Problem Set \#4 Solutions

1. a. Proof: because of the symmetry of the constellation, we can just consider the first quadrant with $M / 4$ points. The total energy is

$$
\begin{aligned}
E_{t} & =\sum_{k=0}^{\frac{\sqrt{M}}{2}-1}\left[\frac{\sqrt{M}}{2}\left(\frac{(2 k+1) d_{\min }}{2}\right)^{2}+\sum_{i=0}^{\frac{\sqrt{M}}{2}-1}\left(\frac{(2 i+1) d_{\min }}{2}\right)^{2}\right] \\
& =\frac{d_{\min }^{2} \sqrt{M}}{4} \sum_{k=0}^{\frac{\sqrt{M}}{2}-1}(2 k+1)^{2} \\
& =\frac{d_{\min }^{2} \sqrt{M}}{4} \frac{M \sqrt{M}-\sqrt{M}}{6}
\end{aligned}
$$

thus,

$$
E_{s}=\frac{E_{t}}{M / 4}=\frac{(M-1) d_{\min }^{2}}{6}
$$

b. The peak energy is

$$
E_{p e a k}=2(\sqrt{M}-1)^{2} d_{\min }^{2} / 4=\frac{d_{\min }^{2}(M-2 \sqrt{M}+1)}{2}
$$

thus the peak-to-average energy ratio of a general square QAM constellation is

$$
\frac{E_{\text {peak }}}{E_{s}}=\frac{3(M-2 \sqrt{M}+1)}{M-1}
$$

c.

$$
\frac{E_{\text {peak }}}{E_{s}}=\lim _{M \rightarrow \infty}=3
$$

d. For internal symbols $\operatorname{Pr}_{s}\{\varepsilon\}=2 Q\left(\frac{d_{\text {min }}}{\sqrt{2 N_{0}}}\right)$, for the edge symbols, $\operatorname{Pr}_{s}\{\varepsilon\}=Q\left(\frac{d_{\text {min }}}{\sqrt{2 N_{0}}}\right)$.
2. a. For the first ring, $E_{s 1}=\left(\frac{d_{\min }}{2 \sin \frac{\pi}{8}}\right)^{2}=2 \cos ^{2} \frac{\pi}{8} d_{\text {min }}^{2}$, and $E_{s 2}=\left(\sqrt{2} d_{\min } \cos ^{2} \frac{\pi}{8}+\frac{\sqrt{3} d_{m i n}}{2}\right)^{2}$, thus the average energy per signal is

$$
E_{s}=\frac{1}{2}\left(E_{s 1}+E_{s 2}\right)=\frac{d_{\min }^{2}}{2}\left(2 \cos ^{4} \frac{\pi}{8}+\frac{3}{4}+\sqrt{6} \cos ^{2} \frac{\pi}{8}+2 \cos ^{2} \frac{\pi}{8}\right)=3 d_{\min }^{2}
$$

This one requires more energy than square 16 QAM, which is only $2.5 d_{\text {min }}^{2}$.
b. The peak-to-average energy ratio for square one is 1.8 , and this one is $\left(2 \cos ^{4}(\pi / 8)+\right.$ $\left.\sqrt{6} \cos ^{2}(\pi / 8)+0.75\right) / 3=1.4326$, so this one has smaller peak-to-average ratio.
3. Check your course notes.
4. a. Because $\operatorname{Pr}_{s}\{\varepsilon\} \leq(M-1) Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)$, for $M=2, E_{b} / N_{0}=18.06$, which is 12.57 db ; for $M=4, E_{b} / N_{0}=10.125$, which is 10.05 db ; for $M=8, E_{b} / N_{0}=7.3$, which is 8.634 db ; for $M=16, E_{b} / N_{0}=5.835$, which is 7.66 db ; for $M=64, E_{b} / N_{0}=4.35$, which is 6.39 db ; for $M=256, E_{b} / N_{0}=3.6$, which is 5.568 db
b. Proof:

$$
\begin{aligned}
\operatorname{Pr}_{b}\{\varepsilon\} & =\frac{1}{M-1}\left\{\frac{1}{n}\binom{n}{1} P r_{s}\{\varepsilon\}+\frac{2}{n}\binom{n}{2} P r_{s}\{\varepsilon\}+\cdots \frac{n}{n}\binom{n}{n} \operatorname{Pr} s\{\varepsilon\}\right\} \\
& =\frac{1}{M-1}\left\{\frac{1}{n} \sum_{k=1}^{n} k\binom{n}{k}\right\} \operatorname{Pr} s\{\varepsilon\} \\
& =\frac{M / 2}{M-1} \operatorname{Pr}_{s}\{\varepsilon\}
\end{aligned}
$$

c. For large M , the ratio goes to $1 / 2$.

