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Heavy Tails: The Origins and Implications for Large
Scale Biological & Information Systems

Lecturer: Prof. Predrag Jelenkovic
Office hours: Wed. 4-5pm
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.comet.columbia.edu/ predrag

Day, time and place: Wed 12:10pm - 2:40pm,
Credits: 3
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Required text: research papers will be primarily used as well as the
lecture notes.

Project(s): small numerical or simulation problems might be
periodically assigned.

Homework: Occasional assignments will be given.

Final: will consist of a project, in class presentation and a written
paper.

Grading: Hwk (20%) + Final (80%)

Software requirements: Quantitative homework assignments may
require the use of mathematical software packages MATHEMATICA or
MATLAB.
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Description

Since the early works of Pareto in 1897 and later of Zipf, heavy tails
have been repeatedly observed for over a hundred years. Heavy-tailed
distributions, in particular power laws, have been found in a vide
variety of biological, technological and socioeconomic areas.

In this course, we will study general laws that explain the ubiquitous
nature of heavy tails. Basically, the wide appearance of
Gaussian/Normal distributions can be attributed to the generality of the
central limit theorem. Similarly, we will present the existing and some
very new laws that under very general conditions almost invariably
result in heavy tails. We will study the implications that the heavy-tailed
phenomena have on biological networks as well as on the design of
future information networks and systems.
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Jelenković (Columbia University) Ubiquity of Power Laws January 2007 6 / 34



100+ years of repeated observations of power laws

Socioeconomic area
Incomes, Pareto (1897)
Population of cities Arrherbach (1913) & Zipf (1949)

Biological area
Species-area relationship, Arrhenius (1921)
Gene family sizes Huynen & Nimwegen (1998)

Technological area: the Internet
Ethernet LAN traffic Leland, Willinger et al. (1993), Scenes in
MPEG video streams Jelenković et al. (1997), WWW traffic
Crovella & Bestavros (1997)
Page requests Cunha et al. (1995), pages and visitors per Web
site Adamic & Huberman (1999, 2000)
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Are these observations merely a big coincidence?
Are there universal mathematical laws governing these phenomena?

Goal of this course
Study the phenomena of heavy-tailed (power law) distributions
Provide rigorously and robust models to explain the ubiquitous
nature of heavy tails and, in particular, power laws
Apply those models and their inferences to systems biology and
information networks
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A first glance at power law distributions

Roughly speaking, a random variable X has a power law tail if
there exists α > 0, such that

P[X > x ] ∼ H
xα

or, more generally,

log P[X > x ]

log x
→ −α

Therefore, in the log-log plot, a power law distribution is approximately
a straight line with negative slope.
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How are heavy tails different?

Properties
Much heavier distribution tail than exponential distribution
Large values strike the system often

Comparing the sample
path of the power law
with the geometric
distribution of the
same mean and
variance.
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System behavior is dominated by big excursions, not by averaging
phenomena.

Figure: Accumulated strength Figure: A big value
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Examples that motivate the study of heavy tails
Distribution of wealth, income of individuals
City sizes vs. ranks - given the population, what is the city rank?
The graphs of gene regulatory and protein-protein networks are
scale free
Long neuron inter-spike intervals in depressed mice
Internet and WWW - scale free network (graph): fault tolerant,
hubs are both the strength and Achilles’ heels
Scene lengths in VBR and MPEG video are heavy-tailed
Computer files, Web documents, frequency of access are
heavy-tailed
Stock price fluctuations and company sizes
Inter occurrence of catastrophic events, earthquakes -
applications to reinsurance
Frequency of words in natural languages (often called Zipf’s law)
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Heavy-tailed (long-tailed) distributions
A nonnegative random variable X is called heavy-tailed (X ∈ L) if

lim
x→∞

P[X > x + y ]

P[X > x ]
= 1, y > 0

Note that P[X > x + y ]/P[X > x ] represents the conditional
probability P[X > x + y |X > x ].
Hence, a random variable is heavy-tailed if the knowledge that X
has exceeded a large value x implies that it will exceed an even
larger value x + y with a probability close to one.
In other words, a heavy-tailed random variable exceeds a large
value x by a substantial margin.
If X ∈ L, then heavier than exponential. Formally, if X ∈ L then
P[X > x ]eαx →∞ as x →∞, for all α > 0.
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Subexponential distributions
We say that X ≥ 0 is subexponetial (X ∈ S) if for any n ≥ 1 and
X1, . . . , Xn being n independent copies of X

P

[
n∑

i=1

Xi > x

]
∼ nP[X > x ] as x →∞

Invented by Chistyakov in 1964
Slightly smaller class than L (S ⊂ L)
Sum of n i.i.d. subexponential random variables exceeds a large
value x due to exactly one of them exceeding x
Large Deviations - This remains true (under more restrictive
assumptions) if both n and x are proportional and made large at
the same time
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Primary examples: Power (Pareto/Zipf) laws - regularly varying
Best known class of subexponetial/heavy-tailed distributions
Regularly varying distributions R−α (in particular Zipf/Pareto
family); F ∈ R−α if it is given by

F (x) = 1− l(x)

xα
α ≥ 0,

where l(x) : R+ → R+ is a function of slow variation, i.e.,
limx→∞ l(δx)/l(x) = 1, δ > 1, e.g., l(x) can be constant, log x ,
log log x , etc.

Other examples

Lognormal distribution F (x) = Φ
(

log x−µ
σ

)
, µ ∈ R, σ > 0, where

Φ is the standard normal distribution.
Weibull distribution F (x) = 1− e−xβ

, for 0 < β < 1.
“Almost exponential” F (x) = 1− e−x(log x)−a

, for a > 0.
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City Sizes

Figure: Log Size versus Log Rank of the 135 largest U.S. Metropolitan Areas
in 1991 [cited from Gabaix (1999)].
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Language Family Sizes
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World Income Distribution

Figure: Zipf’s plot of the 30th-85th percentiles of the world income distribution
(GDP per capita) in 1960 and 1997.
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Trading volume impacts stock price

Figure: Market impact function for buy initiated trades of three stocks traded
in the NYSE (dashed blue curve) and three stocks traded in the LSE (solid
red curve).
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Neuron spiking time-series

Figure: Power law inter-spike distribution for rat model of depression.
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Fractal Characteristics of Neuronal Activity for Firing-code
Patterns

Figure: M. Rodriguez & E. Pereda & J. Gonzalez & P. Abdala & J. A. Obeso
(2003)
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File sizes

Figure: Log/log plot of the empirical distribution of the file sizes on five file
servers in COMET Lab at Columbia University (α = 1.44).
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Visitors and pages per Web site

Figure: Fitted power law distributions of the number of pages and visitors per
Web site.
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Power Law Random Graph– Scale Free Network
The observations of power-law distributions in the connectivity of
complex networks came as a surprise to researchers steeped in the
tradition of random networks.

Traditional random graph - Erdos Renyi model
VS Scale Free Network - Barabási model

Figure: Concentrated Degree
distribution: ≈ Poisson

Figure: Power Law Degree
distribution
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Analogy of Internet topology and interacting proteins in yeast

Figure: Image credit: Internet Mapping Project of Lumeta Corporation;
Scientific American
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Science citation index
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Scale free network caused by random walk

Figure: node=2000, random walk p = 0.6.
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Why are normal and exponential distributions
common?

Gaussian/normal: the central limit theorem
Xi - identically and independently distributed (i.i.d.) random
variables with mean zero and a finite variance σ2.
Then the probability density function fn(s) of the (normalized) sum
Sn =

(∑n
i=1 Xi

)
/(σ
√

n) of Xi converges to a normal density with
unit variance, as n becomes large,

fn(s) → φ(s) =
1

2
√

π
exp

(
−s2

2

)
.

Exponential: queueing theory
The superimum of an additive random walk with negative drift is
exponential under quite general conditions.
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