Power Law in Natural Languages and Random Text

E6083: lecture 6
Prof. Predrag R. Jelenković

Dept. of Electrical Engineering
Columbia University, NY 10027, USA
predrag@ee.columbia.edu
February 21, 2007

Outline

(9) Power Law in Natural Languages

- Entropy Optimization Formulation
(2) Power Law in Random Text
- Equal Probability Case
- Unequal Probability Case

Power Law in Language

Discovery of Power Law in Language

Zipf found Power Law by analyzing the distribution of words in English

Explanation:

- Least Effort: a universal property of mind, the principle of least effort to balance between uniformity and diversity
- Least Cost: entropy-optimization formulation

Outline

(1) Power Law in Natural Languages

- Entropy Optimization Formulation
(2) Power Law in Random Text
- Equal Probability Case
- Unequal Probability Case

Entropy Optimization Model (Mandelbrot 1953)

- W words, cost of transmitting jth most frequent word is C_{j}, cost of space is 0
- Average information per word is the entropy

$$
H=-\sum_{j=1}^{W} f_{j} \log _{2} f_{j}
$$

and average cost per word is

$$
C=\sum_{j=1}^{W} f_{j} C_{j}
$$

Entropy-optimization Formulation

Objective: optimize the average amount of information per unit transmitting cost

$$
A=\frac{C}{H}
$$

Take a derivative

$$
\frac{\partial A}{\partial f_{j}}=\frac{C_{j} H+C \log _{2}\left(e f_{j}\right)}{H^{2}}
$$

Natural cost

Number of letters plus the additional space for a space. Hence,

$$
\log _{N} j \leq C_{j} \leq \log _{N} j+1
$$

because the word with k letters have frequency ranks from $1+\left(N^{k}-1\right) /(N-1)$ to $\left(N^{k+1}-1\right) /(N-1)$.

Entropy-optimization Formulation

Solution

$f_{j}=e^{-1} 2^{-H C_{j} / C}$, which implies, for cost $\log _{N} j \leq C_{j} \leq \log _{N} j+1$

$$
\left(2^{-H / C} e^{-1}\right) j^{-H\left(\log _{N} 2\right) / C} \leq f_{j} \leq e^{-1} j^{-H\left(\log _{N} 2\right) / C}
$$

i.e., a power law.

Question

Can Zipf's Law still hold without an intentionally least effort principle? Let's do an experiment!

A Fascinating Problem on Monkey Typing

Basic setting

- N letters and a space
- Hit space with probability p
- Hit other letters with probability $p_{i}, 1 \leq i \leq N$

The Result of Random Typing

Q: What is the rank-frequency distribution of words?

A: power law!

Definition

We call frequency f_{j} follows a power law in j if $c_{1} j^{-\alpha} \leq f_{j} \leq c_{2} j^{-\alpha}$ for large j

Outline

(1) Power Law in Natural Languages

- Entropy Optimization Formulation
(2) Power Law in Random Text
- Equal Probability Case
- Unequal Probability Case

Equal Letter Probability Case (Miller 1957)

$p_{i}=\frac{1-p}{N}$, then

- N^{k} possible words of length k
- The words with k letters have frequency ranks from

$$
1+\left(N^{k}-1\right) /(N-1) \text { to }\left(N^{k+1}-1\right) /(N-1)
$$

- Each word with k letters occurs with probability

$$
p_{k}=\left(\frac{1-p}{N}\right)^{k} p
$$

- The word with rank-frequency j occurs with probability f_{j}

$$
\left(\frac{1-p}{N}\right)^{\log _{N} j+1} p \leq f_{j} \leq\left(\frac{1-p}{N}\right)^{\log _{N} j} p
$$

Outline

(1) Power Law in Natural Languages

- Entropy Optimization Formulation
(2) Power Law in Random Text
- Equal Probability Case
- Unequal Probability Case

Unequal Letter Probability Case

A Simple Example with Only Two Letters

- Letter "a" appears with probability q, "b" with q^{2}, space $1-q-q^{2}$
- Every word with pseudorank k occurs with probability $q^{k}\left(1-q-q^{2}\right)$
- The number of words with pseudorank k is the $(k+1)$ th Fibonacci number $F_{k+1}=\Phi^{k+1} / \sqrt{5}+o(1), \Phi=(1+\sqrt{5}) / 2$
- When $F_{k+1}-1<j \leq F_{k+3}-1$, the j th most frequent word has psudorank k,

$$
k+2 \leq \log _{\Phi}(\sqrt{5}(j+1))<k+3
$$

Therefore f_{j} satisfies

$$
q^{\log _{\phi}(\sqrt{5}(j+1))-2}\left(1-q-q^{2}\right)<f_{j} \leq q^{\log _{\phi}(\sqrt{5}(j+2))-3}\left(1-q-q^{2}\right)
$$

General Case

- $0<p_{1}<p_{2}<\cdots, p_{i}=p_{1}^{a_{i}}, a_{i} \in \mathcal{R}, w_{i}$ letters are struck with p_{i}
- prob of space is $1-\sum w_{i} p_{i}$
- Q: How many words occurs with probability greater or equal than $p_{1}^{\nu}\left(1-\sum w_{i} p_{i}\right), \nu \in \mathcal{R}$?
- A: the quantity c_{v} : how many ways v can be expressed as a sum of elements a_{i}. Algebraically,

$$
\frac{1}{1-\sum_{i=1}^{n} w_{i} x^{a_{i}}}=\sum c_{v} x^{v}
$$

Main Theorem (Condrad \& Mitzenmacher '04)

It is proved using complex analysis that, for x_{0} that satisfies $\sum_{i=1}^{n} w_{i} x_{0}^{a_{i}}=1$,

$$
\begin{array}{r}
\liminf _{t \rightarrow \infty} \frac{\sum_{v<t} c_{V}}{\left(1 / x_{0}\right)^{t}}=\liminf _{t \rightarrow \infty} \frac{\sum_{v \leq t} c_{V}}{\left(1 / x_{0}\right)^{t}}=A \\
\limsup _{t \rightarrow \infty} \frac{\sum_{v<t} c_{V}}{\left(1 / x_{0}\right)^{t}}=\limsup _{t \rightarrow \infty} \frac{\sum_{v \leq t} c_{V}}{\left(1 / x_{0}\right)^{t}}=A^{\prime}
\end{array}
$$

- if all $a_{i} / a_{i^{\prime}} \in Q$ (rational-ratio case), $A=x_{0}^{1 / r} A^{\prime}$ with $r=D / a_{1}, D$ is the least common multiple of the denominators of the ratios a_{i} / a_{1}
- if some $a_{i} / a_{i^{\prime}}$ is irrational, $A=A^{\prime}$

Derivation of Power Law Using the Main Theorem

Using the asymptotic result to estimate the rank frequencies $f_{j}=p_{1}^{t(j)}\left(1-\sum_{i=1}^{n} w_{i} p_{i}\right)$.
(1) Pick $0<L \leq L^{\prime}$ such that

$$
L\left(1 / x_{0}\right)^{t} \leq \sum_{v<t} c_{v} \leq \sum_{v \leq t} c_{v} \leq L^{\prime}\left(1 / x_{0}\right)^{t}
$$

(2) $\sum_{v<t} c_{v}<j \leq \sum_{v \leq t} c_{v} \Longrightarrow \frac{\log j-\log L^{\prime}}{\log \left(1 / x_{0}\right)} \leq t(j)<\frac{\log j-\log L}{\log \left(1 / x_{0}\right)} \Longrightarrow$

$$
\begin{aligned}
& p_{1}^{(\log j-\log L) / \log \left(1 / x_{0}\right)}\left(1-\sum w_{i} p_{i}\right) \\
& \leq f_{j} \leq p_{1}^{\left(\log j-\log L^{\prime}\right) / \log \left(1 / x_{0}\right)}\left(1-\sum w_{i} p_{i}\right)
\end{aligned}
$$

Probabilistic Arguments for Monkeys Typing Randomly

Keyboard has N Letters with hitting probabilities $p_{1} \geq p_{2} \geq \cdots \geq p_{N}$ and a space with hitting probability p. Define the set $W_{k}=\{$ all words of length $k\}$.

If $p_{1}=p_{2}=\cdots=p_{N}$, then, the words of longer length are less likely and hence occur lower in the rank order of word frequency. Thus, $W_{1} \prec W_{2} \prec \cdots \prec W_{\infty}$ where $a \prec b$ means a has a lower rank than b. The words with k letters have frequency ranks from $1+\frac{N^{k}-1}{N-1}$ to $\frac{N^{k+1}-1}{N-1}$.

Now, if $p_{1}, p_{2}, \cdots, p_{N}$ are not equal, then, the rank of the set W_{k} will stretch. In other words, some words of shorter length will have a higher rank than some words of longer length.

Estimate the spread of elements in W_{x} to the ones in

 W_{y}- We want to study under what conditions $W_{x} \prec W_{y}$ for $x<y$. If $p_{n}^{x}>p_{1}^{y} \Leftrightarrow y>\frac{\log p_{n}}{\log p_{1}} x$, then, $\Rightarrow W_{x} \prec W_{y}$.
- Therefore, $W_{\frac{\log p_{1}}{\log p_{n}} x} \prec W_{x} \prec W_{\frac{\log p_{n}}{\log p_{1}} x}$.

Suppose that the word with rank j belongs to $W_{C(j)}$, and we obtain

$$
\sum_{i=1}^{\frac{\log p_{1}}{\log p_{N}} C(j)} N^{i} \leq j \leq \sum_{i=1}^{\frac{\log p_{n}}{\log p_{1}} C(j)} N^{i}
$$

Thus

$$
\frac{\log p_{1}}{\log p_{N}} \log _{N} j \leq C(j) \leq \frac{\log p_{N}}{\log p_{1}} \log _{N} j+c
$$

Rough bounds of the frequency show power laws

The word with rank-frequency j satisfies

$$
p_{N}^{\frac{\log p_{1}}{\log p_{N}} \log _{N} j} p \geq f_{j} \geq p_{1}^{\frac{\log p_{N}}{\log p_{1}} \log _{N} j+c} p
$$

which implies

$$
\frac{\log p_{1}}{\log N} \geq \frac{\log f_{j}}{\log j} \geq \frac{\log p_{N}}{\log N}
$$

More refined sample path analysis may lead to the exact power law exponent.

The Mathematics of Monkeys and Shakespeare

Infinite monkey experiments

A monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type or create a particular chosen text, such as the complete works of William Shakespeare.

However, the probability is too small! It is quite clearly impossible for even a trivial fragment of Shakespeare's work to have arisen by chance.

Monkeys Produce Hamlet: Feasibility Study

Keys
1
2
3
$4 \quad 32 * 32 * 32 * 32=1048576$
5
6
7
8
9
$10 \quad 32^{10}=1.125899906843 e+015$
$20 \quad 32^{20}=1.267650600228 e+030$
$30 \quad 32^{30}=1.427247692706 e+045$
$41 \quad 32^{41}=5.142201741629 e+061$

