Problem Set \#2 Solutions

1 Remark: We work under the condition $\Phi_{1}(t)=X_{1}(t) / \sqrt{E_{b}}$, since $\|\Phi(t)\|=1$. (It is a minor typo in the problem that $\left.\Phi_{1}(t)=X_{1}(t) / \sqrt{E}\right)$.
a)

$$
\begin{aligned}
\Phi_{1}(t) & =\frac{X_{1}(t)}{\sqrt{E_{b}}} \\
& =\sqrt{\frac{1}{T}}, 0 \leq t \leq T
\end{aligned}
$$

By Gram-Schmidt procedure, we can compute

$$
c_{21}=<\Phi_{1}(t), X_{2}(t)>=\sqrt{\frac{E_{b}}{2}},
$$

and therefore,

$$
\begin{aligned}
\Phi_{2}(t) & =\frac{X_{2}(t)-c_{21} \Phi_{1}(t)}{\left\|X_{2}(t)-c_{21} \Phi_{1}(t)\right\|} \\
& = \begin{cases}\sqrt{\frac{1}{T}}, & 0 \leq t \leq T / 2 \\
-\sqrt{\frac{1}{T}}, & T / 2 \leq t \leq T\end{cases}
\end{aligned}
$$

It is easy to compute

$$
\rho=\frac{1}{E_{b}} \int_{0}^{T / 2} \frac{E_{b} \sqrt{2}}{T}=\frac{\sqrt{2}}{2} .
$$

b) Note that $X_{1}=\sqrt{E_{b}} \Phi(t)$, and it is also easy to compute

$$
X_{2}(t)=\sqrt{\frac{E_{b}}{2}} \Phi_{1}(t)+\sqrt{\frac{E_{b}}{2}} \Phi_{2}(t),
$$

therefore, $b_{1}=b_{2}=\rho \sqrt{E_{b}}$.
2 Assume that $X(t)=\sum_{i=1}^{\infty} a_{i} \Phi_{i}(t), Y(t)=\sum_{i=1}^{\infty} b_{i} \Phi_{i}(t)$ and $a=\left(a_{1}, a_{2}, \cdots\right), b=\left(b_{1}, b_{2}, \cdots\right)$. We obtain, by using the orthonormality of $\left\{\Phi_{i}\right\}$,

$$
\begin{aligned}
d_{X, Y}^{2} & =\int_{0}^{T}(X(t)-Y(t))^{2} d t \\
& =\int_{0}^{T}\left[\sum_{i=1}^{\infty} a_{i} \Phi_{i}(t)-\sum_{i=1}^{\infty} b_{i} \Phi_{i}(t)\right]^{2} d t \\
& =\sum_{i=1}^{\infty}\left(a_{i}-b_{i}\right)^{2} \int_{0}^{T} \Phi_{i}^{2}(t) d t \\
& =|a-b|^{2} .
\end{aligned}
$$

3 Using the fact that s_{1} and s_{0} are two signals with equal unit energy, it is easy to see that

$$
\begin{aligned}
& \int_{0}^{T}\left[r(t)-\sqrt{E_{1}} S_{1}(t)\right]^{2} d t<\int_{0}^{T}\left[r(t)-\sqrt{E_{0}} S_{0}(t)\right]^{2} d t \\
\Longleftrightarrow & \int_{0}^{T}\left[r^{2}(t)-2 r(t) \sqrt{E_{1}} S_{1}(t)+E_{1} S_{1}^{2}(t)\right] d t<\int_{0}^{T}\left[r^{2}(t)-2 r(t) \sqrt{E_{0}} S_{0}(t)+E_{0} S_{0}^{2}(t)\right] d t \\
\Longleftrightarrow & \frac{E_{1}-E_{0}}{2}<\int_{0}^{T} \sqrt{E_{1}} r(t) S_{1}(t) d t-\int_{0}^{T} \sqrt{E_{0}} r(t) S_{0}(t) d t
\end{aligned}
$$

which is the output of the correlation receiver.
4 a) It is easy to check that s_{1} and s_{0} are two orthonormal basis functions. The optimum two-branch correlation receiver is

b) Suppose that the received signal is $r(t)=X(t)+n(t)$ where $X(t)$ is one of the two signals shown in the problem and $n(t)$ is the white noise. If $X(t)$ is equal to $\sqrt{E} s_{1}$, then the output of the correlation receiver is

$$
\begin{aligned}
\int_{0}^{T} & {[r(t)+n(t)] \sqrt{E} s_{1}(t) d t-\int_{0}^{T}[r(t)+n(t)] \sqrt{E} s_{0}(t) d t } \\
& =E+\int_{0}^{T} \sqrt{E} n(t) s_{1}(t) d t-\int_{0}^{T} \sqrt{E} n(t) s_{0}(t) d t \\
& \quad \text { define } \\
= & +S_{1}-S_{0}
\end{aligned}
$$

where S_{1} and S_{0} are two independent Gaussian random variables (please check that the correlation of S_{1} and S_{0} is equal to zero by recalling that s_{1} and s_{0} are two orthonormal basis functions) satisfying

$$
\begin{aligned}
\operatorname{Var}\left(S_{1}\right)=\mathbb{V} a r\left(S_{0}\right) & =\mathbb{E} \int_{0}^{T} \int_{0}^{T} \operatorname{En}(u) s_{1}(u) n(v) s_{1}(v) d u d v \\
& =E \int_{0}^{T} \int_{0}^{T} \mathbb{E}[n(u) n(v)] s_{1}(u) s_{1}(v) d u d v \\
& =E \int_{0}^{T} \int_{0}^{T} \frac{N_{0}}{2} \delta(u-v) s_{1}(u) s_{1}(v) d u d v \\
& =\frac{E N_{0}}{2}
\end{aligned}
$$

therefore, by noting that $S_{1}-S_{0}$ is a Gaussian random variable with variance $\frac{E N_{0}}{2}+$ $\frac{E N_{0}}{2}=E N_{0}$, we can compute the conditional probability

$$
\mathbb{P}\left[\operatorname{error} \mid X(t)=s_{1}(t)\right]=\mathbb{P}\left[E+S_{1}-S_{0}>0\right]=Q\left(\sqrt{\frac{E}{N_{0}}}\right) .
$$

Using a similar argument, we can calculate

$$
\mathbb{P}\left[\operatorname{error} \mid X(t)=s_{0}(t)\right]=Q\left(\sqrt{\frac{E}{N_{0}}}\right),
$$

which implies

$$
\begin{aligned}
\mathbb{P}[\text { error }] & =\mathbb{P}\left[X(t)=s_{0}(t)\right] \mathbb{P}\left[\operatorname{error} \mid X(t)=s_{0}(t)\right]+\mathbb{P}\left[X(t)=s_{1}(t)\right] \mathbb{P}\left[\text { error } \mid X(t)=s_{1}(t)\right] \\
& =Q\left(\sqrt{\frac{E}{N_{0}}}\right) .
\end{aligned}
$$

c) The two-branch matched filter for this modulation technique is shown below. Sample at T.

d) Using the same argument as in b), we know that the error probability is $Q\left(\sqrt{\frac{E}{N_{0}}}\right)$.

