Power Law in Natural Languages and Random Text

E6083: lecture 6 Prof. Predrag R. Jelenković

Dept. of Electrical Engineering Columbia University, NY 10027, USA predrag@ee.columbia.edu

February 21, 2007

A D > A A P >

< ∃ ►

- Equal Probability Case
- Unequal Probability Case

< 17 ▶

Discovery of Power Law in Language

Zipf found Power Law by analyzing the distribution of words in English

Explanation:

- Least Effort: a universal property of mind, the principle of least effort to balance between uniformity and diversity
- Least Cost: entropy-optimization formulation

< < >>

Power Law in Random Text Equal Probability Case Unequal Probability Case

< 17 ▶

Entropy Optimization Model (Mandelbrot 1953)

- W words, cost of transmitting *jth* most frequent word is C_j, cost of space is 0
- Average information per word is the entropy

$$H = -\sum_{j=1}^{W} f_j \log_2 f_j,$$

and average cost per word is

$$C=\sum_{j=1}^W f_j C_j.$$

Entropy-optimization Formulation

Objective: optimize the average amount of information per unit transmitting cost

$$A=\frac{C}{H}.$$

Take a derivative

$$\frac{\partial A}{\partial f_j} = \frac{C_j H + C \log_2(ef_j)}{H^2}$$

Natural cost

Number of letters plus the additional space for a space. Hence,

$$\log_N j \le C_j \le \log_N j + 1$$

because the word with k letters have frequency ranks from $1 + (N^k - 1)/(N - 1)$ to $(N^{k+1} - 1)/(N - 1)$.

Solution

 $f_j = e^{-1} 2^{-HC_j/C}$, which implies, for cost $\log_N j \le C_j \le \log_N j + 1$

$$(2^{-H/C}e^{-1})j^{-H(\log_N 2)/C} \le f_j \le e^{-1}j^{-H(\log_N 2)/C}$$

i.e., a power law.

Question

Can Zipf's Law still hold without an intentionally least effort principle? Let's do an experiment!

Basic setting

- N letters and a space
- Hit space with probability *p*
- Hit other letters with probability *p_i*, 1 ≤ *i* ≤ *N*

< 17 ▶

A B > A B

Q: What is the rank-frequency distribution of words?

A: power law!

Definition

We call frequency f_j follows a power law in j if $c_1 j^{-\alpha} \le f_j \le c_2 j^{-\alpha}$ for large j

Power Law in Natural Languages Entropy Optimization Formulation

∃ >

 $p_i = \frac{1-p}{N}$, then

- N^k possible words of length k
- The words with k letters have frequency ranks from $1 + (N^k 1)/(N 1)$ to $(N^{k+1} 1)/(N 1)$
- Each word with k letters occurs with probability

$$p_k = \left(\frac{1-p}{N}\right)^k p$$

• The word with rank-frequency *j* occurs with probability *f_j*

$$\left(rac{1-p}{N}
ight)^{\log_N j+1} p \leq f_j \leq \left(rac{1-p}{N}
ight)^{\log_N j} p$$

Power Law in Natural Languages Entropy Optimization Formulation

Power Law in Random Text Equal Probability Case

Unequal Probability Case

Unequal Letter Probability Case

A Simple Example with Only Two Letters

• Letter "a" appears with probability q, "b" with q^2 , space $1 - q - q^2$

• Every word with pseudorank k occurs with probability $q^{k}(1-q-q^{2})$

- The number of words with pseudorank k is the (k + 1)th Fibonacci number $F_{k+1} = \Phi^{k+1}/\sqrt{5} + o(1), \Phi = (1 + \sqrt{5})/2$
- When $F_{k+1} 1 < j \le F_{k+3} 1$, the *jth* most frequent word has psudorank *k*,

$$k+2 \leq \log_{\Phi}(\sqrt{5}(j+1)) < k+3.$$

Therefore f_i satisfies

$$q^{\log_{\Phi}(\sqrt{5}(j+1))-2}(1-q-q^2) < f_j \leq q^{\log_{\Phi}(\sqrt{5}(j+2))-3}(1-q-q^2)$$

- $0 < p_1 < p_2 < \cdots, p_i = p_1^{a_i}, a_i \in \mathcal{R}, w_i$ letters are struck with p_i
- prob of space is $1 \sum w_i p_i$
- Q: How many words occurs with probability greater or equal than $p_1^{\nu}(1 \sum w_i p_i), \nu \in \mathcal{R}$?
- A: the quantity c_v: how many ways v can be expressed as a sum of elements a_i. Algebraically,

$$\frac{1}{1-\sum_{i=1}^n w_i x^{a_i}} = \sum c_v x^v.$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

It is proved using complex analysis that, for x_0 that satisfies $\sum_{i=1}^{n} w_i x_0^{a_i} = 1$,

$$\liminf_{t \to \infty} \frac{\sum_{v \le t} c_v}{(1/x_0)^t} = \liminf_{t \to \infty} \frac{\sum_{v \le t} c_v}{(1/x_0)^t} = A$$
$$\limsup_{t \to \infty} \frac{\sum_{v \le t} c_v}{(1/x_0)^t} = \limsup_{t \to \infty} \frac{\sum_{v \le t} c_v}{(1/x_0)^t} = A'$$

• if all $a_i/a_{i'} \in Q$ (rational-ratio case), $A = x_0^{1/r}A'$ with $r = D/a_1$, *D* is the least common multiple of the denominators of the ratios a_i/a_1

• if some $a_i/a_{i'}$ is irrational, A = A'

Using the asymptotic result to estimate the rank frequencies $f_{j} = p_{1}^{t(j)} \left(1 - \sum_{i=1}^{n} w_{i} p_{i}\right).$ Pick $0 < L \leq L'$ such that $L(1/x_{0})^{t} \leq \sum_{v < t} c_{v} \leq \sum_{v \leq t} c_{v} \leq L'(1/x_{0})^{t}$ $\sum_{v < t} c_{v} < j \leq \sum_{v \leq t} c_{v} \Longrightarrow \frac{\log j - \log L'}{\log(1/x_{0})} \leq t(j) < \frac{\log j - \log L}{\log(1/x_{0})} \Longrightarrow$ $p_{1}^{(\log j - \log L)/\log(1/x_{0})} \left(1 - \sum w_{i} p_{i}\right)$ $\leq f_{j} \leq p_{1}^{(\log j - \log L')/\log(1/x_{0})} \left(1 - \sum w_{i} p_{i}\right)$

Keyboard has *N* Letters with hitting probabilities $p_1 \ge p_2 \ge \cdots \ge p_N$ and a space with hitting probability *p*. Define the set $W_k = \{\text{all words of length } k\}.$

If $p_1 = p_2 = \cdots = p_N$, then, the words of longer length are less likely and hence occur lower in the rank order of word frequency. Thus, $W_1 \prec W_2 \prec \cdots \prec W_\infty$ where $a \prec b$ means *a* has a lower rank than *b*. The words with *k* letters have frequency ranks from $1 + \frac{N^k - 1}{N - 1}$ to $\frac{N^{k+1} - 1}{N - 1}$.

Now, if p_1, p_2, \dots, p_N are not equal, then, the rank of the set W_k will stretch. In other words, some words of shorter length will have a higher rank than some words of longer length.

Estimate the spread of elements in W_x to the ones in W_y

We want to study under what conditions W_x ≺ W_y for x < y. If p_n^x > p₁^y ⇔ y > log p₁/log p₁ x, then, ⇒ W_x ≺ W_y.
Therefore, W<sub>log p₁/log p₁ ≺ W_x ≺ W<sub>log p₁/log p₁ x.
</sub></sub>

Suppose that the word with rank j belongs to $W_{C(j)}$, and we obtain

$$\sum_{i=1}^{\frac{\log p_1}{\log p_N}} C(j) \qquad N^i \leq j \leq \sum_{i=1}^{\frac{\log p_n}{\log p_1}} C(j) \qquad N^i.$$

Thus

$$\frac{\log p_1}{\log p_N} \log_N j \leq C(j) \leq \frac{\log p_N}{\log p_1} \log_N j + c.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Rough bounds of the frequency show power laws

The word with rank-frequency *j* satisfies

$$p_N^{\frac{\log p_1}{\log p_N}\log_N j} p \geq f_j \geq p_1^{\frac{\log p_N}{\log p_1}\log_N j + c} p,$$

which implies

$$\frac{\log p_1}{\log N} \geq \frac{\log f_j}{\log j} \geq \frac{\log p_N}{\log N}.$$

More refined sample path analysis may lead to the exact power law exponent.

Infinite monkey experiments

A monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type or create a particular chosen text, such as the complete works of William Shakespeare.

However, the probability is too small! It is quite clearly impossible for even a trivial fragment of Shakespeare's work to have arisen by chance.

Monkeys Produce Hamlet: Feasibility Study

Keys	Chances (one in)
1	32
2	32 * 32 = 1024
3	32 * 32 * 32 = 32768
4	32 * 32 * 32 * 32 = 1048576
5	$32^5 = 33554432$
6	$32^6 = 1073741824$
7	$32^7 = 34359738368$
8	$32^8 = 1099511627776$
9	32 ⁹ = 3.518437208883 <i>e</i> + 013
10	$32^{10} = 1.125899906843 e + 015$
20	$32^{20} = 1.267650600228e + 030$
 30	$32^{30} = 1.427247692706e + 045$
30	$32^{\circ\circ} = 1.4272476927060 + 045$
 41	$32^{41} = 5.142201741629e + 061$