Self Similar (Scale Free, Power Law) Networks (II)

E6083: lecture 5
Prof. Predrag R. Jelenković

Dept. of Electrical Engineering

Columbia University , NY 10027, USA
\{predrag\}@ee.columbia.edu
February 14, 2007

Outline

(1) Preferential Attachment
(2) Copying Model
(3) Random Walk Model

Description of the Preferential Attachment

Basic model

- At time 0, one node is present
- At each discrete time step $t>0$, a new vertex is added, with one undirected edge preferentially ($\propto k_{i}$ where k_{i} is the degree of the i th node) attached to one existing node (including itself).
- t_{i} represents the time when vertex i was added to the system.

More general model

Each new vertex has m edges linking to other vertexes, which allows multiple edges and also loops.

Informal derivation of preferential attachment

Then, at time t,

$$
\frac{d k_{i}}{d t}=\frac{k_{i}}{2 t} \Rightarrow k_{i}=\left(\frac{t}{t_{i}}\right)^{1 / 2}
$$

Thus, the degree D distribution is obtained by

$$
\mathbb{P}[D>x]=\mathbb{P}\left[t_{i}<t / x^{2}\right]=\frac{t}{x^{2}(t+1)}
$$

which implies $\mathbb{P}[D=x] \sim \frac{1}{x^{3}}$.

Rigorous treatment

Formal definitions

- $d_{G}(v)$ - total degree of vertex v in G.
- G_{1}^{t} - state of the graph at time $t \geq 1$ for $m=1$
- G_{1}^{1} - starting graph with one vertex and one loop (pointing to itself).
- Given G_{1}^{t-1}, form G_{1}^{t} by adding the vertex v_{t} together with a single edge directed from v_{t} to v_{i}, where i is chosen randomly with

$$
\mathbb{P}\left[i=s \mid G_{1}^{t-1}\right]= \begin{cases}d_{G_{1}^{t-1}\left(v_{s}\right)} /(2 t-1) & 1 \leq s \leq t-1 \\ 1 /(2 t-1) & s=t\end{cases}
$$

For $m>1$, the graph is constructed by adding m edges one at a time. Equivalently, the process G_{m}^{t} can be obtained by coalescing every m vertexes of $G_{1}^{m t}$ into one vertex.

Analysis due to Bollobás et al

Proving recipe

Used in many other papers.

Let the number of vertices of G_{1}^{n} with indegree equal to d be $X_{n}(d)$. The martingale

$$
X_{t}=\mathbb{E}\left[X_{n}(d) \mid G_{t}\right]
$$

satisfies that $\left|X_{t+1}-X_{t}\right|$ is bounded by two.
If $\left\{X_{t}\right\}_{n \geq t \geq 0}$ is a martingale with $\left|X_{t+1}-X_{t}\right| \leq c$ for $t=0,1, \cdots, n-1$, then,

$$
\mathbb{P}\left[\left|X_{n}-X_{0}\right| \geq x\right] \leq \exp \left(-\frac{x^{2}}{2 c^{2} n}\right) .
$$

Applying Azuma-Hoeffding inequality, we obtain that $X_{n}(d)$ is very concentrated around its mean, and thus only need to compute $\mathbb{E}\left[X_{n}(d)\right]$.

Compute $\mathbb{E}\left[X_{n}(d)\right]$

This needs some work, and it turns that for $m=1$

$$
\mathbb{E}\left[X_{n}(d)\right] \sim \frac{4 n}{(d+1)(d+2)(d+3)},
$$

and for $m>1$,

$$
\mathbb{E}\left[X_{n}^{m}(d)\right] \sim \frac{2 m(m+1) n}{(d+m)(d+m+1)(d+m+2)}
$$

Is the topology unique? Is degree distribution enough? Intuition says no; however...(Kleinberg etc. 2005)

Erdos-Renyi Model: Isomorphism

Let $G_{r n d}(\infty, p)$ denote the probability distribution on graphs with vertex set \mathbb{N}, in which each edge (i, j) is included independently with probability $0<p<1$. There exists an infinite graph R, such that a random sample from $G_{r n d}(\infty, p)$ is isomorphic to R with probability 1.

Isomorphism of infinite limits for PA scale-free graphs: $m=1,2$
For $d=1,2$, there is a graph R such that a random sample from $G_{r n d}(\infty, p)$ is isomorphic to R with probability 1 .

Infinite limits of PA scale-free graphs: $m \geq 3$

For each out-degree $m \geq 3$, it is not the case that two independent random samples from $G_{P A}(\infty, p)$ are isomorphic with probability 1.

Preferential Attachment: Continued...

What if attaching proportional to k_{i}^{α} ?

- Only linear preferential attachment yields power-law graphs.
- If $\alpha>1$, eventually one person gets all the links.

There is a finite time after which no one else gets anything!

- If $\alpha<1$, the degree distribution follows a stretched exponential.

Limitation of preferential attachment

- Outdegree $=m$ for directed graph.
- Global information.
- Number of nodes increases linearly.
- In a large scale experimental study by Kumar et al, they observed that the Web contains a large

a $\mathrm{K}_{3,2}$ clique number of small bipartite cliques (cores)

One generalization

Both in-degree and out-degree are power law(Bollobás et al)

A directed graph which grows by adding single edge at discrete time steps. At each such step a vertex may or may not also be added. Let $\alpha, \beta, \gamma, \delta_{\text {in }}$ and $\delta_{\text {out }}$ be non-negative real numbers, with $\alpha+\beta+\gamma=1$.
(1) With probability α, add a new vertex v together with an edge from v to an existing vertex w, where w is chosen proportionally to $d_{i n}+\delta_{i n}$.
(2) With probability β, add an edge from an existing vertex v to an existing vertex w, where v and w are chosen independently, v according to $d_{\text {out }}+\delta_{\text {out }}$, and w according to $d_{\text {in }}+\delta_{\text {in }}$.
(3) With probability γ, add a new vertex w and an edge from an existing vertex v to w, where v is chosen according to $d_{\text {out }}+\delta_{\text {out }}$.

Copying Model

- Parameters:
(1) The out-degree d (constant) of each node
(2) Probability p.
- The process:
(1) Nodes arrive one at the time
(2) A new node selects uniformly one of the existing nodes as a prototype
(3) The new node creates d outgoing links. For the ith neighbor of the prototype node
- with probability p it connects to the ith neighbor of the prototype node
- with probability $1-p$ it selects the target connection uniformly at random among all the existing nodes
- Power law degree distribution with exponent $\beta=(2-p) /(1-p)$
- Number of bipartite cliques of size $K_{i d}$ is $n e^{-i}$

The model has also found applications in biological networks: copying mechanism in genes

1-Step Random Walk with Self-Loop (A. Blum, et al 2006)

Given k and p, at time t, vertex v makes k connections to the existing graph by repeating the following process k times:
(1) Pick an existing node v uniformly at random from $\left\{v_{0}, \cdots, v_{t-1}\right\}$.
(2) With probability p stay at v; with probability $1-p$ take a $1-$ step walk to a random neighbor of v.
(3) Add an edge from v to the node where the random walk stops. In the directed version, the edges added are directed from v_{t} into the existing graph. In the undirected version, edges are undirected.

analyzing 1-step walk

$D_{i}(t)$ is the expected number of nodes with in-degree i at step t, then,

$$
\begin{aligned}
& D_{i}(t+1)=D_{i}(t)+ \\
& \quad \frac{p k}{t}\left(D_{i-1}(t)-D_{i}(t)\right)+ \\
& \quad \frac{(1-p) k}{t}\left((i-1) D_{i-1}(t)-i D_{i}(t)\right) \frac{1}{k}
\end{aligned}
$$

Substitute $D_{i}(t)=c_{i} t$ in the above equation,

$$
c_{i}=p k\left(c_{i-1}-c_{i}\right)+(1-p)\left((i-1) c_{i-1}-i c_{i}\right)
$$

to get $c_{i} \sim \mathrm{Ci}^{-\frac{2-p}{1-p}}$. (same as the copying model)

Geometric random walk (A. Blum et al 2006)

Given k and p, at time t, vertex v makes k connections to the existing graph by repeating the following process k times:
(1) Pick an existing node v uniformly at random from $\left\{v_{0}, \cdots, v_{t-1}\right\}$.
(2) Flip a coin of bias p.
(3) If the coin comes up heads add an edge from v_{t} to the current node and stop.
(4) If the coin comes up tails, move to a random neighbor of the current node and go back to (2).
In the directed version, the edges added are directed from v_{t} into the existing graph. In the undirected version, edges are undirected.

First and second toss = tail, second toss = head.

Existing results (only for directed graphs)

Let $l_{i}(u)$ be the number of level i descendents of node u. For example, $I_{1}(u)=\#$ of children, $I_{2}(u)=\#$ of grandchildren, etc.

Let $\beta=\left(\beta_{1}, \beta_{2}, \cdots\right)$ be a sequence of real numbers with $\beta_{1}=1$.
Define virtual degree of u with respect to β to be
$v_{\beta}(u)=1+\beta_{1} I_{1}(u)+\beta_{2} I_{2}(u)+\beta_{3} l_{3}(u)+\cdots$.

$v(u)=1+2 \beta I+4 \beta_{2}+0 \beta_{3}+0 \beta_{4}+\cdots$.

Existing results

Theorem: There always exist β_{i}, dependent on p with $\beta_{0}=1,\left|\beta_{i}\right| \leq 1$ such that the expected increase in $v(u)$ from step t to $t+1$ is $v(u) p / t$. Furthermore, $\beta_{i}==O\left(\rho^{i}\right), 0<\rho<1$.

Let $v_{t}(u)$ be the virtual degree of node u at time t and t_{u} be the time when node u first appears. Then, for any node u and time $t \geq t_{u}$,

$$
\mathbb{E}\left[v_{t}(u)\right]=\Theta\left(\left(t / t_{u}\right)^{p}\right)
$$

Proof: $\mathbb{E}\left[v_{t}(u)\right]=\left(1+\frac{p}{t-1}\right) \mathbb{E}\left[v_{t-1}(u)\right]$, hence,
$\mathbb{E}\left[v_{t}(u)\right]=\prod_{i=t_{u}}^{t}(1+p / i)=\Theta\left(\left(\frac{t}{t_{u}}\right)^{p}\right)$

Existing results

For real degree $d(u)$

Let $d_{t}(u)$ be the virtual degree of node u at time t and t_{u} be the time when node u first appears. For any node u and time $t \geq t_{u}$,

$$
\mathbb{E}\left[d_{t}(u)\right] \geq \Omega\left(\left(t / t_{u}\right)^{p(1-p)}\right)
$$

Proof

Observe that

$$
\mathbb{E}\left[d_{t+1}(u)\right] \geq \mathbb{E}\left[d_{t}(u)\right]+\frac{p(1-p)}{t} \mathbb{E}\left[d_{t}(u)\right]
$$

then...

Only partial results are proved for the random walk model.

Scale free network caused by random walk

Figure: Node=2000, Random Walk $p=0.6$.

