Modern Digital Modulation Techniques ELEN E6909

Columbia University
Spring Semester- 2008

Problem Sets \# 5-7
(Revised Version)
24 March 2008
Professor I. Kalet

Modern Digital Modulation Techniques ELEN E6909
 Columbia University Spring Semester 2008

PROBLEM SET \# 5

Due Date: 2 April 2008 (New Due Date)

Problem \#1

Assume that a BPSK signal is transmitted over a slow flat Rayleigh fading channel with additive WGN. We use one antenna at the transmitter and one antenna at the receiver (SISO).
a. Calculate the average bit error probability, $\operatorname{Pr}_{b}\{\varepsilon\}$ for BPSK (we actually started this in class), as a function of the average $\mathrm{E}_{\mathrm{b}} / \mathbf{N}_{\mathbf{0}}$.
b. Repeat (a) for the symbol error probability, $\operatorname{Pr}_{s}\{\varepsilon\}$,for QAM (ignoring the $\mathbf{Q}^{\underline{2}}$ terms in the error probability equation), as a function of the average E_{s} / N_{0}..

Problem \#2

Assume that a BPSK signal is transmitted over a slow flat Rayleigh fading channel with additive WGN, in a SISO system.
a. Calculate the Outage Probability for BPSK (we actually did this in class), as a function of the average E_{b} / N_{0} and $\mathbf{E}_{\mathrm{b}, \text { req }} / \mathbf{N}_{0}$, for this SISO system
b. For BPSK, find the required average E_{b} / N_{0}, if the outage probability, $\operatorname{Pr}\{o u t\}$ is equal to 10^{-3}, and if the desired instantaneous, $\operatorname{Pr}_{\mathrm{b}}\{\varepsilon\}$ equals 10^{-5}.
c. Compare the value found in (b) with the average E_{b} / N_{0}, required when the average $\operatorname{Pr}_{b}\{\varepsilon\}=10^{-5}$.
d. Repeat parts (b) and (c) if the desired instantaneous $\operatorname{Pr}_{b}\{\varepsilon\}$ remains the same (i.e., equals 10^{-5}) but the Pr \{out\}equals 10^{-1} and also 10^{-5}.

Modern Digital Modulation Techniques ELEN E6909
 Columbia University Spring Semester 2008

PROBLEM SET \# 6 (New Set Number)
 Due Date: 2 April 2008

Read the following articles on BLAST and MIMO

The theoretical background behind MIMO.

1. G.J. Foschini and M.J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas", Wireless Personal Communications, Vol. 6, No. 3, 1998, pp. 311-335.
The BLAST Algorithm
2. P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, "V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel", Invited Paper, Proc. ISSSE-98, Pisa, Italy, Sept. 29, 1998.
These articles may be downloaded from the following website
http://www1.bell-labs.com/project/blast/

Modern Digital Modulation Techniques ELEN E6909 Columbia University Spring Semester 2008

PROBLEM SET \# 7 (New Set Number) Due Date: 9 April 2008 (New Due Date)

Problem \#1

This problem concerns Maximal Ratio Combining (MRC) -SIMO techniques

a) The modulation technique is BPSK. Find the outage probability at the output of a maximal-ratio combining receiver (with two receiving antennas) as a function of the average received energy per bit per antenna, divided by the noise spectral density, $E_{b \text {, avg, ant }} / \mathbf{N}_{0}$, and the required instantaneous, $E_{b, ~ r e q, ~ a n t ~} / \mathbf{N}_{0}$, for the required instantaneous probability of error. Assume that the receiving antennas receive independent signals of the same average power.
b) Now find the outage probability of a maximal-ratio combining receiver (with two receiving antennas) as a function of the total average received energy per bit at both antennas divided by the noise spectral density $\mathbf{E}_{\mathrm{b}, \text { avg, total }} / \mathrm{N}_{0}$. Assume that the antennas receive independent signals of the same average power.
c) For BPSK, compare the results of (a) and (b) with those for a single receiving antenna at an outage probabilities, of 10^{-3} and 10^{-1}, if the desired instantaneous $\operatorname{Pr}_{b}\{\varepsilon\}=10^{-5}$. How many dB have been gained in each case by using MRC-SIMO techniques?

Problem \#2

This problem concerns MRC techniques when the number of receiving antennas is " L ".

For BPSK, show that the probability density function, f(x), for the combined received signal for \underline{L} antennas, with maximalratio combining, is given by the equation below.

$$
\begin{aligned}
& \quad f(x)=\frac{1}{(L-1)!\left(2 \sigma^{2}\right)^{\mathrm{L}}} \quad x^{L-1} \exp \left\{-x / 2 \sigma^{2}\right\} ; \quad x \geq 0 \\
& \text { (where } \left.x=x_{1}+x_{2}+\ldots . . x_{L}\right) ; x_{i}=r_{i}{ }^{2} .
\end{aligned}
$$

The variable, r_{i} represents the random Rayleigh variable at each receiving antenna.

Hint: This is similar to what we did in class for two receiving antennas.

