
Modulated Branching Processes and Origins of Power Laws

Predrag R. Jelenković and Jian Tan
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Abstract— Power law distributions have been repeatedly
observed in a wide variety of socioeconomic, biological and
technological areas, including: distributions of wealth, species-
area relationships, populations of cities, values of companies,
sizes of living organisms and, more recently, distributions of
documents and visitors on the Web, etc. In the vast majority
of these observations, e.g., city populations and sizes of living
organisms, the objects of interest evolve due to the replication
of their many independent components, e.g., births-deaths of
individuals and replications of cells. Furthermore, the rates
of replication of the many components are often controlled
by exogenous parameters causing periods of expansion and
contraction, e.g., baby booms and busts, economic booms and
recessions, etc. In addition, the sizes of these objects often either
have reflective lower boundaries, e.g., cities do not fall bellow
a certain size, low income individuals are subsidized by the
government, companies are protected by bankruptcy laws, etc;
or have porous/absorbing lower boundaries, e.g., cities may
degenerate, bankruptcy protection may fail and a company
can be liquidated.

Hence, it is natural to propose reflected modulated branching
processes as generic models for many of the preceding ob-
servations of power laws. Indeed, our main results show that
these apparently new mathematical objects result in power law
distributions under quite general “polynomial Gärtner-Ellis”
conditions. The generality of our results could explain the
ubiquitous nature of power law distributions. Furthermore, an
informal interpretation of our main results suggests that alter-
nating periods of expansion and reduction, e.g., economic booms
and recessions, are primarily responsible for the appearance of
power law distributions.

Our results also establish a general asymptotic equivalence
between the reflected branching processes and the correspond-
ing reflected multiplicative processes. Furthermore, in the
course of our analysis, we discover a duality between the re-
flected multiplicative processes and queueing theory. Essentially,
this duality demonstrates that the power law distributions play
an equivalent role for reflected multiplicative processes as the
exponential/geometric distributions do in queueing analysis.

Index Terms— Modulated branching processes, reflected mul-
tiplicative processes, proportional growth models, power law
distributions, heavy tails, subexponential distributions, queue-
ing processes, reflected additive random walks, Cramér large
deviations, polynomial Gärtner-Ellis conditions.

I. INTRODUCTION

Power law distributions are found in a wide range of
domains, ranging from socioeconomic to biological and
technological areas. Specifically, these types of distributions
describe the city populations, species-area relationships, sizes
of living organisms, value of companies, distribution of

This work was supported by NSF Award 0117738.

wealth, and more recently, the distribution of documents on
the Web, the number of visitors per Web site, etc. Hence, one
would expect that there exist universal mathematical laws
that explain this ubiquitous nature of power law distributions.
To this end, we propose an apparently new class of models,
termed reflected modulated branching processes, which, un-
der quite general polynomial Gärtner-Ellis conditions, result
in power law distributions.

Empirical observations of power laws have a long history,
starting from the discovery by Pareto [1] in 1897 that a plot
of the logarithm of the number of incomes above a level
against the logarithm of that level yields points close to a
straight line, which is essentially equivalent to saying that
the income distribution follows a power law. Hence, power
law distributions are often called Pareto distributions; for
more recent study on income distributions see [2]–[6]. In
a different context, early work by Arrhenius [7] in 1921
conjectured a power law relationship between the number of
species and the census area, which was followed by Preston’s
prediction in [8] that the slope on the log/log species-area
plot has a canonical value equal to 0.262; for additional
information and measurements on species-area relationships
see [9]–[11]. Interestingly, there also exists a power law
relationship between the rank of the cities and the population
of the corresponding cities. This was proposed by Auerbach
[12] in 1913 and later studied by Zipf [13], after whom
power law is also known as Zipf’s law. Ever since, much
attention on both empirical examinations and explanations
on city size distributions have been drawn [13]–[18]. Similar
observations have been made for firm sizes [19], and even
the gene family and protein statistics [20]–[23]. It is maybe
even more surprising that many features of the Internet are
governed by power laws, including the distribution of pages
per Web site [24], the page request distribution [25], [26],
the file size distribution [27], [28], Ethernet LAN traffic
[29], World Wide Web traffic [30], the number of visitors
per Web site [31], [32], the distribution of scenes in MPEG
video streams [33] and the distribution of the indegrees and
outdegrees in the Web graph as well as the physical network
connectivity graph [34]–[37]. In socio-economic areas, in
addition to income distributions, the fluctuations in stock
prices have also been observed to be characterized by power
laws [38], [39].

Hence, these repeated empirical observations of power
laws, over a period of more than a hundred years, strongly
suggest that there exist general mathematical laws that gov-



ern these phenomena. In this regard, after carefully exam-
ining the situations that result in power laws, we discover
that most of them are characterized by the following three
features. First, in the vast majority of these observations,
e.g., city populations and sizes of living organisms, the
objects of interest evolve due to the replication of their many
independent components, e.g., birth-deaths of individuals and
replications of cells. Secondly, the rate of replication of the
many components is often controlled by exogenous param-
eters causing periods of baby booms and busts, economic
growths and recessions, etc. Thirdly, the sizes of these objects
often have lower boundaries, e.g., cities do not fall bellow
a certain size, low income individuals are subsidized by the
government, companies are protected by bankruptcy laws,
etc.

In order to capture the preceding features, it is natural to
propose reflected modulated branching processes as generic
models for many of the observations of power laws. Indeed,
one of our main results, presented in Theorem 2, shows that
these apparently new mathematical objects result in power
law distributions under quite general polynomial Gärtner-
Ellis conditions. The generality of our results could explain
the ubiquitous nature of power law distributions. Further-
more, an informal interpretation of our main results, stated in
Theorems 2 and 3 of Section III, suggests that alternating pe-
riods of expansions and contractions, e.g., economic booms
and recessions, are primarily responsible for the appearance
of power law distributions. From a mathematical perspective,
we develop a novel mathematical technique for analyzing
reflected modulated branching processes since these objects
appear new and the traditional methods for investigating
branching processes [40] do not directly apply.

Formal description of our reflected modulated branching
process (RMBP) model is given in Section II. In the singular
case when the number of individuals born in each state of
the modulating process is constant, our model reduces to a
reflected multiplicative process. In Subsection II-A we es-
tablish a rigorous connection (duality) between the reflected
multiplicative processes (RMPs) and queueing theory. We
would like to point out that this duality, although a minor
point of our paper, makes a vast literature on queueing
theory directly applicable to the analysis of RMPs. As a
direct consequence of this connection, in Subsection II-A we
translate several well known queueing results to the context
of RMPs. Informally, these results show that the role which
exponential distributions play in queueing theory, and in
additive reflected random walks in general, is represented by
power low distributions in the framework of RMPs/RMBPs.
Furthermore, this relationship appears to reduce the debate
on the relative importance of power law versus exponential
distributions/models to the analogous question of the preva-
lence of proportional growth versus additive phenomena. In
addition, this duality immediately implies and generalizes
many of the prior results in the area of RMPs and power
laws. Some of these prior results include the work of Levy
and Solomon that appears to be the first to show how power
laws can be obtained by adding a reflection condition to

a multiplicative process [39], [41], [42]; this was further
analyzed by Sornette and Rama [43].

In addition, while the reduction of RMBPs to RMPs is
apparent in the special case when constant number of indi-
viduals are born in each state of the modulating process, our
main result, Theorem 2, reveals a deeper general asymptotic
equivalence between the power law exponent of a RMBP
and the corresponding RMP.

In some domains, e.g., the growth of living organisms,
the objects always grow (basically never shrink) up until
a certain random time. Huberman and Adamin [24] also
propose this model as an explanation of the growth dynamics
of the World Wide Web by arguing that the observation
time is an exponential random variable. This notion has
been revisited in [5] and generalized to a larger family of
random processes observed at an exponential random time
[44]. In this regard, in Subsection V-A.2, we study randomly
stopped modulated branching processes and show, under
more general conditions than the preceding studies, that the
resulting variables follow power laws.

In many areas, objects of interest may not have a strictly
reflecting barrier, but rather a porous one, e.g., cities may
degenerate, bankruptcy protection may sometimes fail and a
company can be liquidated. Hence, in Subsection V-B, we
study MBP with an absorbing barrier and show that it leads to
power law distributions as well. The result, under somewhat
more restrictive conditions, is basically a direct corollary of
Theorem 2 on RMBPs. We argue that these types of models
can be natural candidates for describing the bursts of requests
at popular Internet Web sites, often referred to as hotspots.
In the prior study of city sizes, Bland and Solomon show
[45], using heuristic arguments, that a multiplicative process
with an absorbing barrier can result in power laws.

Based on our new model, we discuss two related phe-
nomena: truncated power laws and double Pareto distribu-
tions. We argue that one can obtain a truncated power law
distribution by adding an upper barrier to RMBP, similarly
as the truncated geometric distributions appear in queueing
theory, e.g., finite buffer M/M/1 queue. Furthermore, by
the duality of RMBP and queueing theory, we give two
new natural explanations of the origins of double Pareto
distributions that have been widely observed in practice. In
the queueing context, it has been shown that the tail of
the queue length distribution exhibits different decay rates
in the heavy-traffic and large deviation regime, respectively
[46]; similar behavior of the queue length distribution was
attributed to the multiple time scale arrivals in [47]. We claim
that the preceding two mechanisms, when translated to the
proportional growth context, provide natural explanations of
the double Pareto distributions.

Finally, we would like to mention that there might be other
mechanisms that result in power law distributions, e.g., the
“randomly typing model” used to explain the power law
distribution of frequencies of words in natural languages
(see [48]) and the “highly optimized tolerance” studied in
[49]; for a recent survey on various mechanisms that result
in power laws see [48].



II. REFLECTED MODULATED BRANCHING PROCESSES

In this section we formally describe our model. Let
{Jn}n>−∞ be a stationary and ergodic modulating process
that takes values in positive integers. Define a family of
independent, non-negative, integer-valued random variables
{Bi

n(j)},−∞ < i, j, n < ∞, which are independent of the
modulation process {Jn}. In addition, for fixed j, variables
{Bi

n(j)} are identically distributed with µ(j) , E[B1
1(j)] <

∞.
Definition 1: A modulated branching process {Zn}∞n=0 is

recursively defined by

Zn+1 =
Zn∑

i=1

Bi
n(Jn), (1)

where the initial value Z0 is a positive integer. For conve-
nience, when Z0 = l, we denote the process by {Zl

n}.
Definition 2: For any l ∈ N and an integer valued Λ0, a

Reflected Modulated Branching Process (RMBP) {Λn}∞n=0

is recursively defined as

Λn+1 = max
( Λn∑

i=1

Bi
n(Jn), l

)
. (2)

Remark 1: These types of modulated branching pro-
cesses, with or without a reflecting barrier, appear to be
new and, thus, the traditional methods for the analysis of
branching processes [40] do not seem to directly apply.

Remark 2: A more general framework would be to define

Zn+1 =
∫ Zn

0

Bt
n(Jn(t))dν(t), (3)

for any real measure ν, and, similarly,

Λn+1 = max
( ∫ Λn

0

Bt
n(Jn(t))dν(t), l

)
, (4)

where l > 0 and Bt
n(Jn(t)) is ν-measurable. We refrain from

this generalization since it introduces additional technical
difficulties without any new insight. Now, we present the
basic limiting results on the convergence to stationarity of
Zn and Λn.

Lemma 1: If E log µ(J0) < 0, then a.s., we have

lim
n→∞

Zn = 0.

Proof: For all n ≥ 1, let Wn = Zn/Πn−1, where
Πn =

∏n
i=0 µ(Ji). It is easy to check that Wn is a positive

martingale with respect to the filtration Fn = σ(Ji, Zi, 0 ≤
i ≤ n − 1). Hence, by the martingale convergence theorem
(see Theorem 35.5. of [50]), as n →∞,

Wn → W a.s.,

where W is a.s. positive finite. Next, since {Jn} is stationary
and ergodic, so is {µ(Jn)}, and, therefore,

log Πn

n
=

1
n

n∑

i=1

log µ(Ji) → E log µ(J0) < 0 as n →∞.

Thus, Πn → 0 as n →∞, which yields the statement of the
lemma.

Next, let Z−n be the number of individuals at time 0 in an
unrestricted branching process that starts at time −n with l
individuals; when needed for clarity, we will use the notation
Zl
−n to explicitly indicate the initial state l.
Lemma 2: Assume E log µ(J0) < 0, then, for any a.s.

finite initial condition Λ0, Λn converges in distribution to

Λ d= max
n≥0

Z−n.

Proof: First, assume that Λ0 = l and let Zk
n be the

number of individuals at time n in an unrestricted branching
process that starts at time k with l individuals. Then, by
stationarity of {Jn}, we have Zk

n
d= Zk−n. Clearly,

Λ1 = max
( l∑

i=1

Bj
1(J1), l

)
d= max{ Z−1, Z0 },

and, by induction and stationarity, it is easy to show

Λn
d= max( Z−n, Z−(n−1), · · · , Z−1, Z0 ),

which, by monotonicity, yields

P[Λn > x] → P[Λ > x] as n →∞.

Now, if ΛΛ0
n is a process with initial condition Λ0 ≥ l,

then, it is easy to see that

ΛΛ0
n ≥ Λn ≥ l, for all n,

implying
P[ΛΛ0

n > x] ≥ P[Λn > x]. (5)

If we define the stopping time τ to be the first time when
ΛΛ0

n hits the boundary l, then, the preceding monotonicity
implies that Λn = ΛΛ0

n for all n ≥ τ . Using this observation,
we obtain

P[ΛΛ0
n > x] = P[ΛΛ0

n > x, τ > n] + P[ΛΛ0
n > x, τ < n]

≤ P[ΛΛ0
n > x, τ > n] + P[Λn > x, τ < n]

≤ P[τ > n] + P[Λn > x]. (6)

Next, by Lemma 1, τ is a.s. finite and, thus, by (5) and (6),
we conclude

lim
n→∞

P[Λn > x] = lim
n→∞

P[ΛΛ0
n > x] = P[Λ > x].

A. Reflected Multiplicative Processes and Queueing Duality

Note that in the special case Bi
n(Jn) ≡ Jn, reflected

modulated branching processes reduce to reflected multi-
plicative processes with Jn being integer valued. In general,
by using the definition in (3), Jn can be relaxed to take any
positive real values. Hence, in this subsection we assume that
{Jn}n≥0 is a positive, real valued process.

Definition 3: For l > 0 and M0 < ∞ define Reflected
Multiplicative Process (RMP) as

Mn+1 = max(Mn · Jn+1, l), n ≥ 0. (7)
RMP has been previously proposed and studied in liter-

ature [15], [27], [41]–[43] as the explanation of the origin
of power laws. In this section we show a direct connection



(duality) between RMP and queuing theory, by which most
of the previously obtained results on RMP follow directly
from the well-known queuing results.

Without loss of generality we can assume l = 1, since
we can always divide (7) by l and define M1

n = Mn/l.
Now, let Xn = log Jn and Qn = log Mn with the standard
conventions log 0 = −∞ and e−∞ = 0. Then, for l = 1,
equation (7) is equivalent to

Qn+1 = max(Qn + Xn+1, 0), (8)

which is the workload (waiting-time) recursion in a single
server (FIFO) queue.

Lemma 3: If E log Jn < 0, then Mn converges in distri-
bution to an a.s. finite random variable M , and

M
d= sup

n≥0
Πn, (9)

where Π0 = 1, Πn =
∏−1

i=−n Ji, n ≥ 1.
Proof: By the classical result of Loynes [51], Qn,

defined by (8), converges to an a.s. finite stationary limit
Q if EXn = E log Jn < 0 and, furthermore,

Q
d= sup

n≥0
Sn,

where S0 = 0 and Sn =
∑−1

i=−n Xi. This implies the
convergence of Mn and

M
d= esupn≥0 Sn = sup

n≥0
eSn = sup

n≥0
Πn.

The following theorem is a direct corollary of Theorem 1
in [52].

Theorem 1: Let {Jn}n≥1 be stationary and ergodic. If
there exists a function Ψ and positive constants α∗ and ε∗

such that
1) n−1 logE[(Πn)α] → Ψ(α) as n →∞ for | α−α∗ |<

ε∗,
2) Ψ is finite in a neighborhood of α∗ and differentiable

at α∗ with Ψ(α∗) = 0, Ψ′(α∗) > 0, and
3) E[(Πn)α∗ ] < ∞ for n ≥ 1,

then
lim

x→∞
logP[M > x]

log x
= −α∗. (10)

Remark 3: We refer to assumptions 1) and 2) as the
polynomial Gr̈tner-Ellis conditions. Also, it is worth noting
that the multiplicative process Πn without the reflective
boundary would essentially follow the Lognormal distribu-
tion, as it was recently observed in [53] (this is similar
to the fact that the unrestricted additive random walk is
approximated well by Normal distribution). However, we
would like to emphasize that the lower boundary l is not just
a mathematical artifact, but a very natural condition since no
physical object can approach zero arbitrarily close without
either repelling (reflecting) from it or vanishing (absorbing).

Here, we illustrate the preceding theorem by the following
examples. Assume that {Ai}, {Ci} are two mutually inde-
pendent sequences, and let Jn = eAn−Cn . Recall that Mn is

defined in (7), then Qn = log Mn satisfies

Qn+1 = (Qn + An − Cn)+. (11)

The first two examples assume that {Ai}, {Ci} are two i.i.d.
sequences, the third example takes {Jn} to be a Markov
chain, and in the last example, {Jn} is modulated by a
Markov chain X(n).

Example 1: If {Ai}, {Ci} follow exponential distribu-
tions, P[Ci > x] = e−µx , P[Ai > x] = e−λx and λ < µ,
then Qn represents the waiting time in a M/M/1 queue.
By Theorem 9.1 of [54], the stationary waiting time in a
M/M/1 queue is distributed as

P[Q > x] =
λ

µ
e−(µ−λ)x, x ≥ 0,

which equivalently yields a power law distribution for M ,

P[M > x] = P[Q > log x] =
λ

µxµ−λ
, x ≥ 1

with power exponent α = µ− λ.
Example 2: If {Ai}, {Ci} are two i.i.d Bernoulli pro-

cesses with P[An = 1] = 1 − P[An = 0] = p, P[Cn =
1] = 1 − P[Cn = 0] = q, p < q. Then, the elementary
queueing/Markov chain theory shows that the stationary
distribution of Qn, as defined in (11), is geometric P[Q ≥
j] = (1 − ρ)ρj , j ≥ 0, where ρ = p(1 − q)/q(1 − p) < 1.
Therefore,

P[M ≥ x] = P[Q ≥ log x]

= ρblog xc, x ≥ 1.

Since log x−1 < blog xc ≤ log x, it is easy to conclude that

1
xlog(1/ρ)

≤ P[M ≥ x] <
1

ρxlog(1/ρ)
.

Example 3: If {Jn} is a Markov chain taking values in a
finite set Σ and possessing an irreducible transition matrix
Q = (q(i, j))i,j∈Σ, then the function Ψ defined in Theorem 1
can be explicitly computed. Define matrix Qα with elements

qα(i, j) = q(i, j)jα, i, j ∈ Σ.

By Theorem 3.1.2 of [55], we have as n →∞,

n−1 logE[(Πn)α] → log dev(Qα),

where dev(Qα) is the Perron-Frobenius eigenvalue of matrix
Qα. To illustrate this result, we take Σ = {u, d} where u ·
d = 1, u > 1, and q(d, u) = q, q(d, d) = 1 − q, q(u, d) =
p, q(u, u) = 1− p where p > q. It is easy to compute

Qα =
(

(1− p)uα pdα

quα (1− q)dα

)
,

and, by letting log dev(Qα) = 0, we obtain

α∗ =
log(1− q)− log(1− p)

log u
.

Example 4 (double Pareto): If {Jn ≡ J(X(n)} is mod-
ulated by a Markov chain X(n), we argue that P[M > x]
can have different asymptotic decay rates over multiple time
scales. This phenomenon was investigated in [47] in the



10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
[M

>
x]

x

Markov modulated multiplicative processes

simulation
approximation

Fig. 1. Illustration for Example 4 of the double Pareto distribution.

queueing context and formulated as Theorem 3 therein. To
visualize this phenomena, we study the following example.
Consider a Markov process X(n) of two states (say {1, 2})
with transition probabilities p12 = 1/5000, p21 = 1/10, and
P[J(1) = 1.2] = 1− P[J(2) = 0.6] = 0.5, P[J(2) = 1.7] =
1 − P[J(2) = 0.25] = 0.6. The corresponding simulation
result for 5 ∗ 107 trials is presented in Figure 1. We observe
from this figure a double Pareto distribution for M , which
provides a new explanation to the origins of double Pareto
distributions as compared to the one in [56].

III. MAIN RESULTS

This section presents our main results in Theorems 2 and
3. In this regard, we define B̄i

n , supk Bi
n(k), and, to avoid

technical difficulties, assume µ , infj µ(j) > 0. With
a small abuse of notation, as compared to the preceding
Subsection II-A, we redefine here Πn =

∏−1
i=−n µ(Ji), n ≥

1, Π0 = l and M = supn≥0 Πn.
Theorem 2: Assume that the process {Πn} satisfies the

polynomial Gärtner-Ellis conditions (conditions 1) and 2) of
Theorem 1), and E(Πn)α∗+ε < ∞, E[eθB̄i

n ] < ∞ for some
ε, θ > 0 and all n ≥ 1, then,

lim
x→∞

logP[Λ > x]
log x

= lim
x→∞

logP[M > x]
log x

= −α∗. (12)

Theorem 3: If supj µ(j) < 1 and E[eθB̄i
n ] < ∞ for θ > 0,

then, P[Λ > x] = o(e−ξx) for some ξ > 0, implying

lim
x→∞

logP[Λ > x]
log x

= −∞. (13)

Remark 4: Informally speaking, these two theorems show
that the alternating periods of contractions and expansions,
e.g., economic booms and recessions, are primarily respon-
sible for the appearance of power law distributions; in
other words, if there are no periods of expansions, i.e.,
the condition supj µ(j) < 1 of Theorem 3 is satisfied,
then Λ has a lighter (exponential) tail than power laws.

Furthermore, the first equality in (12) of Theorem 2 re-
veals a general asymptotic equivalence between the reflected
modulated branching process and the corresponding reflected
multiplicative process.

In the following subsections, we present the proof of
Theorem 2 and, due to space limitations, the proof of
Theorem 3 is differed to the extended version of this paper
[57].

A. Proof of Theorem 2

In this paper we use the following standard notation. For
any two real functions a(t) and b(t), we use a(t) = o(b(t))
to denote that limt→∞ a(t)/b(t) = 0.

1) Upper Bound: The proof of the upper bound uses the
following technical lemmas that will be proven in Section
VI. Since the proof is based on the change (increase) of
boundary l, we denote this dependence explicitly as Λl ≡ Λ.
According to Lemma 2, the initial value of {Λn} has no
impact on Λ and, therefore, in this subsection we simply
assume that Λl

0 = l.
Lemma 4: For any β > 0, the branching process Zl

n

defined by (1) satisfies, as x →∞,
∞∑

n>x

P[Zl
n > x] = o

(
1
xβ

)
. (14)

Lemma 5: If Λl
n is the reflected branching process, as

defined in (2), and ε > 0, then

P[Λl
n > x] ≤ P

[
max

1≤j≤n
Πj(1 + ε)j > x/l

]
+ nP[Bl,ε

1 ],

where Bl,ε
n ,

⋃
j≥l{

∑j
i=1 Bi

n(Jn) > jµ(Jn)(1 + ε) } and
Πj =

∏−j
i=−1 µ(Ji).

Lemma 6: If we set lx = bxεc, 0 < ε < 1 in the definition
of Blx,ε

1 in Lemma 5, then, for any β > 1, we obtain

P[Blx,ε
1 ] = o

(
1
xβ

)
as x →∞.

Lemma 7: If l1 ≥ l2, then for all n ≥ 0,

P[Λl1
n > x] ≥ P[Λl2

n > x].
Now, we are ready to complete the proof of the upper

bound. Choosing lx = bxεc ≥ l, and using Lemma 7, we
derive

P[Λl > x] = P
[
sup
j≥1

Zl
−j > x

]

≤ P
[

sup
1≤j≤x

Zlx
−j > x

]
+ P

[
sup
j>x

Zl
−j > x

]

≤ P[Λlx
bxc > x] +

∑

j>x

P[Zl
j > x]

≤ P
[
sup
j≥1

Πj(1 + ε)j > x1−ε

]
+ xP[Blx,ε

1 ]

+
∑

j>x

P[Zl
j > x]

, I1(x) + I2(x) + I3(x), (15)

where the last inequality follows from Lemma 5.



Next, define a new process {µε(Jn) = µ(Jn)(1 + ε)}n≥1

and Πε
n =

∏−1
i=−n µε(Ji). Then, for ε small enough, we have

1) n−1 logE(Πε
n)α → Ψε(α) = Ψ(α) + α log(1 + ε) as

n →∞ for | α− α∗ |< ε∗,
2) Ψε is finite in a neighborhood of α∗ε where α∗ε < α∗

and differentiable at α∗ε with Ψ(α∗ε )+α∗ε log(1+ε) = 0
and Ψ′(α∗ε ) > 0 , and

3) E(Πε
n)α∗ε < ∞ for n ≥ 1.

Therefore, by Theorem 1,

lim
x→∞

logP[supi≥1 Πi(1 + ε)i > x1−ε]
log x

= −α∗ε . (16)

Using (16), Lemma 4 and Lemma 6, we obtain

logP[Λl > x]
log x

≤ log (I1(x))
log x

+
log

(
1 + I2(x)+I3(x)

I1(x)

)

log x

−→ α∗ε as x →∞.

Since Ψε(α) is continuous in a neighborhood of α∗ in both
α and ε, we derive

lim
ε→0

α∗ε = α∗,

implying,

lim sup
x→∞

logP[Λ > x]
log x

≤ −α∗. (17)

2) Lower Bound: Similarly as in the proof of the upper
bound, we use the following lemmas that will be proven in
Section VI.

Lemma 8: If {Λy1
n } and {Λy2

n } are two conditionally
independent reflected branching processes given {Jn}n≥0,
then,

Λy1+y2
n

d≤ Λy1
n + Λy2

n .
Lemma 9: For any 0 < ε < 1, there exist β, h > 0 such

that, when x →∞,

P

[
sup

i>h log x
Πi(1− ε)i > x

]
= o

(
1

xα∗+β

)
.

Lemma 10: For 1 > δ, ε > 0, let yx = bxδc, and Byx,ε
n ,⋃

j≥yx
{ ∑j

i=1 Bi
n(Jn) < jµ(Jn)(1− ε) }, then, there exists

β > 1, such that

P [Byx,ε
1 ] = o

(
1

xα∗+β

)
.

Now, we proceed to complete the proof of the lower
bound. First, observe that for any integer y ≥ 1,

P[Λl
n > x] ≥ P[Λ1

n > x]

=
yP[Λ1

n > x]
y

≥ P[
∑y

j=1 Λ1
n,j > yx]

y

≥ P[Λy
n > yx]
y

, (18)

where the last inequality follows from Lemma 8 and
the fact that {Λ1

n,j} are conditionally i.i.d. copies of Λ1
n

given {Jn}. Let Πi
n = µ(Ji)µ(Ji+1) · · ·µ(Jn), By,ε

n =

⋃
j≥y{

∑j
i=1 Bi

n(Jn) < jµ(Jn)(1 − ε) } where 0 < ε < 1.
Then, we derive

P[Λy
n > yx] ≥ P

[
sup

0≤i≤n−1
Πi

n(1− ε)n−i > x

]
− P[By,ε

1 ]

− · · · − P[By,ε
n ]

= P
[

sup
1≤i≤n

Πi(1− ε)i > x

]
− nP[By,ε

1 ]

≥ P
[
sup
i≥1

Πi(1− ε)i > x

]

− P
[
sup
i>n

Πi(1− ε)i > x

]
− nP[By,ε

1 ]

, I1 − I2 − I3. (19)

Next, similarly as in the proof of the upper bound, define
a new process {µε(Jn) = µ(Jn)(1 − ε)}n≥1 and let Πε

n =∏−1
i=−n µε(Ji). For ε small enough, we have

1) n−1 logE(Πε
n)α → Ψε(α) = Ψ(α) + α log(1 − ε) as

n →∞ for | α− α∗ |< ε∗,
2) Ψε is finite in a neighborhood of α∗ε where α∗ε > α∗

and differentiable at α∗ε with Ψ(α∗ε )+α∗ε log(1−ε) = 0
and Ψ′(α∗ε ) > 0 , and

3) E(Πε
n)α∗ε < ∞ for n ≥ 1.

Therefore, by Theorem 1, we obtain

lim
x→∞

logP[supi≥1 Πi(1− ε)i > x]
log x

= −α∗ε , (20)

and

lim
ε→0

α∗ε = α∗. (21)

Then, for 0 < δ < 1, by choosing yx = bxδc and nx = bxc
in (18), we derive

logP[Λ > x] ≥ logP[Λl
nx

> x]

≥ log
P[Λyx

nx
> yxx]

yx

= logP[Λyx
nx

> yxx]− δ log x

≥ log(I1 − I2 − I3)− δ log x, (22)

which, by Lemmas 9, 10, and passing δ, ε → 0, yields

lim inf
x→∞

logP[Λ > x]
log x

≥ −α∗.

The last inequality, in conjunction with (17), completes the
proof of Theorem 2. g

IV. EXACT ASYMPTOTICS

This section presents the exact asymptotic approximations
of the RMPs and RMBPs in the following two subsections,
respectively.



A. On the Exact Asymptotics of Reflected Multiplicative
Processes

The following theorems are direct translations from the
corresponding queueing theory results. Theorem 4 is the
large deviation result, Theorem 5 is the heavy traffic ap-
proximation, and they are basically corollaries of Theorem
5.2 in Chapter XIII and Theorem 7.1 in Chapter X of [54].

For a sequence of i.i.d. random variables {Jn}n≥1, define
G+ to be the ladder height distribution of the random
walk {Sn =

∑n
i=1 log Ji}n≥1 with ‖G+‖ = P[Sn ≤

0 for all n ≥ 1].
Theorem 4: If the sequence {log Jn}n≥1 is i.i.d. and

nonlattice, E[log J1] < 0, E[Jα∗
1 ] = 1, E[Jα

1 ] < ∞ for
α∗ − ε < α < α∗ + ε, and ‖G+‖ < 1, then

lim
x→∞

P[M > x] · xα∗ =
1− ‖G+‖

α∗
∫∞
0

xeα∗xG+(dx)
.

Proof: The result is a direct consequence of Theorem
5.2 in Chapter XIII of [54].

Remark 5: If Sn is lattice valued, see Remark 5.4 of [54].
Theorem 5: If {J (k)

n }n≥1, indexed by k, are i.i.d. for each
fixed k with mk , E[log J

(k)
1 ], σ2

k , Var[log J
(k)
1 ], and the

random walks {S(k)
n =

∑n
i=1 log J

(k)
i }n≥1 satisfy mk <

0, limk→∞mk = 0, limk→∞σ2
k > 0, and

(
log J

(k)
1

)2

is
uniformly integrable, then,

lim
k→∞

P
[
M
−mk/σ2

k

(k) > y
]

= 1/y2.

Proof: From Theorem 7.1 in [54], we have

lim
k→∞

P
[
−mk

σ2
k

log M (k) > z

]
= e−2z,

and, by letting z = log y, we obtain Theorem 5.
Remark 6: The preceding two theorems essentially pro-

vide a new general explanation of the measured double
Pareto phenomena, e.g., see [56], [58].

B. On the Exact Asymptotics of Reflected Branching Pro-
cesses

Deriving the exact asymptotics for RMBPs is a difficult
problem. However, in the scaling region when the boundary
l grows as well, albeit slowly, one can derive an explicit
asymptotic characterization. In this subsection, assume that
{Jn}n≥1 is i.i.d and nonlattice, and let G+ be the ladder
height distribution of the nonlattice random walk {Sn =∑n

i=1 log µ(Ji)}n≥1 with ‖G+‖ = P[Sn ≤ 0 for all n ≥
1] < 1.

Theorem 6: If infj µ(j) , µ > 0, E[log µ(J1)] < 0,
E[µ(J1)α∗ ] = 1, E [µ(J1)α] < ∞ for α∗ − ε < α < α∗ + ε

and E
[
eθ supk{|B1

1(k)−µ(k)|}] < ∞, θ > 0, then for any
γ > 0,

lim
lx ≥ (log x)3+γ

x → ∞

P[Λlx/lx > x]xα∗ =
1− ‖G+‖

α∗
∫∞
0

xeα∗xG+(dx)
.

Again, the proof of this theorem is differed to the extended
version of the paper [57]. Instead, we illustrate it with the
following simulation example.

Example 5: Assume that {Jn}n≥1 is a Bernoulli process
with P[Jn = 1] = 0.4 = 1 − P[Jn = 0], variables
{Bi

n(1)}i≥1 follows Poisson distribution with mean 1.5 and
{Bi

n(0)}i≥1 with mean 0.6. The simulation results, for l =
1, 5, 13, 21, are drawn in Figure 5. From the figure we can
clearly see that P[Λlx/lx > x] approaches the limiting value
very quickly, i.e., for l = 13 and l = 21, the plots of
P[Λl/l > x] are basically indistinguishable.
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Fig. 2. Simulation of P[Λl/l > x] versus x parameterized by l.

V. DISCUSSION OF RELATED MODELS

Here, we briefly address the two related models: randomly
stopped processes and modulated branching processes with
absorbing barriers.

A. Randomly Stopped Processes

In this subsection we study randomly stopped multiplica-
tive and branching processes, respectively.

1) Multiplicative Processes: Following the approach of
Chapter VIII of [54], we study the ladder heights of a multi-
plicative process. For any RMP with independent multipliers,
M can be represented in terms of the ladder heights. To this
end, define Πn ,

∏n
i=0 Ji and the ladder height process

{Hi}i≥1 of {Sn =
∑n

i=1 log Ji}n≥1 with ‖G+‖ = P[Sn ≤
0 for all n ≥ 1] < 1, and He

i , eHi .
Theorem 7: Suppose that {Jn}n≥1 is an i.i.d. sequence

with E[log J1] < 0, then,

M
d=

N∏

i=1

He
i , (23)

where N is independent of {He
i }i≥1 and follows a geometric

distribution P[N > n] = ‖G+‖n.
Proof: Based on the well-known Pollaczek-Khinchin

representation (see Chapter VIII of [54])

Q
d=

N∑

i=1

Hi,



where P[N > n] = ‖G+‖n, it immediately follows that

P[M > x] = P
[
e
PN

i=1 Hi > x
]

= P

[
N∏

i=1

He
i > x

]
.

Conversely, we can prove that for a stationary multiplica-
tive process, if the observation time has exponential tail, the
stopped process has a power law tail under rather general
conditions.

Theorem 8: Let N be an integer random variable inde-
pendent of Πn, λ > 0 and

lim
x→∞

logP[N > x]
x

= −λ.

If Ψ is finite in a neighborhood of α∗ and differentiable at
α∗ with Ψ(α∗) = λ, Ψ′(α∗) > 0, and E[(Πn)α∗ ] < ∞ for
n ≥ 1, then,

lim
x→∞

logP[ΠN > x]
log x

= −α∗. (24)

The complete proof of Theorem 8 will be presented in [57].
Here, we only prove a special case, stated in Theorem 9
bellow, which establishes a connection between the RMPs
and geometrically stopped multiplicative processes through
a M/GI/1 queue. Assume that {Jn}n≥1 is an i.i.d. process,
Πn is the corresponding multiplicative process, N is a
geometric random variable that is independent of Πn with
P[N > n] = ρn, and Ḡ(t), t ≥ 0, is a positive decreasing
function.

Theorem 9: If, for some α∗, ε > 0,
∫∞
0

eα∗xḠ(x)dx =
ρ−1, K ,

∫∞
0

xeα∗xḠ(x)dx < ∞,
∫∞
0

Ḡ(log s/ε)ds < ∞
and P[log J1 ≤ t] =

∫ t

0
Ḡ(s)ds/

∫∞
0

Ḡ(s)ds, t ≥ 0, then, we

can always construct a RMP such that M
d= ΠN , and,

lim
x→∞

P[ΠN > x] · xα∗ =
1− ρ

α∗ρK
.

Proof: We will give a constructive proof based on the
connection (duality) that we establish between the M/GI/1
queue and the geometrically stopped multiplicative process.

Consider a M/GI/1 queue with service distribution
P[S > t] = Ḡ(t)/Ḡ(0), t ≥ 0 and Poisson arrivals of
rate λ = ρES. Then, by Pollaczek-Khintchine formula,
the variable Q is equal in distribution to

∑N
i=1 Hi, where

P[N > n] = ρn and

P[Hi > x] =

∫ x

0
P[S > s]ds

ES
=

∫ x

0
Ḡ(s)ds∫∞

0
Ḡ(s)ds

= P[log Ji > x].

Therefore,

P[Q > log x] = P

[
N∑

i=1

Hi > log x

]
= P[ΠN > x],

and, by Cramér-Lundberg theorem (e.g., see Theorem 5.2 in
Chapter XIII of [54]), we obtain

lim
x→∞

P[Q > log x]xα∗ =
1− ρ

α∗ρK
,

which completes the proof.

2) Branching Processes: In the following theorem, we ex-
tend the preceding results to the context of randomly stopped
branching processes. Similarly as before, we postpone the
proof of the theorem to the full version of the paper [57].

Theorem 10: Suppose Bk
n(Jn) ≥ 1 for all n, k. Under the

same conditions as in Theorem 8, we have,

lim
x→∞

logP[ZN > x]
log x

= −α∗.

B. Branching Processes with Absorbing Barriers

For many dynamic processes (e.g., city sizes), quite often
when the size of the object of interest falls below a threshold
(e.g., urban decay), the whole object disappears. Therefore,
we study a branching process with an absorbing barrier.
This can also model the arrivals to popular Web sites
(hotspots), since information (news) is distributed according
to a branching process, e.g., A tells B, C and further B may
tell D, etc. Empirical examination shows that Web requests
follow power law distributions, e.g., see [31], [32].

For a threshold l > 0, define stopping time P , inf{n >
0 : Zl

n ≤ l} to be the life cycle, within which the branching
process is modulated by a sequence of i.i.d. random variables
{Jn}, and after P the process is absorbed/disappears. We
denote this process by ZP . Let the arrival process {At}t>−∞
be a sequence of i.i.d. Poisson random variables with pa-
rameter E[At] = q. At time t, At objects are created,
each evolving according to an i.i.d. copy of the modulated
branching process ZP . This system converges to a stationary
process with N(t) objects alive at time t. Assume that the
system has reached its stationarity, then, by Little’s Law,
E[N(t)] = qE[P ]. Object j observed at time t = 0 is
generated at time −P r

j , 1 ≤ j ≤ N(0), with a size Zl
−P r

j
.

Lemma 11: The total size of all objects Zs observed at
time t = 0 in stationarity can be represented as

Zs
d=

N0∑

j=1

Zl
−P r

j
,

where

P[P r
j > x] =

∫∞
x
P[P > u]du

E[P ]
.

Next, we show that Zs follows a power law. The proof
of the following theorem, which is essentially a corollary of
Theorem 2, will be given in [57].

Theorem 11: Suppose that the conditions described in this
subsection hold, {Jn} satisfies the assumptions of Theorem 4
(except for the nonlattice one) and E[eθB̄i

n ] < ∞ for θ > 0,
then,

lim
x→∞

logP[Zs > x]
log x

= −α∗.

VI. PROOFS

This section contains the proofs of the technical lemmas
4, 5, 6, 8 and 10.



A. proof of Lemma 4

Similarly as in the proof of Lemma 1, Wn = Zl
n/Πn is a

martingale. Then for any ε > 0,

P[Zl
n > x] = P[Wn ·Πn > x]

= P[(Wne−εn) · (Πneεn) > x]
≤ P[Wne−εn > 1] + P[Πneεn > x]
≤ E[Wne−εn] + P[Πneεn > x]. (25)

Observe that
∞∑

n>x

E[Wne−εn] =
∞∑

n>x

e−εn ≤ e−εx

1− e−ε
= o

(
1
xβ

)
. (26)

By the first condition of Theorem 2, we can select δ, ε > 0
small enough and n0 large enough such that Ψ(α∗ − δ) +
2ε(α∗ − δ) = −ζ < 0 and n−1 logE[Π(α∗−δ)

n ] < Ψ(α∗ −
δ) + ε(α∗ − δ), then, for x > n0,
∞∑

n>x

P[Πneεn > x] ≤
∞∑

n>x

E[Π(α∗−δ)
n ]eε(α∗−δ)n/x(α∗−δ)

≤
∞∑

n>x

e−ζn/x(α∗−δ) ≤ e−ζx

(1− e−ζ)xα∗−δ

= o

(
1
xβ

)
as x →∞. (27)

Therefore, replacing (26) and (27) into (25) completes the
proof. g

B. Proof of Lemma 5

Observe that

P
[
Λl

n > x
]

= P
[
Λl

n > x, (Bl,ε
n )C

]
+ P

[
Λl

n > x,Bl,ε
n

]

≤ P
[{ Λl

n−l∑

i=1

Bi
n(Jn−1) > x

}

⋃{
l∑

i=1

Bi
n(Jn−1) > x

}
,

(Bl,ε
n

)C

]
+ P

[Bl,ε
n

]

≤ P
[ {

Λl
n−1µ(Jn−1)(1 + ε) > x

}

⋃{
µ(Jn−1)(1 + ε) > x/l

}]
+ P

[
Bl,ε

1

]

≤ P
[ {

Λl
n−1µ(Jn−1)(1 + ε) > x

}

⋃{
µ(Jn−1)(1 + ε) > x/l

}
,

(
Bl,ε

n−1

)C
]

+ P
[
Bl,ε

n−1

]
+ P

[
Bl,ε

1

]

≤ P
[ {

Λl
n−2µ(Jn−1)µ(Jn−2)(1 + ε)2 > x

}

⋃{
max( µ(Jn−1)µ(Jn−2)(1 + ε)2,

µ(Jn−1)(1 + ε) ) > x/l
} ]

+ 2P[Bl,ε
1 ].

Then, by continuing the induction, one can easily obtain

P
[
Λl

n > x
] ≤ P

[
max

1≤j≤n
(1 + ε)j

j∏

i=1

µ(Jn−i) > x/l

]

+ nP[Bl,ε
1 ],

which, by stationarity of {µ(Jn)}, yields

P
[
Λl

n > x
] ≤ P

[
max

1≤j≤n
Πj(1 + ε)j > x/l

]
+ nP[Bl,ε

1 ].

g

C. Proof of Lemma 6

Due to space limitations, the detailed proof of this lemma
can be found in the extended version of this paper [57].

D. Proof of Lemma 8

First, it is easy to show that, for any real numbers
x1,x2,y1,y2,

max( x1 +x2 , y1 +y2 ) ≤ max( x1 , y1 )+max( x2 , y2 ).

Now, by the preceding inequality,

Λy1+y2
1 = max

( y1+y2∑

i=1

Bi
1(J1), y1 + y2

)

≤ max
( y1∑

i=1

Bi
1(J1) +

y2∑

i=y1+1

Bi
1(J1), y1 + y2

)

d≤ Λy1
1 + Λy2

1 .

The proof is completed by induction

Λy1+y2
n+1 = max

( Λy1+y2
n∑

i=1

Bi
1(Jn), y1 + y2

)

d≤ max
( Λy1

n +Λy2
n∑

i=1

Bi
1(Jn), y1 + y2

)

d≤ Λy1
n + Λy2

n .

g

E. Proof of Lemma 10

Similarly as for Lemma 6, the proof is presented in [57].
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