MODERN DIGITAL MODULATION TECHNIQUES
ELEN E6909

Columbia University
Spring Semester-2008

Professor I. Kalet
16 April 2008

Assistants:
Jian Tan
Xiaozhu Kang
MODERN DIGITAL MODULATION
TECHNIQUES
ELEN E6909

Course Website:

Class Hours:
Tuesday: 12:30- 2:30 PM
Room: Eng. Terrace 253

Professor Kalet
kalet@actcom.co.il
kalet@ee.columbia.edu
Tel No: 718 601 3715
Office: 1243 Mudd Bldg.
Office Hours:
Tuesday- 11:00 AM-12:00 PM
Thursday-11:00 AM-12:00 PM

Assistants:
JianTan
jiantan@ee.columbia.edu
Xiaozhu Kang
xiaozhu@ee.columbia.edu
MODERN DIGITAL MODULATION TECHNIQUES

The goal of this course is to acquaint the student with modern digital modulations and multiple access techniques, and with their applications in present and future mobile wireless, broadband wireless, satellite and wireline systems. At the end of the course, you should have enough background to understand both present and future concepts in the field.

We will spend much time at the beginning of the course discussing the channels over which we communicate, with special emphasis in this course, on the Rayleigh multipath fading channel and the twisted-pair channel. The Rayleigh fading channel is the channel model for wireless mobile and cellular communications, and the twisted-pair channel is the one used in ADSL and VDSL. Later on in the course, we will discuss the concept of space diversity or space multiplexing, e.g., MIMO and BLAST. This concept in combination with OFDM and coding is now being used to greatly improve the performance of many wireless communication systems.

As part of the course we will include a discussion of results from Shannon Information Theory. Shannon Theory is the theoretical basis for all communication systems. Information Theory basically tells us what are the bounds on communications. Our discussion of Information Theory will lead us into the topics of Multitone and OFDM modulations. We will discuss the information theory bounds on communications over Rayleigh fading channels, including a discussion of the MIMO concept, and space-time (Alamouti coding).
We will discuss almost all of the modulations presently being used, or being considered for use, in communication systems. Classic modulation techniques such as QAM and MPSK, will be described. We will also investigate multiple access techniques, a topic very closely related to modulation theory. We will place special emphasis on Orthogonal Frequency Division Multiplex Access (OFDMA) and Code Division Multiple Access (CDMA).

We will, as mentioned before, discuss relatively new concepts in modulation, antenna and space diversity, and multiple access techniques such as OFDM and UWB-OFDM. We will discuss the use of iterative decoding (Turbo-coding) to improve communication system performance. We will also describe the concept of adaptive modulation and coding, which is being used in many new communication systems, e.g., IEEE 802.11 (Wi-Fi), IEEE 802.16 (Wi-Max) and 3G-LTE.

We will emphasize the topic of multitone modulations such as DMT and OFDM. Discrete Multitone (DMT) is presently being used in the ADSL and VDSL.

OFDM, based on the multitone concept, is presently being used in broadband wireless access systems, e.g., IEEE 802.11a, IEEE 802.16, 3G-LTE and the UWB-OFDM WiMedia Alliance Standards. OFDM is also a candidate for use in Fourth Generation Mobile Systems.

Time permitting, we will discuss the Viterbi Algorithm. This algorithm may be used in the detection of a number of coding techniques and modulations, such as Trellis Coded Modulation (TCM), and in optimum detection of Continuous Phase Modulations. The Viterbi Algorithm is also used to decode convolutional codes and to overcome intersymbol interference.

We will discuss the topic of Continuous Phase Modulations (CPM). These modulations are used in mobile and satellite communications, e.g., GMSK is used in
GSM, DECT, GPRS and other systems as well. CPM modulations are constant-envelope modulations which allow the use of non-linear power-efficient transmitter amplifiers in cellular and space communications.

Again, we hope that by the end of the course you will have a better understanding of modern digital modulations and multiple access techniques.

I. Kalet
10 January 2008

PREREQUISITES

The student is expected to have studied the Course #ELEN E4702 at Columbia University, or its equivalent, in another university.

Basically this means that the student should have knowledge of the topics of signal space, optimum receiver structure and the matched filter, as presented in ELEN E4702.

If you have any questions about your pre-requisites please contact the instructor, Professor Irving Kalet at either of the two e-mail addresses shown below.

kalet@actcom.co.il
kalet@ee.columbia.edu
REFERENCES

The course has no formal reference book. A list of reference books and articles will be handed out during the first lesson. However, a number of books might be of some interest to the student. These books are listed below.

The final mark for the course will be determined on the following basis:

Final Mark: Homework Assignments-15% (Required)
Final Project-85%
MODERN DIGITAL MODULATION TECHNIQUES
ELEN E6909
Columbia University
Spring Semester 2008

Syllabus

Introduction
A “Bit” of History
Analog and Digital Modulations
FDMA, TDMA, FDD, TDD-Definitions
Major system descriptions-Wireline, Wireless, Satellite
Tradeoffs

Communication Channels
Telephone Channel
Twisted-Pair Channel
Multipath Fading Channel
 Rayleigh Fading
 Delay Spread and Frequency Selective Fading

Brief Review of Signal Space, Optimum Detection and Matched Filter

*Baseband Signaling (This topic will not be covered in class-Student is expected to have studied this topic- However, some extra pages of notes, will be handed out to students, to help them review this topic!)
 Nyquist Signaling
 Optimum Filtering
 Linear Equalization
 Duobinary Signaling

Classical Modulations
 BPSK, QPSK, MPSK, QAM, BFSK, MFSK
 Definitions
 Optimum Detection
 Probability of Error
Rayleigh fading channel
Performance of Modulations on Fading Channel-SISO
Antenna (and) Space Diversity
Classic Antenna Diversity-SIMO
Space Multiplexing
MIMO, BLAST

Brief survey of information theory
Why Code?
The Famous Capacity Equation for a Perfectly Bandlimited Channel
Bandwidth Efficiency versus Power Efficiency
Capacity of the General Channel
Why Multitone systems?

Multitone Modulation
Multitone Concept
Discrete Multitone (DMT) Implementation

Orthogonal Frequency Division Multiplexing-OFDM
Definition
Why use OFDM?
Adaptive Modulation and Coding
IEEE 802.11, 802.16, 3G-LTE-Radio Interfaces
OFDMA
OFDMA-Multiple Access Technique for the Fourth Generation?

New Information Theory Bounds on Rayleigh Fading Channels
SISO, MIMO, SIMO, MISO
Alamouti Coding
Multi-User Diversity

MSK-type Signaling (This topic has been moved from an earlier date)
QPSK, SQPSK and MSK-type Signals
\(\pi/4\)-QPSK, EDGE-8PSK
Adjacent Channel Crosstalk in QPSK, SQPSK, MSK
Nyquist Signaling for BPSK, QPSK, etc

The Viterbi Algorithm-Time Permitting

Trellis Coded Modulation- Ungerboeck Modulation-Time Permitting
WGN channels
Interleaving for the Rayleigh channel
Performance on Rayleigh channel
The ISI channel
Iterative Techniques (Time Permitting)

Turbo-Coding

Iterative decoding for a channel with ISI

Continuous Phase Modulation-CPM

Coherent Detection

GMSK (GSM, DECT, CDPD), TFM, GTFM

Adjacent Channel Crosstalk

Optimum detection - trellis-coding gain

Combined CPM and coding techniques- Iterative decoding

Iterative decoding of CPM

Adjacent channel interference

FM receiver

CDMA and WCDMA

The concepts and some important points

THE PHYSICAL INTERFACE

OF IS-95 AND IMT 2000 WCDMA - Time permitting

SUMMARY AND THE FUTURE