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Description of the Preferential Attachment

Basic model
@ Attime 0, one node is present

@ At each discrete time step t > 0, a new vertex is added, with one
undirected edge preferentially (< k; where k; is the degree of the
ith node) attached to one existing node (including itself).

@ tj represents the time when vertex / was added to the system.

| N,

More general model

Each new vertex has m edges linking to other vertexes, which allows
multiple edges and also loops.
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Informal derivation of preferential attachment
[T

k1 k2 ki kt

Then, at time t, )
, , 1/2
o _k (1"
at 2t 1
Thus, the degree D distribution is obtained by

t

P[D > x] =P[t; < t/Xz] = ma

which implies P[D = x] ~ .
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Rigorous treatment

Formal definitions

@ dg(v) - total degree of vertex v in G.
@ G! - state of the graph at time t > 1 for m = 1
@ G - starting graph with one vertex and one loop (pointing to itself).

@ Given GI™, form G} by adding the vertex v; together with a single
edge directed from v; to v;, where i is chosen randomly with

dG§*1(vs)/(2t_1) 1<s<t-1

Pli=s|Gl "=
1/(2t—1) s=t.

For m > 1, the graph is constructed by adding m edges one at a time.

Equivalently, the process G, can be obtained by coalescing every m

vertexes of G into one vertex.
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Analysis due to Bollobas et al

Proving recipe J

Used in many other papers.

Let the number of vertices of G with indegree equal to d be X,(d).

The martingale
Xt = E[Xn(d) | Gi]

satisfies that | X;..1 — X; | is bounded by two.

v,

If {Xt}n>t>0 is @ martingale with | X;11 — X; [<cfort=0,1,---,n—1,
then,

X2
P[| Xn — Xo |> x] < exp (_202n> .
Applying Azuma-Hoeffding inequality, we obtain that X,(d) is very
concentrated around its mean, and thus only need to compute
E[Xn(d)].

Jelenkovi¢ (Columbia University) Self Similar Networks February 14, 2007 6/20



Compute E[X,(d)]

This needs some work, and it turns that for m = 1

4n

E[Xa(d)] ~ (d+1)(d +2)(d +3)’

and for m > 1,

2m(m—+1)n

B (d)] ~ (d+m)(d+m+1)(d+m+2)
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Is the topology unique? Is degree distribution enough?
Intuition says no; however...(Kleinberg etc. 2005)

Erdos-Renyi Model: Isomorphism

Let G/rq(00, p) denote the probability distribution on graphs with vertex
set N, in which each edge (/, ) is included independently with
probability 0 < p < 1. There exists an infinite graph R, such that a
random sample from G,,q(oc0, p) is isomorphic to R with probability 1.

v

Isomorphism of infinite limits for PA scale-free graphs: m=1,2

For d = 1,2, there is a graph R such that a random sample from
Grna(00, p) is isomorphic to R with probability 1.

| A\

Infinite limits of PA scale-free graphs: m > 3

For each out-degree m > 3, it is not the case that two independent
random samples from Gpa(co, p) are isomorphic with probability 1.
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Preferential Attachment: Continued...

What if attaching proportional to k*?
@ Only linear preferential attachment yields power-law graphs.

@ If « > 1, eventually one person gets all the links.
There is a finite time after which no one else gets anything!

@ If « < 1, the degree distribution follows a stretched exponential.

Limitation of preferential attachment

@ Outdegree = m for directed graph.
@ Global information.
@ Number of nodes increases linearly.

@ In a large scale experimental study by Kumar et
al, they observed that the Web contains a large a K, clique
number of small bipartite cliques (cores)
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One generalization

Both in-degree and out-degree are power law(Bollobas et al)
A directed graph which grows by adding single edge at discrete time
steps. At each such step a vertex may or may not also be added. Let
a, 3,7, 0in and dour be Nnon-negative real numbers, with o + 8+~ = 1.
@ With probability «, add a new vertex v together with an edge from
v to an existing vertex w, where w is chosen proportionally to
din + 5in-
© With probability 3, add an edge from an existing vertex v to an
existing vertex w, where v and w are chosen independently, v
according to doyt + dout, and w according to dip + din-

© With probability v, add a new vertex w and an edge from an
existing vertex v to w, where v is chosen according to doyt + dout-
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Copying Model

@ Parameters:

@ The out-degree d (constant) of each node
@ Probability p.

@ The process:

@ Nodes arrive one at the time
@ A new node selects uniformly one of the existing nodes as a
prototype
© The new node creates d outgoing links. For the ith neighbor of the
prototype node
@ with probability p it connects to the ith neighbor of the prototype node
@ with probability 1 — p it selects the target connection uniformly at
random among all the existing nodes
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@ Power law degree distribution with exponent 5 = (2 — p)/(1 — p)
@ Number of bipartite cliques of size Kijg is ne™’

akK,, clique

The model has also found applications in biological networks:
copying mechanism in genes

Jelenkovi¢ (Columbia University) Self Similar Networks February 14, 2007 12/20



1-Step Random Walk with Self-Loop (A. Blum, et al

2006)

Given k and p, at time t, vertex v makes k connections to the existing
graph by repeating the following process k times:

@ Pick an existing node v uniformly at random from {vg,--- , v;_1}.

@ With probability p stay at v; with probability 1 — p take a 1—step
walk to a random neighbor of v.

© Add an edge from v to the node where the random walk stops.

In the directed version, the edges added are directed from v; into the
existing graph. In the undirected version, edges are undirected.
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analyzing 1-step walk

D;(t) is the expected number of nodes with in-degree i at step t, then,
D,‘(t == 1) = D,'(f)‘i‘

PX(Di-1(t) ~ Di(t)+
(1-p)k 1

f((l —1)D;_+(t) — iDi(t))F

Substitute D;(t) = ¢t in the above equation,

Ci = pk(Ci—1 — ¢;) + (1 — p)((I — 1)ci—1 — ici),

to get ¢; ~ Ci_%z. (same as the copying model)
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Geometric random walk (A. Blum et al 2006)

Given k and p, at time t, vertex v makes k connections to the existing
graph by repeating the following process k times:

@ Pick an existing node v uniformly at random from {vg, -+, v;_1}.
@ Flip a coin of bias p.

© If the coin comes up heads add an edge from v; to the current
node and stop.

© If the coin comes up tails, move to a random neighbor of the
current node and go back to (2).

In the directed version, the edges added are directed from v; into the
existing graph. In the undirected version, edges are undirected.
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First and second toss = tail, second toss = head.

& ““‘\. NEW NODE

RANDOM STARTING NODE
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Existing results (only for directed graphs)

Let /i(u) be the number of level i descendents of node u. For example,
li(u) = # of children, k(u) = # of grandchildren, etc.

Let 6 = (B4, B2, - - - ) be a sequence of real numbers with 5 = 1.
Define virtual degree of u with respect to 5 to be

Vﬁ(U) =1+ 04 /1(U) = ﬁg/g(U) = ﬂ3/3(U) qFocog

PO

V(U) =1+ 28] + 48, + 0f3 + 084 + - - -.
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Existing results

Theorem: There always exist 3;, dependent on p with 5o =1, | 5; |< 1
such that the expected increase in v(u) from step tto t + 1 is v(u)p/t.

Furthermore, 8; == O(p'),0 < p < 1.

Let v;(u) be the virtual degree of node u at time t and t, be the time
when node u first appears. Then, for any node u and time t > {,,

E[vi(u)] = ©((t/t)P).
Proof: E[v;(u)] = (1 + #5)E[vi—1(u)], hence,
t : t\P
Elw(w)] = T (1 +p/) =0 ((£)°)
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Existing results

For real degree d(u)

Let di(u) be the virtual degree of node u at time t and t, be the time
when node u first appears. For any node u and time t > {,,

E[d(u)] > Q((t/tu)P" ).

Observe that
Bldh1(u)] 2 Elai(w)] + 2 PBfaw)],
then...
Only partial results are proved for the random walk model. )
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Scale free network caused by random walk

Heck=2000 p=05

Degree

Figure: Node=2000, Random Walk p = 0.6.
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