
Self Similar (Scale Free, Power Law) Networks (I)

E6083: lecture 4
Prof. Predrag R. Jelenković
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Introduction

Network symbols
Nodes: biological objects (proteins, genes)
Edges: interaction between nodes

Examples
Network node Edges

Metabolic networks metabolites interaction
Transcriptional interactions genes regulation

Protein folding networks residue folding neighbors
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DNA & Genes

Jelenković (Columbia University) Self Similar Networks February 7, 2007 5 / 31



Gene Transcription Regulation

The transcription rate is
controlled by the promoter.
Transcription Factors (TF),
including activators and
repressors, binds the sites in
promoter.
TFs are regulated by other
TFs, and form a network.
TFs are encoded in genes.
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Gene Regulatory Network

Cell’s gene regulatory network refers to the coordinated on and off
switching of genes by regulatory proteins that bind to non-coding DNA.

How to discover edges?
Most work in this area has focused on reconstructing the network from
data/experiments, for example, find the correlation function ρ of the
number of proteins, the hypothesis is that if two genes are
positively/negatively regulated, then ρ is close to ±1, meaning, A
appears with high probability if B is present, then... Also, some
researchers use mutual information as a measure of gene “closeness”.
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http://www.biochemj.org/bj/381/0001/bj3810001.htm

Figure: Regulatory network of transcription factors (TFs) in E. coli.
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http://www.biomedcentral.com/1471-2105/5/199

Figure: Hierarchical structure and modules in the E. coli transcriptional
regulatory network

The original unorganized network vs. the hierarchical regulation
structure. Nodes in the graph are operons. Links show the
transcriptional regulatory relationships. The global regulators found in
this work are shown in red.
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http://www.biomedcentral.com/1471-2105/5/199

Operons in different modules are
shown in different colors. The ten
global regulators form the core part
of the network. The periphery
modules are connected mainly
through the global regulators.
Depending on the connectivity
between the modules and their
connectivity to the global
regulators, these modules can be
further grouped to larger modules
at a higher level.

Figure: Functional
modules in the
transcriptional regulatory
network of E. coli
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Characterizing metabolic networks of E. Coli

Network biology (Barabasi &
Oltvai, Nature, 2004)
(d) The degree distribution,
P(k) of the metabolic
network illustrates its
scale-free topology.
(e) The scaling of the
clustering coefficient C(k)
(defined later) with the
degree k illustrates the
hierarchical architecture of
metabolism.

(f) The flux distribution in the
central metabolism of E. Coli
follows a power law, which
indicates that most reactions have
small metabolic flux, whereas a
few reactions, with high fluxes,
carry most of the metabolic activity.
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Questions

What is the topology of this network?
Are there basic structures (subgraphs/subnetworks, motifs)?
How do we model the operations of regulatory networks?
(analogy circuits: gates, logic?)
How does evolution change regulatory networks?
Impact of natural selection (fitness), motifs..
Resilience to attacks (targeted or random), disease, etc.
We could have a whole course on gene regulatory networks
(Spring 2008).
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Power Law Random Graph– Scale Free Network
The observations of power-law distributions in the connectivity of
complex networks came as a surprise to researchers deeply rooted in
the tradition of random networks.

Traditional random graph - Erdos Renyi model
VS Scale Free Network - Barabási model

Figure: Concentrated Degree
distribution: ≈ Poisson

Figure: Power Law Degree
distribution
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Introduction to Erdös Rényi Model

G(n, p) is a graph with n nodes where an edge has probability p to
be selected.
Average degree d = ED = p(n − 1) ≈ pn;
P[D = k ] =

(m
k

)
pk (1− p)m−k ≈ (dk/k !)exp(−d).

Sharply concentrated around its mean, i.e., Poisson-like.
Percolation transition, threshold behavior at d = 1.
If d < 1, then with high probability the network is forming mostly
trees and no component is larger than log n.
If d > 1, there is a unique “giant component”.
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The Clustering Coefficient of a Network

Let N(u) denote the set of neighbors of u in a graph:
N(u) = {v : (u, v) ∈ G}.
The clustering coefficient of u:
let k =| N(u) | (i.e., the number of neighbors of u);(k

2

)
= max possible # of edges between vertices in N(u);

c(u) = (actual # of edges between vertices in N(u))/
(k

2

)
.

0 ≤ c(u) ≤ 1; measure of cliquishness of u’s neighborhood.
Clustering coefficient of a graph: average of c(u) over all vertices.

Real networks often have high clustering Creal � Crnd .
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Main Network Types
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Internet Topology (Michalis Faloutsos, Petros
Faloutsos & Christos Faloutsos 1999)

Figure: The structure of Internet at a) the router level and b) the inter-domain
level. The hosts connect to routers in LANs.

Figure: Log-log plot of the outdegree d, versus the rank in the sequence of
decreasing outdegree. Data in Nov 97 and April 98.
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Internet Topology

The outdegree, indegree distribution follow power laws.
The total number of pairs of nodes within h hops follow power
laws.
The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn follow power laws. (the
eigenvalues of a graph are closely related to many basic
topological properties such as the diameter, the number of edges,
the number of spanning trees, the number of connected
components...)
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Many Natural Networks

A heavy-tailed degree distribution: a small but distinctive number
of high-degree vertices serve as hubs.
Few connected components: often only 1 or a small number
independent of network size
Small diameter: often growing only logarithmically with network
size
A high degree of clustering

Jelenković (Columbia University) Self Similar Networks February 7, 2007 22 / 31



Mechanisms resulting power law random graph

Preferential Attachment: the rich get richer
As new connections form, they attach to a node with a probability
proportional to the existing number of connections (growth and
preferential attachment).

Copying Models
The linear growth copying model was introduced by Kleinberg et al. in
1999.

New mechanism: generalized random walk (GRW)
The evolvement of large scale systems (e.g., self-assemble DNA
network, Internet, social network) is attributed to rules lying into two
categories: global information and local information.
(The preceding copying model can be viewed as a special case of
random walk attachments.)
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Preferential Attachment

Informal derivation
At time 0, one node is present, and at each step t + +, a new vertex is
added, with one undirected edge preferentially (∼ ki ) attached to one
existing node. Assume that vertex i was added to the system at time ti .

Then, at time t ,
dki

dt
=

ki

2t
⇒ ki =

(
t
ti

)1/2

.
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Preferential Attachment: Continued...

Thus, the degree D distribution is obtained by

P[D > x ] = P[ti < t/x2] =
t

x2(t + 1)
,

which implies P[D = x ] ∼ 1
x3 .

A rigorous analysis of preferential attachment was first given by
Bollobás et al. Let the number of vertices of Gn with indegree equal to
d be Xn(d), and consider Gn as one graph from the process
{Gt : 0 ≤ t ≤ n}. The martingale

Xt = E[Xn(d) | Gt ]

satisfies that | Xt+1 − Xt | is bounded by two.
Applying Azuma-Hoeffding inequality, we obtain that Xn(d) is very
concentrated around its mean, and thus only need to compute
E[Xn(d)].
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Preferential Attachment: Continued...

What if attaching proportional to kα
i ?

If α > 1, eventually one person gets all the links.
There is a finite time after which no one else gets anything!
If α < 1, the degree distribution follows a stretched exponential.

Limitation of preferential attachment
Global information.
Number of nodes increases linearly.
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The origin of the scale-free topology in biological
networks

The new protein has the
same structure as the old
one, so they both interact
with the same proteins.
Therefore proteins with a
large number of interactions
tend to gain links more often,
as it is more likely that they
interact with the protein that
has been duplicated.
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Discovering motifs

Motifs are those patterns which occur significantly more frequently in
real than in equivalent randomized networks.

Look for all possible two- or three-node configurations.
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Yeast Regulatory Network Motifs

Lee et al, Science 2002
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Motifs Of The Yeast Protein Network

S. Wuchty, Z. Oltvai & A.-L. Barabasi, Nature Genetics, 2003
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Scale free network caused by random walk

Figure: Node=2000, Random Walk p = 0.6.
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