Problem Set \#7 Solutions

1. a. The outage probability at the output of a maximal-ratio combining receiver can be derived as follows:

$$
\begin{aligned}
\mathbb{P}[\text { out }] & =\mathbb{P}\left\{\frac{E_{b, \text { inst }}}{N_{0}}<\frac{E_{b, \text { req }}}{N_{0}}\right\} \\
& =\mathbb{P}\left\{\frac{x E_{b}}{N_{0}}<\frac{E_{b, \text { req }}}{N_{0}}\right\} \\
& =\mathbb{P}\left\{x<\frac{E_{b, \text { req }} / N_{0}}{E_{b} / N_{0}}\right\},
\end{aligned}
$$

if we denote $\frac{E_{b, \text { req }} / N_{0}}{E_{b} / N_{0}} \triangleq K$, then

$$
\begin{aligned}
\mathbb{P}[\text { out }] & =\int_{0}^{K} \frac{1}{\left(2 \delta^{2}\right)^{2}} x e^{-x / 2 \delta^{2}} d x \\
& =1-\left(1+\frac{K}{2 \delta^{2}}\right) e^{-k / 2 \delta^{2}}
\end{aligned}
$$

and recall $\bar{E}_{b}=2 \delta^{2} E_{b}$, we obtain

$$
\mathbb{P}[o u t]=1-\left[1+\frac{E_{b, r e q} / N_{0}}{\bar{E}_{b} / N_{0}}\right] e^{-\frac{E_{b, r e q} / N_{0}}{E_{b} / N_{0}}}
$$

b. Since $E_{\text {total }}=x E_{b}$, its average is

$$
\begin{aligned}
\int_{0}^{\infty} x E_{b} f(x) d x & =\int_{0}^{\infty} x E_{b} \frac{1}{\left(2 \delta^{2}\right)^{2}} x e^{-x / 2 \delta^{2}} d x \\
& =4 \delta^{2} E_{b}
\end{aligned}
$$

so $\bar{E}_{b, t}=2 \bar{E}_{b}$. By plugging this into the result we got in [a], we get

$$
\mathbb{P}[\text { out }]=1-\left[1+\frac{E_{b, r e q} / N_{0}}{\bar{E}_{b, t} / 2 N_{0}}\right] e^{-\frac{E_{b, r e q} / N_{0}}{E_{b, t} / 2 N_{0}}}
$$

c. Desired instantaneous $\mathbb{P}_{b}[\varepsilon]=10^{-5}$, then $E_{b, \text { req }} / N_{0}=9.6 d b$. By

$$
\frac{1-\mathbb{P}[\text { out }]}{1+\frac{E_{b, r e q} / N_{0}}{E_{b} / N_{0}}}=e^{-\frac{E_{b, r e q} / N_{0}}{E_{b} / N_{0}}}
$$

By using approximation $\log (1+x) \approx x-x^{2} / 2$, we obtain

$$
\begin{equation*}
\frac{E_{b, r e q} / N_{0}}{\bar{E}_{b, t} / 2 N_{0}} \approx \sqrt{-2 \log (1-\mathbb{P}[\text { out }])} \tag{1}
\end{equation*}
$$

- For $\mathbb{P}[$ out $]=10^{-3}$, by using (1), we obtain $\bar{E}_{b} / N_{0}=23.1 d b$, compared with SISO 39.6 db , we get 17.5 db less. similarly, for (b), we get $\bar{E}_{b, t} / N_{0}=26.1 d b, 14.5 \mathrm{db}$ less.
- For $\mathbb{P}[$ out $]=10^{-1}, \bar{E}_{b} / N_{0}=12.98 d b$, and $\bar{E}_{b, t} / N_{0}=16 d b$, compared with SISO $\bar{E}_{B} / N_{0}=19.3 d b$.

2. For $x_{i}=r_{i}^{2}$, its density probability is

$$
f_{x_{i}}\left(x_{i}\right)=\frac{1}{2 \delta^{2}} e^{-x_{i} / 2 \delta^{2}}
$$

Let's prove it using induction method. First, when $L=2$, we have

$$
\begin{aligned}
f_{x}(x) & =f_{x_{1}}\left(x_{1}\right) * f_{x_{2}}\left(x_{2}\right) \\
& =\int_{0}^{x} \frac{1}{\left(2 \delta^{2}\right)^{2}} e^{-x_{1} / 2 \delta^{2}} e^{-\left(x-x_{1}\right) / 2 \delta^{2}} d x \\
& =\frac{1}{\left(2 \delta^{2}\right)^{2}} e^{-x / 2 \delta^{2}} \int_{0}^{x} d x_{1} \\
& =\frac{1}{\left(2 \delta^{2}\right)^{2}} x e^{-x / 2 \delta^{2}}
\end{aligned}
$$

Suppose the for L antennas,

$$
f(x)=\frac{1}{(L-1)!\left(2 \delta^{2}\right)^{L}} x^{L-1} e^{-x / 2 \delta^{2}}
$$

then for $L+1$ antennas, the probability density function can be calculated as

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \frac{1}{\left(2 \delta^{2}\right)} e^{-x_{1} / 2 \delta^{2}} \frac{1}{(L-1)!\left(2 \delta^{2}\right)^{L}}\left(x-x_{1}\right)^{L-1} e^{-\left(x-x_{1}\right) / 2 \delta^{2}} d x_{1} \\
& =\frac{1}{L!\left(2 \delta^{2}\right)^{L+1}} x^{L} e^{-x / 2 \delta^{2}}
\end{aligned}
$$

thus, the equation holds for all L.

