote Links Here we define the
vote as a directed edge e(xy)ln

, which indicates that the
legislator xl has voted on bill yn. Because there are two
types of votes, it is reasonable to set the edge weight
w(xy)ln

= 1 for yea and w(xy)ln
= −1 for nay. If the vote

does not exist, we set w(xy)ln
= 0, indicating no vote

edge between xl and yn. However such straightforward
setting of edge weights is infeasible for random walk-
based formulations since the edge weight matrix of the
graph will eventually be converted to a positive-valued
transition probability matrix.

Hence, we propose to partition the yea and nay
links and treat them separately, which results in two
legislator-bill vote graphs, namely yea and nay graphs
with all positive edge weights. More specifically, for
either yea or nay graph, the edge weight is set to one
if a vote exists between the corresponding legislator
and bill. For non-existent edges, the weights are still
set to zero. Finally, we obtain two weight matrices
Wyea

(xy) = {wyea
(xy)ln

} and Wnay
(xy) = {wnay

(xy)ln
} for all the

yea and nay votes, respectively. Accordingly, four types
of vertex degree matrices are defined over the bipartite-
style legislator-bill vote graph as:

dyea
(xy)l

=
∑

n

wyea
(xy)ln

, dnay
(xy)l

=
∑

n

wnay
(xy)ln

,(2.6)

Dyea
(xy) = diag

[
dyea
(xy)1

, . . . , dyea
(xy)l

, . . . , dyea
(xy)L

]
,

Dnay
(xy) = diag

[
dnay
(xy)1

, . . . , dnay
(xy)l

, . . . , dnay
(xy)L

]
,

dyea
(yx)n

=
∑

l

wyea
(yx)ln

, dnay
(yx)n

=
∑

l

wnay
(yx)ln

,

Dyea
(yx) = diag

[
dyea
(yx)1

, . . . , dyea
(yx)n

, . . . , dyea
(yx)N

]
,

Dnay
(yx) = diag

[
dnay
(yx)1

, . . . , dnay
(yx)n

, . . . , dnay
(yx)N

]
,

where dyea
(x)l

and dnay
(x)l

indicate the total numbers of yea
and nay votes from the legislator xl, and dyea

(y)n
and dnay

(y)n

are the total number of yea and nay votes received by
the bill yn. Hence we can define the priors of yea and
nay votes for each legislator and bill based on the given

vote links, simply as:

pyea
(x)l

=
dyea
(xy)l

dyea
(xy)l

+ dnay
(xy)l

, pnay
(x)l

=
dnay
(xy)l

dyea
(xy)l

+ dnay
(xy)l

,(2.7)

pyea
(y)n

=
dyea
(yx)n

dyea
(yx)n

+ dnay
(yx)n

, pnay
(y)n

=
dnay
(yx)n

dyea
(yx)n

+ dnay
(yx)n

,

where pyea
(x)l

and pnay
(x)l

are the priors that xl produces yea
and nay votes and pyea

(y)l
, and pnay

(y)l
are the priors that yn

receives yea and nay votes.
Recall we have the general form of the heteroge-

neous graph as G = {V,E}, where V = V(x) ∪ V(y)

and E = E(x) ∪ E(y) ∪ E(xy). Therefore, we can
define the edge weight matrix W for G in a block-wise
form as

W =
[

W(x) W(xy)

0 W(y)

]
,(2.8)

where W(xy) is the weight matrix of the directed
legislator-bill vote graph. Since we treat the yea and
nay votes separately, here we decompose W into Wyea

and Wnay accordingly

Wyea =
[

W(x) Wyea
(xy)

0 W(y)

]
,(2.9)

Wnay =
[

W(x) Wnay
(xy)

0 W(y)

]
,

where Wyea and Wnay are the weight matrices of the
heterogeneous graphs Gyea and Gnay, respectively.

Figure 1 illustrates an example of the heterogeneous
graph representation of the roll call data. Based on this
formulation, the goal of legislative prediction is to in-
fer the missing edges in E(xy) given the legislator graph
G(x), bill graph G(y), and the partially observed vote
edges, i.e. yea and nay vote links. In the following sec-
tion, we will present a two-stage random walk approach
to conduct vote prediction using both Wyea and Wnay.

3 Methods and Technical Solutions

Given some observations of the votes, there are two
types of legislative prediction tasks: 1) predicting votes
missing at random; 2) predicting all votes for new bills.
The first task is related to so called within-matrix pre-
diction and the second one to out-of-matrix prediction.
To accomplish such challenging prediction tasks, espe-
cially predicting the votes for new bills, two major as-
sumptions are made to support our methodology.

1. Political affinity connects legislative behav-
ior. Legislators who have strong affinity, e.g. strong
cosponsorship relations, tend to vote similarly on a
set of bills.



2. Legislative behavior is consistent among
similar bills. Semantically similar bills tend to
receive the same voting results from legislators.

These two assumptions bring two views of predicting
the votes along the column and row directions of the
weight matrix W(xy). Along the row direction, the
vote w(xy)ln

is estimated based on the known votes of
the most similar bills from the same legislator, while
along the column direction, the prediction of w(xy)ln

is accomplished based on the observed votes of the
same bill generated by the most similar legislators. In
the experimental section, we show empirical analysis to
validate these two assumptions.

In the following subsection, we present our method
of random walks on a heterogeneous graph (RWHG),
which combines the clues from the above assumptions
and performs two-stage random walks on two unipartite
graphs and across a bipartite graph.

3.1 Random Walks on Unipartite Graphs As
discussed earlier, there are three subgraphs in the above
formulation, two of which, i.e. legislator cosponsorship
graph and bill semantic similarity graph, are unipar-
tite with homogeneous vertices. For each of these two
subgraphs, we consider the random walk with restart
(RWR) model [25, 34] to derive the steady-state distri-
butions, which indicate the political and semantic rel-
evance among legislators and bills, respectively. Note
that during the process of performing RWR, we break
the directed vote links and conduct random walks over
these two unipartite graphs independently.

For a standard RWR-based relevance model, a
random walker starts from the ith vertex and iteratively
jumps to its neighbors with transition probabilities
pi = {pi1, . . . , pij , . . . , pin}. However, for each
transition, the random walker returns to the original
vertex i with probability 1 − α. After achieving the
steady-state, the probability of the random walker being
at the jth vertex gives the relevance score of vertex j
with respect to vertex i. Similarly, if we simultaneously
launch n random walkers, one from each vertex of
the graph, with transition probabilities p1, . . . ,pn, the
final steady-state probability matrix gives the relevance
scores between each pair of vertices. Defining the
transition probability matrix P = {p1, . . . ,pn}, one
step of RWR from time t to t + 1 can be formed as

R(t + 1) = αPR(t) + (1 − α)I,(3.10)

where R(t) and R(t + 1) are the state probability
matrices at time t and t + 1 and the identity matrix
I ∈ Rn×n can be treated as the uniform prior for all the
vertices. Building on this RWR model, we make a few

revisions to adapt to the practical problem of legislative
prediction.

For the legislator graph, we note that each legisla-
tor has different connectivity with others, resulting in
different political influence [11]. Instead of using the
uniform prior I, here we propose to use the normalized
vertex degree F(x) = diag

[
f(x)l

, . . . , f(x)l
, . . . , f(x)L

]
as

the prior for each legislator, where

f(x)l
=

d(x)l∑
m d(x)m

, l = 1, . . . , L.(3.11)

The transition probability P(x) is computed as the row-
normalized weight matrix: P(x) = D−1

(x)W(x). Then we
obtain the following transition equation:

R(x)(t + 1) = αP(x)R(x)(t) + (1 − α)F(x),(3.12)

The steady-state probability, denoted
R(x) = R(x)(∞) = {r(x)lm

}, can be easily de-
rived by solving the above discrete difference equations
with t → ∞

R(x) = (1 − α)
(
I − αP(x)

)−1
F(x).(3.13)

Each element r(x)lm
represents the political relevance

score of the legislator xm with respect to xl. Note that
r(x)lm

̸= r(x)ml
and R(x) is asymmetric.

Similarly, for the bill graph, we set the prior F(y)

and transition probability P(y) as:

F(y) = diag
[
f(y)l

, . . . , f(y)l
, . . . , f(y)N

]
,(3.14)

f(y)n
=

d(y)n∑
k d(y)k

, n = 1, . . . , N,

P(y) = D−1
(y)W(y),

and the final relevance matrix R(y) derived from the
steady-sate is computed similar to (3.13):

R(y) = (1 − β)
(
I − βP(y)

)−1
F(y),(3.15)

where 1 − β is the restart probability for the RWR in
G(y).

In summary, we propose to revise the vertex prior
and transition probability to adapt the standard ran-
dom walk with restart model to our problem. Then
through performing RWR over the legislator graph and
bill graph independently, we are able to derive two rele-
vance matrices, R(x) representing the political relevance
among legislators and R(y) representing semantic rele-
vance of bills.

3.2 Random Walks across Bipartite Graph
Given the derived relevance matrices R(x) and R(y)



from the random walk over the legislator cosponsorship
graph and the bill semantic similarity graph, the next
step is to predict the possible link from a legislator xl

to a bill yn. From the view of random walk, the goal
is to estimate the transition chance of a random walker
starting from vertex xl and transiting to yn. However,
different from the random walk model used in the pre-
vious subsection, where the walker only performs ran-
dom transitions in a unipartite graph, here the random
walker has to cross a bipartite graph through the exist-
ing vote links. There are two possible paths for a ran-
dom walker across the vertices of the bipartite graph,
i.e. transiting from legislator xl to bill yn,

1. Political relevance-based transition. Based
on the political relevance information, the random
walker first performs transition from xl to xm,
where xm has an observed vote link e(xy)mn

. Then
the walker can easily transit to yn through the
existing vote link.

2. Semantic relevance-based transition. The
random walker first transits from xl to yk based
on the existing vote link e(xy)lk

. Then the random
walk is performed within G(y), resulting in a jump
from yk to yn based on the semantic relevance.

Note that the above two transition paths are related
to the two assumptions we made earlier in this section.
Finally, the estimation of the transition chance involves
a heterogeneous graph, across two types of vertices
through three types of edges.

Before providing the formulation of the above ran-
dom walks over a bipartite graph, we first define the
transition probability P(xy) = {p(xy)ln

} from the
given vote links E(xy) = {e(xy)ln

} and weights
W(xy) = {w(xy)ln

}. Similar to the unipartite graph-
based random walk, the transition probability for the bi-
partite graph is computed as the row-normalized weight
matrix. Since we derive two bipartite graphs Gyea

(xy)

and Gnay
(xy) for the yea and nay votes separately, here

we accordingly have two transition probability matrices
Pyea

(xy) = {pyea
(xy)ln

} and Pnay
(xy) = {pnay

(xy)ln
}

Pyea
(xy) = Dyea

(xy)

−1Wyea
(xy)(3.16)

Pnay
(xy) = Dnay

(xy)

−1Wnay
(xy)

where the elements pyea
(xy)ln

and pnay
(xy)ln

represent the
transition probability from xl to yn over graphs Gyea

(xy)

and Gnay
(xy), respectively.

Now we consider the above transition paths and
estimate the transition probabilities pyea

(xy)ln
and pnay

(xy)ln

of one step random walk over Gyea
(xy) and Gnay

(xy) as:

pyea
(xy)ln

= γ
∑
m

r(x)lm
pyea
(xy)mn

(3.17)

+ (1 − γ)
∑

k

pyea
(xy)lk

r(y)kn

pnay
(xy)ln

= γ
∑
m

r(x)lm
pnay
(xy)mn

+ (1 − γ)
∑

k

pnay
(xy)lk

r(y)kn

where the first summation gives the transition proba-
bility from xl to yn through the political relevance path
and the second summation gives the transition proba-
bility via the semantic relevance path. The coefficient
0 ≤ γ ≤ 1 is the probability that the random walker
will take the first transition path. We can further give
the matrix form of the above equation, showing the up-
date of transition probability of vote links from time t
to time t + 1,

Pyea
(xy)(t + 1) = γR(x)P

yea
(xy)(t) + (1 − γ)Pyea

(xy)(t)R(y)

Pnay
(xy)(t + 1) = γR(x)P

nay
(xy)(t) + (1 − γ)Pnay

(xy)(t)R(y)

(3.18)

Due to the existence of the bipartite graph, the above
random walk rule is significantly different than the one
over unipartite graph. For instance, for a non-bipartite
based random walk, the final distribution when t → ∞
tends to a stationary distribution. However, for a bipar-
tite graph with bipartition {V(x),V(y)}, the final dis-
tribution could oscillate between the prior distributions
of V(x) and V(y) without achieving a steady-state [21].
Since the formulation of (3.18) involves both transitions
within each unipartite graph and across the bipartite
graph, the final results are even more complicated to
state. In addition, the prediction of new vote links
changes the structure of the bipartite graph, and makes
efforts to derive the final distribution of such steady-
state intractable. Therefore, we develop a new iterative
approach to gradually produce the vote prediction re-
sults.

3.3 Iterative Prediction of Vote Links Note that
we construct two legislator-bill vote graphs Gyea and
Gnay using yea and nay votes separately, as described
in Section 2.4. Accordingly, two separate random walks
should be performed over these two graphs using the
rules in (3.18). For one step of random walk from time
t to t + 1, we can derive two new transition matri-
ces Pyea

(xy)(t + 1) and Pnay
(xy)(t + 1), where the elements

pyea
(xy)ln

, pnay
(xy)ln

measure the chance of yea and nay result



Algorithm 1 Iterative Vote Link Prediction through
Random Walk over a Heterogeneous Graph

Initialization:
Construct legislator graph G(x) = {V(x),E(x),W(x)},
bill graph G(y) = {V(y),E(y),W(y)}, and vote
graphs Gyea

(xy) = {V(x) ∪ V(y),E
yea
(xy),W

yea
(xy)} and

Gnay
(xy) = {V(x) ∪ V(x),E

nay
(xy),W

nay
(xy)};

Compute transition probabilities P(x) and P(y);
Derive steady-state distributions R(x) and R(y);
iteration counter t = 0;
Compute the initial bipartite graph transition proba-
bility matrices Pyea

(xy)(t) and Pnay
(xy)(t) using (3.16);

repeat
Compute the bipartite graph transition probability
matrices Pyea

(xy)(t+1) and Pnay
(xy)(t+1) using (3.18);

Estimate the posterior probabilities P yea
ln and Pnay

ln

for each possible vote link using (3.19);
For each possible prediction vote link, estimate the
mutual information I(xl, yn) of the legislator and
bill vertices (3.20):
Update vote link Wyea

(xy) or Wyea
(xy) from the pre-

diction with maximum mutual information, as
in (3.22);
Update iteration counter: t = t + 1;
Compute Pyea

(xy)(t) or Pnay
(xy)(t) with the new vote

graphs;
until All missing vote links are completed
Output:
The complete vote links Wyea

(xy) and Wnay
(xy).

for xl voting on yn. In the proposed iterative proce-
dure of vote prediction, we gradually complete the vote
links in a greedy way, in which only the most confident
prediction are used to create the new vote links. To
achieve this, we normalize the transition probabilities
over the two graphs to derive the posterior probability
Pln = {P yea

ln , Pnay
ln }, representing the probability for xl

to vote yn with yea and nay, respectively:

P yea
ln =

pyea
(xy)ln

pyea
(xy)ln

+ pnay
(xy)ln

(3.19)

Pnay
ln =

pnay
(xy)ln

pyea
(xy)ln

+ pnay
(xy)ln

Then the uncertainty of the prediction of vote from xl

to yn is measured by the mutual information I(xl, yn)
as:

I(xl, yn) =
∑
xl

∑
yn

p(xl, yn)
p(xl)p(yn)

.(3.20)

where p(xl, yn) is the joint probability distribution and
the marginal probabilities are p(xl), p(yn). In our
formulation, p(xl, yn) refers to the probability of the yea
and nay vote edge as shown in (3.19). The value p(xl)
is interpreted as the probability of xl giving yea and
nay votes and p(yn) is the probability of yn receiving
yea and nay votes, which are estimated as the priors
in (2.7). Therefore, the mutual information I(xl, yn) is
approximately computed as

I(xl, yn) ≈ P yea
ln log

P yea
ln

pyea
(x)l

pyea
(y)n

+ Pnay
ln log

Pnay
ln

pnay
(x)l

pnay
(y)n

.

(3.21)

For each possible prediction of vote links, the above
mutual information is computed and the one associated
with maximum value is chosen. Then a new vote link is
accordingly generated to Gyea

(xy) or Gnay
(xy) based on which

one has higher posterior probability. We can write this
one steep greedy assignment for vote link prediction as:

(l∗, n∗) = arg maxl,nI(xl, yn)(3.22)
P yea

l∗n∗ > Pnay
l∗n∗ ⇒ wyea

(xy)l∗n∗
= 1,

P yea
l∗n∗ < Pnay

l∗n∗ ⇒ wnay
(xy)l∗n∗

= 1,

Finally, with the updated Gyea
(xy) or Gnay

(xy), the cor-
responding transition matrix Pyea

(xy) or Pnay
(xy) is recom-

puted for the next random walk step. Through itera-
tively performing this random walk, where in each step
the bipartite vote graph is updated with more links,
we can gradually complete all the missing vote links.
This heterogeneous graph-based random walk method
for predicting legislative votes is summarized in Algo-
rithm 1.

Our proposed algorithm shares features with algo-
rithms for learning the structure of Markov random
fields (MRFs), a problem in which roll call data has
also been analyzed [2]. MRFs and random walk mod-
els are intimately related, as recently discussed in [8].
Greedy algorithms for structure learning use compari-
son tests of information-theoretic quantities such as mu-
tual information and entropy to find the edges connect-
ing MRF vertices like our proposed method for finding
vote edges [6, 23, 32]. These greedy algorithms are op-
timal in a Kullback–Leibler divergence-sense for acyclic
graphs such as tree-structured graphs. However, such
methods are not intended for heterogeneous graphs or
missing data as encountered in our legislative predic-
tion model. In future work, we would like to further
investigate the theoretical connections between the pro-
posed RWHG model and comparison test formulations
of MRF learning.



4 Empirical Evaluation

4.1 Data and Material For the roll call data, a
subset of bills and votes from [13] is used in our
experiments. In particular, we use the data from the
two most recent congressional sessions, i.e. the 110th
(January 2007 to December 2008) and 111th (January
2009 to December 2010). It contains a total of 1585
bills, 631 unique legislators who have at least one valid
vote, and 638,955 yea or nay votes. Table 1 shows
the statistics of the selected roll call data for each
congressional session.

Bill cosponsorship information dating back to the
93rd session of Congress is accessible from the Library
of Congress’ Thomas database.3 We use a version
of the data curated by Fowler et al. [11, 12].4 The
pair of legislators in the data with the highest number
of cosponsored bills is Edolphus Towns and Major
Owens, both African-American representatives of the
Democratic party from New York City. In predicting
the votes of the 110th and 111th sessions, we only use
cosponsorship data up to the 109th session (December
2006) to avoid overfitting.

To obtain the BOW representation of the bills,
significant n-grams (1 ≤ n ≤ 5) are first extracted
to construct the vocabulary. As described in [13],
only the n-grams which occur in more than 0.2%
and less than 15% bills are included. Finally, each
legislative bill is represented as a 4743 vector, where
each element indicates the counts of the corresponding
n-gram appearing in the bill. For constructing the
semantic similarity graph of bills, we simply use cosine
function to compute the edge weights. The k-nearest
neighbor approach with k = 6 is applied to sparsify
both the legislator cosponsorship graph and the bill
graph [16].

4.2 Analysis of Cosponsorship and Semantic
Similarity As discussed in Section 3, two major as-
sumptions of RWHG are the correlation between legis-
lator cosponsorship and their voting behavior, and the
correlation between semantic similarity of bills and vote
results. The correlation between cosponsorship and vot-
ing behavior of legislators contributes to the first term
in the random walk equation (3.22), and the correla-
tion between the semantics of bills and votes is related
to the second term in the same equation. In the follow-
ing, we will validate these two assumptions by empirical
analysis.

Our analysis is performed on the roll call data set
from two congressional sessions, as described above. We

3http://thomas.loc.gov
4http://jhfowler.ucsd.edu/cosponsorship.htm

Session bills legislators yea nay
110 745 549 248,077 48,543
111 845 553 298,106 44,229

Table 1: The number of legislators, bills, yea, and nay
votes in the 110th and 111th congressional sessions.

define the similarity of vote behavior between legislators
xl and xm as the normalized correlation, i.e. cosine angle

sim(xl, xm) =

∑
k w(xy)lk

· w(xy)mk√∑
k w2

(xy)lk
·
√∑

k w2
(xy)mk

,(4.23)

where w(xy)lk
= wyea

(xy)lk
− wnay

(xy)lk
and

w(xy)mk
= wyea

(xy)mk
− wnay

(xy)mk
combine the edges

from both yea and nay votes. Similarly, the similarity
of the voting results received by bills yn and yk can be
defined as

sim(yn, yk) =

∑
l w(xy)ln

· w(xy)lk√∑
l w

2
(xy)ln

·
√∑

l w
2
(xy)lk

.(4.24)

Based on these definitions, we can provide the
curves of semantic similarity w(y)nk

versus the values
of sim(yn, yk) (Figure 2(a)), and cosponsorship w(x)lm

versus the values of sim(xl, xm) (Figure 2(b)). These
figures validate the effectiveness of the two assumptions:
similar bills tend to receive similar votes, and legislators
with high cosponsorship tend to vote similarly. In
addition, Figure 2(a) presents higher values of vote
similarity of bills measured as sim(yn, yk) > 0.8 when
w(y)nk

> 0.6, while sim(xl, xm) < 0.8 for most cases in
Figure 2(b). This indicates that the semantic similarity
of bills is more correlated with the votes than the
cosponsorship among legislators. This observation will
be further confirmed by the prediction experiments in
Section 4.4, where the prediction solely based on the
bill similarity achieves higher accuracy than that solely
based on legislator cosponsorship.

4.3 Political Influence and Affinity Another
analysis afforded by the proposed random walk model is
the identification of the most influential legislators and
the pair of legislators with the greatest political affin-
ity. The most influential legislators are those whose
steady-state probability r(x)ll

is highest. The top ten
influential legislators in the two sessions are given in
Table 2. The pair of most-correlated legislators indi-
cated by the maximum political relevance score r(x)lm

are Russell Feingold and John Kerry in the 110th ses-
sion, and Bob Graham and John Kerry in the 111th
session.
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Figure 2: The curves indicate: a) the semantic similarity
and the similarity of the received votes of bills; b) the
cosponsorship and the similarity of voting behavior of
legislators.

John Kerry was one of the most influential personal-
ities in Washington, even running for president in 2004.
Feingold and Kerry were together the leading propo-
nents of troop withdrawal from Iraq, and Bob Graham
was mentioned as a possible running mate for Kerry in
the 2004 presidential election. Dodd, Levin, Cochran,
Lautenberg, and Warner are all long-serving leaders in
the Senate from both parties. Marchant, Westmore-
land, Franks, Foxx, Conaway, Barrett, and McHenry
are all Southern Republicans that have not served in
the House for an extended period; the American Conser-
vative Union rates all of these representatives as being
more than 95% conservative. These results make sense
from the political perspective, but also suggest different
dynamics in the Senate and House: influence through
senior leadership in the Senate, and influence by ‘young
guns’ in the House, and should be investigated further
by political scientists.

4.4 Experimental Results of Predicting Votes
Similar to the experimental setting in [13], we perform
vote prediction at the session level (a 2-year period).
In particular, we design two types of experiments: a)
prediction for random missing votes, and b) sequential
prediction. For a) type experiments, we randomly

110th Session 111th Session
Kenny Marchant Kenny Marchant

John Kerry John Kerry

Christopher Dodd Carl Levin

Carl Levin Christopher Dodd

Thad Cochran Lynn Westmoreland

Frank Lautenberg J. Gresham Barrett

Virginia Foxx Patrick McHenry

Mike Conaway Frank Lautenberg

Lynn Westmoreland Virginia Foxx

John Warner Trent Franks

Table 2: Legislators with the largest steady-state prob-
ability r(x)ll

.

partition the roll call data from each session into 6
folds and use standard cross-validation to compute the
average prediction accuracy. For b) type experiments,
we use the votes from the first 21 months to predict the
votes in the remaining 3 months of each session. The
final reported accuracy is the average accuracy in the
two sessions. We set the same parameter γ = 6/7 for
both experiments.

We compared with the methods used in [13], in-
cluding a simple yea model predicting all votes as yea,
two text based regression models, i.e. ridge regression
(LARS) and Lasso (L2), and the ideal point topic model
(IPTM).5 In addition, we designed two baseline meth-
ods using nearest neighbor (NN) method. Briefly speak-
ing, to estimate the vote w(xy)ln

from xl on yn, we aver-
age results of the known votes from the k most similar
legislators on yl or the known votes from xl on the k
(k = 6 in our experiments) most similar bills. The pre-
diction equations of w(xy)ln

are written as:

w(xy)ln
= sgn

∑
xm∈N (xl)

w(xy)mn
(4.25)

w(xy)ln
= sgn

∑
yk∈N (yn)

w(xy)lk
(4.26)

where N (xl) and N (yn) refer to the k-nearest neighbors
of xl and yn in V(x) and V(y), respectively. Eq. (4.25)
is named “NN Legislator” since it essentially performs
nearest neighbor search on the legislator space and
(4.26) is “NN Bill” since it estimates the votes using
the existing votes from the most similar bills.

5Under similar experimental settings, we compare with the
methods using the same parameters or the best performance
reported in the literature.



Method (a)-Accuracy % (b)-Accuracy %
yea 85.48 86.98
LARS 82.2 NA7

L2 89.7 88.1
IPTM 88.7 87.0
NN Legislator 85.42 NA
NN Bill 89.06 88.35
RWHG 91.10 90.36

Table 3: The accuracy of a) type experiments: the pre-
diction on random missing votes, and b) type exper-
iments: sequential prediction. The compared methods
include yea model, ridge regression (LARS), Lasso (L2),
Ideal Point Topic Model (IPTM) [13], k-Nearest Neigh-
bor of Legislators (NN Legislator), k-Nearest Neighbor
of Bills (NN Bill), and the proposed random walk over
heterogeneous graph (RWHG).

Table 3 shows the experimental results on the two
prediction tasks. In both tasks, the proposed RWHG
method achieved the best performance. For instance,
the baseline yea model generates 85.48% accurate votes
while RWHG can predict 91.10% of the votes, which
means RWHG can correctly predict around 42, 500 more
votes in the two-session period. The NN Bill method
has strong prediction performance indicating that the
voting behavior is fairly consistent across these two
sessions for the legislators and they tend to give the
same votes for similar bills. However, solely consider-
ing cosponsorship does not provide satisfactory perfor-
mance since NN Legislator produces fair performance
in predicting random missing votes. 6 It indicates that
a strong cosponsorship relationship between legislators
does not guarantee a similar political position across
all legislative issues. This also further confirms our ar-
gument about the unique feature of the United States
Congress discussed earlier in Section 1, where the leg-
islators are not bound to vote in lockstep with either
the party they belong to, or with political and social
relations. However, the experiments clearly show that
the proposed RWHG method can synergistically com-
bine the cosponsorship information with bill semantics
to achieve the unique strength for predicting legislative
votes.

6Since there is no existing votes for the bills in the sequential
prediction task, NN Legislator doest not generate meaningful
results.

7LARS model does not accomplish the sequential prediction
task due to some computational issues [13].

5 Significance and Conclusions

This paper is dedicated to developing a new random
walk model on a heterogeneous graph for predicting leg-
islative roll call data. We first summarize the main con-
tribution of this paper and then introduce the related
work.

5.1 Main Contributions The main contributions of
this paper include the following:

1. Unique heterogeneous graph formulation.
We proposed a unique formulation of heteroge-
neous graph for legislative prediction. Specifically,
we treat both the legislators and the bills as ver-
tices and accordingly generate three subgraphs.
Two unipartite subgraphs with homogeneous ver-
tices and edges connecting legislators and bills sep-
arately using the cosponsorship information for leg-
islators and semantic similarity for bills. A special
bipartite graph containing directed edges between
legislators and bills represents the vote information.
In particular, we treat yea and nay votes separately
and construct two independent vote graphs accord-
ingly.

2. Two-stage random walk with iterative vote
prediction: Based on the above heterogeneous
graph formulation, a two-stage random walk model
is proposed to perform vote link prediction. In
the first stage, two independent random walks are
launched over the legislator cosponsorship graph
and the bill semantic similarity graph to derive the
relevance between vertices when achieving steady-
state. In the second stage, we perform random
walk across the directed vote links and iteratively
generate new vote links from the most confident
predictions.

To our best knowledge, the heterogeneous graph for-
mulation of the legislative roll call data has not been
proposed in any previous literature in either quantita-
tive political science or data mining fields. The two-
stage random walk model over heterogeneous graph is
also significantly different from existing random walk
models. Besides the previous work in political science
area introduced in Section 1, we summarize the related
work from technical perspective in below.

5.2 Related Work Motivated by the real data gen-
erated in different domains, heterogeneous graph-based
formulations have attracted much attention in the past
years. For instance, ranking and classifying the vertices
of a heterogeneous graph are two well-formulated prob-
lems from real applications, such as author and docu-



ments co-ranking [39] and identifying research commu-
nities from bibliographic data [17]. A very recent study
performs both random walk and propagation over a het-
erogeneous graph to improve topic modeling of docu-
ments [10]. Compared to these existing approaches, we
formulate the vote prediction as a link prediction prob-
lem via random walk over a heterogeneous graph, in-
stead of either vertex ranking or classification.

Although link prediction has been widely studied
for social networks and the Internet, most of the exist-
ing methods are developed for graphs with either homo-
geneous vertices or edges [19, 15, 20, 33]. Recently, Sun
et al. proposed to learn optimal weights to combine het-
erogeneous topological features and then build a logistic
regression model to predict co-authorship links [31].

As a special case of a finite Markov chain, random
walk on graphs arises in many domains. Besides the
standard random walk [21] and the random walk with
restart model [25, 34], various random walk models have
been developed for graphs with homogeneous vertices or
bipartite graphs with homogeneous edges, including the
well-known PageRank algorithm [4], multiple random
walks [9], and random walk on bipartite graph [30].
Another related bi-relational graph-based random walk
formulation for the application of image annotation
was recently proposed [36]. In [36], the authors deal
with the label prediction problem in a semi-supervised
learning paradigm and the random walk is performed
over the entire bi-relational graph, instead of our two-
stage random walk across directed vote edges.

In the above heterogeneous graph formulation, two
unipartite graphs can be viewed as relational data
among legislators and bills. Therefore, multiple rela-
tional learning is another related topic. However, most
relational learning methods tend to recover the under-
lying clusters of the data [24], or reveal and visualize
the low-dimensional structures of the data [28, 18, 5].

Finally, if we treat the legislators as users, the bills
as items, and the votes as binary preference scores, then
the prediction of votes can be viewed as a special case of
recommendation problems [1]. The use of cosponsorship
graph between legislators then becomes a typical user-
based collaborative filtering model, which predicts the
votes of a legislator by collecting votes information from
other legislators. Similarly, the use of bill semantic re-
lations for vote prediction can be categorized as a item-
based collaborative filtering problem. Jointly learning
the user and item patterns has shown significant effec-
tiveness in real applications [22, 37].

5.3 Conclusions and Future Work In this arti-
cle, we proposed a novel method for the application of
legislative prediction through random walks on a het-

erogeneous graph. We performed vote prediction tasks
on real roll call data from the 110th and 111th con-
gressional sessions. The experimental results clearly
show the superior performance of the proposed RWHG
method, compared with the state of the art. In ad-
dition, we conducted an empirical study and demon-
strated that the semantic information of bills provides
relatively stronger clues for predicting the votes than
the cosponsorship information between legislators. Note
that the BOW-based semantic similarity could be en-
hanced based on advanced topic modeling algorithms;
it was our intent to consider a new prediction model
rather than dwell on the fine points of text analysis.
We could also use additional features in defining legis-
lator similarity. Finally, it is interesting to see that the
most influential legislators and the most strongly bound
legislator pairs discovered by the proposed model can be
well interpreted and supported by the political reality.

The proposed method addresses legislative predic-
tion, but it is indeed a general formulation and can be
extended to other applications. Therefore, one of the
directions of our future work is to extend this method
to other domains, such as recommendation applica-
tions. Another possible future direction is to enrich this
method for temporal analysis of a longer range of roll
call data [35].
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