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Renewed Interest in ALOHA

Multiple Access: nodes share a common medium

A receiver can hear several transmitters
A transmitter can broadcast to several
receivers

How to share the medium unaware of the
others?

Properties of ALOHA
low complexity
distributed, without coordination
scalable

Hidden terminal
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Classical results (Bertsekas & Gallager, 1992)

Instability of Slotted ALOHA with Infinite Number of Users

If backlog increases beyond
unstable point, then the
departure rate will drop to 0.

Positive throughput with finite number of users

m: total number of users
n: number of backlog
qa: the arrival probability
qr : retransmission probability
with qr > qa
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Can power law arise in ALOHA?

Drawback of power law
Compare the sample path of the
power law with the geometric
distribution of the same mean
and variance...
Power law delay may impede the
system periodically, even cause 0
throughput.

Delay in ALOHA with fixed packet length and number of users is
light-tailed.
In reality, both the packet size and the number of users can be
variable.
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ALOHA with Variable Size Packets

View AlOHA system as a converter

Ta: arrival interval
Tr : transmission time

Polling Questions?
Variable packet sizes can amplify the delay, but how much?
If packet sizes are concentrated (light tailed), is the transmission
delay also light-tailed?
If the number of users is finite and fixed, is the throughput always
positive?
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Model Description

Finite number of users M, U(t) is the number of backoffs at time t .
Each user can hold at most one packet in its queue.
New packet is generated after an independent (from all other
variables) exponential time with mean 1/λ.
Each packet has an independent length that is equal in distribution
to a random variable L.
After a collision, each participating user waits (backoffs) for an
independent exponential period of time with mean 1/ν and then
attempts to retransmit its packet.
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Visualized Scheme

We study:
N - number of transmission attempts between 2 successful
transmissions.
T - time between 2 successful transmissions.
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Power Laws in the Finite Population ALOHA with
Variable Size Packets

Theorem
If

lim
x→∞

log P[L > x ]

x
= −µ, µ > 0,

then, we have

lim
n→∞

log P[N > n]

log n
= − Mµ

(M − 1)ν

and
lim

t→∞

log P[T > t ]
log t

= − Mµ

(M − 1)ν
.
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Simulations

Example

4 experiments: M = 2, 4, 10, 20;
packet sizes ∼ i.i.d. exp(1);
arrival intervals and backoffs
∼ exp(2/3);
simulation samples = 105.
As M gets large (M = 10, 20),
the slopes of the distributions on
the log / log plot are essentially
the same. Figure: Interval distribution between

successfully transmitted packets.
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Implications

the distribution tails of N and T are essentially power laws when
the packet distribution ≈ e−µx .
The finite population ALOHA may exhibit high variations and
possible zero throughput.

0 < Mµ/(M − 1)ν < 1 ⇒ zero throughput;
1 < Mµ/(M − 1)ν < 2 ⇒ Var [T ] = ∞.

For large M, Mµ/(M − 1) ≈ µ/ν and thus, the system has zero
throughput if ν ' µ.
0 throughput may occur even when EL � 1/ν.
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Nonlinear amplifier
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Proof of power laws in ALOHA with variable packet
sizes

1. assuming that a collision happens at time t = 0, i.e., U(0) = M.
2. For xε > 0,

P[N > n] = E

(1− 1
M

(
M∑

i=1

e−Li (M−1)ν

))n
= E

(1− 1
M

(
M∑

i=1

e−Li (M−1)ν

))n

1

(
M⋂

i=1

{Li > xε}

)
+ E

(1− 1
M

(
M∑

i=1

e−Li (M−1)ν

))n

1

(
M⋃

i=1

{Li ≤ xε}

) .
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Proof of the first Theorem

3. Upper bound. By using 1− x ≤ e−x and the independence of Li ,

P[N > n] ≤
(
E
[
e−

n
M e−L(M−1)ν

1(L > xε)
])M

+

(
1− 1

M
e−xε(M−1)ν

)n

≤
(
E
[
e−

n
M e−L1(L>xε)(M−1)ν

])M
+ ηn.

For any 0 < ε < µ, there exits xε such that P[L > x ] ≤ e−(µ−ε)x for
all x ≥ xε, which, by defining random variable Lε with

P[Lε > x ] = e−(µ−ε)x , x ≥ 0, implies L1(L > xε)
d
≤ Lε, therefore,

P[N > n] ≤
(
E
[
e−

n
M U(M−1)ν/(µ−ε)

])M
+ ηn.

By using the identity E[e−θU1/α
] = Γ(α + 1)/θα, one can easily

obtain
lim

n→∞

log P[N > n]

log n
≤ −M(µ− ε)

(M − 1)ν
.
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4. Lower bound. Define Lo , min{L1, L2, · · · , LM}, and observe that

P[N > n] = E

(1− 1
M

(
M∑

i=1

e−Li (M−1)ν

))n
≥ E

[(
1− e−Lo(M−1)ν

)n
]

.

For any ε > 0, there exists xε such that P[Lo > x ] ≥ e−(Mµ+ε)x for
all x ≥ xε. Define random variable Lε

o with

P[Lε
o > x ] = e−(Mµ+ε)x , x ≥ 0, then, Lo

d
≥ Lε

o1(Lε
o > xε), therefore

P[N > n] ≥ E
[(

1− e−Lε
o(M−1)ν

)n
1(Lε

o > xε)

]
,

which, by using similar techniques in the proof of the upper bound,
implies

lim
n→∞

log P[N > n]

log n
≥ − Mµ + ε

(M − 1)ν
.
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5. Passing ε → 0 in the lower and upper bound, we finish the proof
for the case U(0) = M.

6. Define Ns , min{n ≥ 0 : U(Tn) = M}, Nl , min{N, Ns} and
Ne , N − Nl . It can be shown that
P[Nl > n] ≤ P[Ns > n] = o(e−θn), and we obtain

P[Ne > n] = P[N − Ns > n, N > Ns]

= P[N > Ns]P[N − Ns > n | N > Ns]

= P[N > Ns]P[N > n | Ns = 0],

which yields

lim
n→∞

log P[N > n]

log n
= lim

n→∞

log P[Nl + Ne > n]

log n
= − Mµ

(M − 1)ν
.
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Power Laws in Slotted ALOHA with Random Number
of Users

Power laws can be eliminated by reducing the variability of the packet
sizes, however, when the number of active users M is random, we may
also have power laws. Here, backoff ∼ Geo(e−ν), ν > 0.

Examples
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Power Laws in Slotted ALOHA with Random Number
of Users

Theorem

If there exists α > 0, such that, limx→∞
log P[M>x ]

x = −α, then, we have

lim
n→∞

log P[N > n]

log n
= lim

t→∞

log P[T > t ]
log t

= −α

ν
.

Theorem (Exact asymptotics)

If λ = ν and F̄ (x) , P[M > x ] satisfies H
(
− log F̄ (x)

)
F̄ (x)1/β ∼ xe−νx

with H(x) being continuous and regularly varying, then, as t →∞,

P[T > t ] ∼
Γ(β + 1)(eν − 1)β

tβH(β log t)β
.
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Power Laws in Slotted ALOHA with Random Number
of Users

Example (Setting)
If active users M is bounded ⇒ P[T > x ] is exponentially bounded.
However, this exponential behavior may happen for very small
probabilities, while the delays of interest can fall inside the region
of the distribution (main body) that behaves as the power law.
Assume that initially M ≥ 1 users have unit size packets ready to
send and M follows geometric distribution with mean 3.
The backoff times of colliding users are independent and
geometrically distributed with mean 2.
M has finite support [1, K ] where K ranges from 6 to 14 and we
set the number of users to be equal to MK = min(M, K ).
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Power Laws in Slotted ALOHA with Random Number
of Users

Example (Simulation Results)

The support of the main
body of P[T > t ] grows
exponentially fast.
If K = 14, the probabilities
of interest for P[T > t ] are
bigger than 1/500, then the
result of this experiment is
basically the same as for
K = ∞.

Figure: Stretched support of the
power law main body when the
number of users is min(M, K ).
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Proof of power laws in ALOHA with variable number of
users

1 First consider a situation where all the users are backlogged, i.e.,
have a packet to send.

P[N > n] = E

[(
1− Me−(M−1)ν(1− e−ν)

1− e−Mν

)n]
.

On the other hand, we have

P[T > t ] = E
[(

1−Me−(M−1)ν(1− e−ν)
)t
]

, t ∈ N.

2 one can show that the same asymptotic results hold if the initial
number of backlogged users is less than M.
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