Problem Set \#8 Solutions

1. a. Old telephone line $P / N_{0} W \geq 28 d b, W=3 k h z, 28 d b=10^{2.8}=630.96$, then the minimum capacity is

$$
C_{\min } \geq 3 \times 10^{3} \log _{2}[1+630.96]=27.911 \mathrm{kbps}
$$

b. $W \rightarrow \infty, P / N_{0} W \rightarrow 0$, then

$$
\begin{aligned}
C_{\infty} & =\lim _{W \rightarrow \infty} W \log _{2}\left(1+\frac{P}{N_{0} W}\right) \\
& =\frac{P}{N_{0}} \frac{1}{\log 2}
\end{aligned}
$$

$P / N_{0} W=3 \times 10^{3} \times 630.96=1.893 M H Z$, so $C_{\infty}=2.73 M b p s$. Compared with the 3 khz channel, we gain capacity by $2730-27.9=2702.1 \mathrm{kbps}$
c. $0.99 \times 2.73 \times 10^{6}=W \log _{2}\left[1+\frac{1.893 \times 10^{6}}{W}\right]$, assuming W big we get $W=\frac{\left(1.893 \times 10^{6}\right)^{2}}{2 \log 2 \times 27.308 \times 10^{3}}=94.64 M h z$.
From the results, we can see that in order to improve the capacity, we have to increase the BW. But the capacity tends asymptotically to the value $P /\left(N_{0} \log 2\right)$.
a. When $N_{R} P /\left(N_{0} W\right) \gg 1$,

$$
\begin{aligned}
C_{a} & =W \log _{2}\left(1+\frac{N_{R} P}{N_{0} W}\right) \text { bps } \\
& \approx W \log _{2}\left(\frac{N_{R} P}{N_{0} W}\right) .
\end{aligned}
$$

b. When $P /\left(N_{0} W\right) \gg 1$,

$$
\begin{aligned}
C_{b} & =M_{T} W \log _{2}\left[1+\frac{N_{R} P}{M_{T} N_{0} W}\right] \\
& \approx W \log _{2}\left[\frac{N_{R} P}{M_{T} N_{0} W}\right] .
\end{aligned}
$$

c. If $M_{t}=N_{R}=N$,

$$
\begin{aligned}
C_{b} & =N W \log _{2}\left(\frac{P}{N_{0} W}\right), \\
C_{a} & =W \log _{2}\left(\frac{N P}{N_{0} W}\right)
\end{aligned}
$$

C_{b} is clearly linear in N, C_{a} is a logarithmic function of N. When $P /\left(N_{0} W\right) \gg 1$ constant, the linear function grows much faster than the log function. In fact, we have $\lim _{N \rightarrow \infty} C_{b} / C_{a}=+\infty$,i.e. $C_{b} \gg C_{a}$ when $N \rightarrow \infty$.
d. When $N_{R} P / N_{0} W \ll 1$,

$$
\begin{aligned}
C_{a} & =W \log _{2}\left(1+\frac{N_{R} P}{N_{0} W}\right) \\
& =\frac{W}{\log 2} \log \left(1+\frac{N_{R} P}{N_{0} W}\right) \\
& \simeq \frac{N_{R} P}{N_{0} \log 2}
\end{aligned}
$$

When $P / N_{0} W \ll 1$,

$$
\begin{aligned}
C_{b} & =M_{T} W \log 2\left[1+\frac{N_{R} P}{M_{T} N_{0} W}\right] \\
& \simeq \frac{N_{R} P}{\log 2 N_{0}}
\end{aligned}
$$

At least in first order approximation $C_{a}=C_{b}$. For $P / N_{0} W \ll 1$, MIMO does not affect any improvement over SIMO.

