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Description of the Preferential Attachment

Basic model
At time 0, one node is present
At each discrete time step t > 0, a new vertex is added, with one
undirected edge preferentially (∝ ki where ki is the degree of the
i th node) attached to one existing node (including itself).
ti represents the time when vertex i was added to the system.

More general model
Each new vertex has m edges linking to other vertexes, which allows
multiple edges and also loops.
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Informal derivation of preferential attachment

Then, at time t ,
dki

dt
=

ki

2t
⇒ ki =

(
t
ti

)1/2

.

Thus, the degree D distribution is obtained by

P[D > x ] = P[ti < t/x2] =
t

x2(t + 1)
,

which implies P[D = x ] ∼ 1
x3 .
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Rigorous treatment

Formal definitions
dG(v) - total degree of vertex v in G.
Gt

1 - state of the graph at time t ≥ 1 for m = 1
G1

1 - starting graph with one vertex and one loop (pointing to itself).

Given Gt−1
1 , form Gt

1 by adding the vertex vt together with a single
edge directed from vt to vi , where i is chosen randomly with

P[i = s | Gt−1
1 ] =

{
dGt−1

1 (vs)
/(2t − 1) 1 ≤ s ≤ t − 1

1/(2t − 1) s = t .

For m > 1, the graph is constructed by adding m edges one at a time.
Equivalently, the process Gt

m can be obtained by coalescing every m
vertexes of Gmt

1 into one vertex.
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Analysis due to Bollobás et al

Proving recipe
Used in many other papers.

Let the number of vertices of Gn
1 with indegree equal to d be Xn(d).

The martingale
Xt = E[Xn(d) | Gt ]

satisfies that | Xt+1 − Xt | is bounded by two.

If {Xt}n≥t≥0 is a martingale with | Xt+1 − Xt |≤ c for t = 0, 1, · · · , n − 1,
then,

P[| Xn − X0 |≥ x ] ≤ exp
(
− x2

2c2n

)
.

Applying Azuma-Hoeffding inequality, we obtain that Xn(d) is very
concentrated around its mean, and thus only need to compute
E[Xn(d)].
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Compute E[Xn(d)]

This needs some work, and it turns that for m = 1

E[Xn(d)] ∼ 4n
(d + 1)(d + 2)(d + 3)

,

and for m > 1,

E[X m
n (d)] ∼ 2m(m + 1)n

(d + m)(d + m + 1)(d + m + 2)
.
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Is the topology unique? Is degree distribution enough?
Intuition says no; however...(Kleinberg etc. 2005)

Erdos-Renyi Model: Isomorphism
Let Grnd(∞, p) denote the probability distribution on graphs with vertex
set N, in which each edge (i , j) is included independently with
probability 0 < p < 1. There exists an infinite graph R, such that a
random sample from Grnd(∞, p) is isomorphic to R with probability 1.

Isomorphism of infinite limits for PA scale-free graphs: m = 1, 2
For d = 1, 2, there is a graph R such that a random sample from
Grnd(∞, p) is isomorphic to R with probability 1.

Infinite limits of PA scale-free graphs: m ≥ 3
For each out-degree m ≥ 3, it is not the case that two independent
random samples from GPA(∞, p) are isomorphic with probability 1.
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Preferential Attachment: Continued...

What if attaching proportional to kα
i ?

Only linear preferential attachment yields power-law graphs.
If α > 1, eventually one person gets all the links.
There is a finite time after which no one else gets anything!
If α < 1, the degree distribution follows a stretched exponential.

Limitation of preferential attachment

Outdegree = m for directed graph.
Global information.
Number of nodes increases linearly.
In a large scale experimental study by Kumar et
al, they observed that the Web contains a large
number of small bipartite cliques (cores)
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One generalization

Both in-degree and out-degree are power law(Bollobás et al)
A directed graph which grows by adding single edge at discrete time
steps. At each such step a vertex may or may not also be added. Let
α, β, γ, δin and δout be non-negative real numbers, with α + β + γ = 1.

1 With probability α, add a new vertex v together with an edge from
v to an existing vertex w , where w is chosen proportionally to
din + δin.

2 With probability β, add an edge from an existing vertex v to an
existing vertex w , where v and w are chosen independently, v
according to dout + δout , and w according to din + δin.

3 With probability γ, add a new vertex w and an edge from an
existing vertex v to w , where v is chosen according to dout + δout .
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Copying Model

Parameters:
1 The out-degree d (constant) of each node
2 Probability p.

The process:
1 Nodes arrive one at the time
2 A new node selects uniformly one of the existing nodes as a

prototype
3 The new node creates d outgoing links. For the ith neighbor of the

prototype node
with probability p it connects to the ith neighbor of the prototype node
with probability 1− p it selects the target connection uniformly at
random among all the existing nodes
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Power law degree distribution with exponent β = (2− p)/(1− p)

Number of bipartite cliques of size Kid is ne−i

The model has also found applications in biological networks:
copying mechanism in genes
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1-Step Random Walk with Self-Loop (A. Blum, et al
2006)

Given k and p, at time t , vertex v makes k connections to the existing
graph by repeating the following process k times:

1 Pick an existing node v uniformly at random from {v0, · · · , vt−1}.
2 With probability p stay at v ; with probability 1− p take a 1−step

walk to a random neighbor of v .
3 Add an edge from v to the node where the random walk stops.

In the directed version, the edges added are directed from vt into the
existing graph. In the undirected version, edges are undirected.
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analyzing 1-step walk

Di(t) is the expected number of nodes with in-degree i at step t , then,

Di(t + 1) = Di(t)+
pk
t

(Di−1(t)− Di(t))+

(1− p)k
t

((i − 1)Di−1(t)− iDi(t))
1
k

Substitute Di(t) = ci t in the above equation,

ci = pk(ci−1 − ci) + (1− p)((i − 1)ci−1 − ici),

to get ci ∼ Ci−
2−p
1−p . (same as the copying model)
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Geometric random walk (A. Blum et al 2006)

Given k and p, at time t , vertex v makes k connections to the existing
graph by repeating the following process k times:

1 Pick an existing node v uniformly at random from {v0, · · · , vt−1}.
2 Flip a coin of bias p.
3 If the coin comes up heads add an edge from vt to the current

node and stop.
4 If the coin comes up tails, move to a random neighbor of the

current node and go back to (2).
In the directed version, the edges added are directed from vt into the
existing graph. In the undirected version, edges are undirected.
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First and second toss = tail, second toss = head.
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Existing results (only for directed graphs)

Let li(u) be the number of level i descendents of node u. For example,
l1(u) = # of children, l2(u) = # of grandchildren, etc.

Let β = (β1, β2, · · · ) be a sequence of real numbers with β1 = 1.
Define virtual degree of u with respect to β to be
vβ(u) = 1 + β1l1(u) + β2l2(u) + β3l3(u) + · · · .

v(u) = 1 + 2βl + 4β2 + 0β3 + 0β4 + · · · .
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Existing results

Theorem: There always exist βi , dependent on p with β0 = 1, | βi |≤ 1
such that the expected increase in v(u) from step t to t + 1 is v(u)p/t .
Furthermore, βi == O(ρi), 0 < ρ < 1.

Let vt(u) be the virtual degree of node u at time t and tu be the time
when node u first appears. Then, for any node u and time t ≥ tu,

E[vt(u)] = Θ((t/tu)p).

Proof: E[vt(u)] = (1 + p
t−1)E[vt−1(u)], hence,

E[vt(u)] =
∏t

i=tu(1 + p/i) = Θ

((
t
tu

)p
)
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Existing results

For real degree d(u)

Let dt(u) be the virtual degree of node u at time t and tu be the time
when node u first appears. For any node u and time t ≥ tu,

E[dt(u)] ≥ Ω((t/tu)p(1−p)).

Proof
Observe that

E[dt+1(u)] ≥ E[dt(u)] +
p(1− p)

t
E[dt(u)],

then...

Only partial results are proved for the random walk model.
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Scale free network caused by random walk

Figure: Node=2000, Random Walk p = 0.6.
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