Random Signals and Noise
ELEN E4815
Final Examination
Columbia University

Spring Semester- 2005

Prof I. Kalet

11 May 2005

Modified 19 April 2007
Does not include Problem #3

- Length of Examination- Three hours
- Answer All Questions

GOOD LUCK!!!
Problem #1

The power spectral density, \(P_n(f) \), of a narrow-band gaussian WSS random process, \(n(t) \), is shown below.

The process can be represented by the equation below

\[
n(t) = n_R(t) \cos 2\pi f_0 t - n_Q(t) \cos 2\pi f_0 t
\]

a. What is the total average power in this random process?

b. Find and draw the power spectral densities of the baseband processes \(n_R(t) \) and \(n_Q(t) \).

c. We still have the same power spectral density, \(P_n(f) \), but we now define the carrier frequency, \(f_0 \), as a different frequency, as shown on the next page.

Would the power spectral densities of \(n_{RN}(t) \) and \(n_{QN}(t) \), as defined below, change? **Explain your answer!!** If your answer is positive, show the new power spectral densities of \(n_{RN}(t) \) and \(n_{QN}(t) \).
This is the equation for \(n(t) \) but with the new carrier frequency \(f_{0N} \).

\[
n_N(t) = n_{RN}(t) \cos 2\pi f_0 t - n_{QN}(t) \cos 2\pi f_0 t
\]
Problem #2

Suppose we have an SSB-USB signal as defined below.

\[x_{\text{SSB-USB}}(t) = s(t) \cos 2\pi f_0 t - \hat{s}(t) \sin 2\pi f_0 t \]

The function, \(s(t) \), is a perfectly bandlimited gaussian random process with the power spectral density shown, \(P_s(f) \), below.

This signal is transmitted and received by the receiver shown below.

\[
\begin{align*}
\text{n(t), } N_0/2 \text{ watts/Hz} & \quad \cos(2\pi f_0 t + \theta) \\
x_{\text{SSB-USB}}(t) & \quad H_B(f) \quad H_L(f) \quad v_{\text{out}}(t)
\end{align*}
\]

where the phase \(\theta \), is not a random variable but is not equal to zero.
a. What is the output signal, $v_{out}(t)$, for a particular value of θ?

b. What is the average power at the output? Is it a function of θ?

c. Is the output signal, $v_{out}(t)$, a WSS signal?

 Explain your answer. If your answer is positive what is its power spectral density?

d. If θ is a random variable, with a uniform density function from $-\pi$ to π, would your answers to parts (b) and (c) above change. Again Explain your answer!!

END OF THE EXAMINATION!!!