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Problem Set #4 Solutions

1. a. Proof: because of the symmetry of the constellation, we can just consider the first
quadrant with M/4 points. The total energy is
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b. The peak energy is
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thus the peak-to-average energy ratio of a general square QAM constellation is
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2. a. For the first ring, Es1 =
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thus the average energy per signal is
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This one requires more energy than square 16 QAM, which is only 2.5d2
min.

b. The peak-to-average energy ratio for square one is 1.8, and this one is (2cos4(π/8) +√
6cos2(π/8) + 0.75)/3 = 1.4326, so this one has smaller peak-to-average ratio.
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3. Check your course notes.

4. a. Because Prs{ε} ≤ (M − 1)Q

(√
Es
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)
, for M = 2, Eb/N0 = 18.06, which is 12.57db; for

M = 4, Eb/N0 = 10.125, which is 10.05db; for M = 8, Eb/N0 = 7.3, which is 8.634db;
for M = 16, Eb/N0 = 5.835, which is 7.66db; for M = 64, Eb/N0 = 4.35, which is
6.39db; for M = 256, Eb/N0 = 3.6, which is 5.568db

b. Proof:
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c. For large M, the ratio goes to 1/2.


