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ABSTRACT
Although users of online communication tools rarely catego-
rize their contacts into groups such as ”family”, ”co-workers”,
or ”jogging buddies”, they nonetheless implicitly cluster con-
tacts, by virtue of their interactions with them, forming im-
plicit groups. In this paper, we describe the implicit social
graph which is formed by users’ interactions with contacts
and groups of contacts, and which is distinct from explicit so-
cial graphs in which users explicitly add other individuals as
their ”friends”. We introduce an interaction-based metric for
estimating a user’s affinity to his contacts and groups. We
then describe a novel friend suggestion algorithm that uses a
user’s implicit social graph to generate a friend group, given
a small seed set of contacts which the user has already la-
beled as friends. We show experimental results that demon-
strate the importance of both implicit group relationships
and interaction-based affinity ranking in suggesting friends.
Finally, we discuss two applications of the Friend Suggest
algorithm that have been released as Gmail Labs features.

Categories and Subject Descriptors
H.5.3 [Information Systems]: Information Interfaces and
Presentation—Group and Organization Interfaces;
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Human Factors
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1. INTRODUCTION
One benefit of many online communication channels over

offline methods is that they enable communication among
groups of people, rather than restricting communication to
be peer-to-peer. Email is just one format that supports
group conversations, but there are many others, such as
photo- and link-sharing, and collaborative document edit-
ing. In fact, group communication is so prevalent that our
analysis of the Google Mail email network shows that over
10% of emails are sent to more than one recipient, and over
4% of emails are sent to 5 or more recipients. Within en-
terprise domains, group communication is even more criti-
cal. An analysis of the email network of Google employees
showed that over 40% of emails are sent to more than one
recipient, and nearly 10% are sent to 5 or more recipients.

As opposed to broadcast-style media, such as blogs1 and
micro-blogging platforms like Twitter2, the information com-
municated by an individual to a limited group is generally
carefully targeted, and may be private. The recipient lists
for small-group communications such as emails are selec-
tively constructed by the message senders. We have ob-
served that users tend to communicate repeatedly with the
same groups of contacts. This observation has prompted
many online communication platforms to provide their users
with tools for creating and saving groups of contacts. Some
examples are the Google Mail Contact Manager3, or custom
friends lists on Facebook4.

Despite the prevalence of group communication, users do
not often take the time to create and maintain custom con-
tact groups. One survey of mobile phone users in Europe
showed that only 16% of users have created custom contact
groups on their mobile phones [12]. In our user studies, users
explain that group-creation is time consuming and tedious.
Additionally, groups change dynamically, with new individu-
als being added to multi-party communication threads and
others being removed. Static, custom-created groups can
quickly become stale, and lose their utility.

In this paper, we present a friend-suggestion algorithm
that assists users in the creation of custom contact groups,

1e.g. http://www.blogger.com, http://www.wordpress.com
2http://www.twitter.com
3http://mail.google.com/support/bin/answer.py?

hl=en&answer=30970
4http://www.facebook.com/help/#/help.php?page=768
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either implicit or explicit. This algorithm is based on anal-
ysis of the implicit social graph, which is the social network
that is defined by interactions between users and their con-
tacts and groups of contacts. We differentiate the implicit
social graph from explicit social graphs that are formed by
users explicitly adding other individuals as ”Friends”. The
implicit social graph is a weighted graph, where edge weights
are determined by the frequency, recency, and direction of
interactions between users and their contacts and groups.
Our measure of tie strength differs from previous work in
that we consider group interactions, as well as peer-to-peer.

We use the implicit social graph to identify clusters of
contacts who form groups that are meaningful and useful to
each user. Unlike some previous research on contact clus-
tering, we do not consider the content of interactions. Ad-
ditionally, because the email network that we have studied
is private, we do not consider any friend-of-friend ties, ei-
ther when computing edge weights for the graph, or when
computing contact clusters.

Given a user’s social network with weighted edges and an
initial seed of a few contacts, our friend-suggest algorithm
builds a custom contact group that accurately expands the
seed. We evaluate the efficacy of our algorithm by com-
paring to baseline approaches via precision-recall measure-
ments. We show two applications of this algorithm, imple-
mented as Gmail Labs features, called ”Don’t forget Bob!”
and ”Got the wrong Bob?” Although our discussion centers
around an email network, the network analysis that we have
done is applicable to any implicit social graph that is formed
by interactions between users and their contacts.

2. CHARACTERISTICS OF THE EMAIL
IMPLICIT SOCIAL GRAPH

The Google Mail implicit social graph is composed of bil-
lions of distinct nodes, where each node is an email address.
Edges are formed by the sending and receiving of email mes-
sages. For the purpose of our work, we consider a message
sent from a user to a group of several contacts as forming a
single edge, thereby constructing a directed hypergraph. We
call the hypergraph composed of all of the edges leading into
or out of a single user node that user’s egocentric network.
We call each hyperedge an implicit group, even though it
may consist of a single contact. On average, a typical 7-day
active user has 350 implicit groups in his egocentric network,
with groups containing an average of 6 contacts. Note that
this does not imply that the average user has thousands of
distinct contacts. Rather, each implicit group is a unique
combination of one or more contacts with whom the user
has interacted.

Edges in the implicit social graph have both direction and
weight. The direction of an edge is determined by whether
it was formed by an outgoing email sent by the user, or an
incoming email received by the user. There may be both
outgoing and incoming edges joining a user and an implicit
group, if the user has both sent and received email from the
group. We consider a user to have received mail from a group
by joining the sender of the mail and the other co-recipients
into an implicit group. Thus, if a contact c1 sent mail to
the user u and contacts c2 and c3, this is represented in
u’s egocentric network as an incoming edge from the group
{c1, c2, c3} to u.

The weight of an edge is determined by the recency and

frequency of email interactions between the user and the
group. In Section 3.1, we propose one metric for computing
edge weight, which we call Interactions Rank. We claim that
edge weight is an important indicator of the strength of the
relationship between the user and a particular group. In the
remainder of this paper, we use the terms edge weight, group
weight, and group importance interchangeably.

In our work, we draw a sharp distinction between each
user’s egocentric network and the global or sociocentric net-
work that is formed by combining the networks of all users.
Although other researchers have found value in clustering
contact groups by looking at friend-of-friend edges (e.g. [9]),
we restrict our algorithm to look only at a single user’s
egocentric network during friend suggestion. By showing
users suggestions based only on their local data, we are able
to protect user privacy and avoid exposing connections be-
tween the user’s contacts that might not otherwise have been
known to him.

The social graph studied in this paper is constructed us-
ing the metadata (i.e. timestamp, sender, and recipients) of
outgoing and incoming messages set or received via Google
Mail; message content is not included or examined. For
the purposes of this research, we used a random sample of
the metadata from thousands of interactions, and data was
looked at exclusively in aggregate. The experimental results
in Section 4 were gathered with the same privacy protec-
tions that are used in all Google software development5 to
ensure that developers do not intentionally or unintention-
ally access contact information about specific users without
their explicit consent.

3. FRIEND SUGGEST
Our algorithm is inspired by the observation that, al-

though users are reluctant to expend the effort to create
explicit contact groups, they nonetheless implicitly cluster
their contacts into groups via their interactions with them.
For example, while a user may have multiple, possibly over-
lapping, subgroups of coworkers with whom he exchanges
emails, he is unlikely to include his family members in those
interactions. The Friend Suggest algorithm, described in
this section, detects the presence of implicit clustering in
a user’s egocentric network by observing groups of contacts
who are frequently present as co-recipients in the same email
threads. The input to Friend Suggest is a seed, which is a
small set of one or more contacts that belong to a particular
group. This seed could be labeled by the user selecting a
few contacts, e.g., as an initial list in the ”To:” field of an
email. Given this seed, Friend Suggest finds other contacts
in the user’s egocentric network who are related to the seed,
meaning that they are present in the same implicit clusters.
Friend Suggest also returns a score for each suggested con-
tact, indicating the goodness of its fit to the existing seed.

The algorithm described in this section is applicable to the
problem of group clustering in any interaction-based social
graph. For clarity and convenience, we describe it in terms
of email interactions.

3.1 Interactions Rank
The first requirement of the Friend Suggest algorithm is

an implicit social graph with edges whose weights represent
the relationship strength between a user and his implicit

5http://mail.google.com/mail/help/privacy.html
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groups. We wish to compute edge weights that satisfy the
following three criteria:

1. Frequency: Groups with which a user interacts fre-
quently are more important to the user than groups
with which he interacts infrequently.

2. Recency: Group importance is dynamic over time.

3. Direction: Interactions that the user initiates are more
significant than those he did not initiate.

Regarding recency, we observe that a group with which the
user is actively interacting now is more important than one
with which the user last interacted a year ago. Overall,
recent interactions should contribute more to group impor-
tance than interactions in the past. We also note that re-
ceiving an email from a contact, a passive interaction, is
a weaker signal of closeness than the active interaction of
sending an email to that contact. In the most extreme case,
we want to be able to rank spammer contacts, from whom
the user receives many emails but to whom he sends none,
very low in importance.

To satisfy these criteria, we propose Interactions Rank,
a metric computed by summing the number of emails ex-
changed between a user and a particular implicit group,
weighting each email interaction as a function of its recency.
Interaction weights decay exponentially over time, with the
half-life, λ, serving as a tunable parameter. An additional
parameter that can be tuned in Interactions Rank is ωout,
the relative importance of outgoing versus incoming emails.

Interactions Rank (sometimes abbreviated IR) is com-
puted over a set of email interactions I = {Iout, Iin}, ac-
cording to the following equation:

IR ← ωout

∑
i∈Iout

(
1

2

) tnow − t(i)
λ +

∑
i∈Iin

(
1

2

) tnow − t(i)
λ

where Iout is the set of outgoing interactions between a user
and a group, and Iin is the set of incoming interactions,
tnow is the current time, and t(i) is the timestamp of an
interaction i ∈ I. Note that according to this equation, an
interaction from the current time has a contribution of 1 to a
group’s Interactions Rank, whereas an interaction from one
half-life λ ago contributes 1

2
and so on.

Interactions Rank is related to the Recency metric pro-
posed by Carvalho and Cohen [5]. However, Interactions
Rank calculates the weight of each interaction according to
its timestamp, while Recency sorts interactions in chrono-
logical order, and weights them on an exponentially decay-
ing scale computed over their ordinal rank. Additionally,
Recency does not take into account the direction of each in-
teraction. Ting et al. propose an edge-weight metric that
considers the role of the interaction participant, but does
not take into account the time of the interaction [18].

It should be noted that Interactions Ranks do not easily
allow for comparisons across several users. A very active
user, who sends and receives many emails per day, will have
overall higher Interactions Ranks for his implicit groups than
a relatively inactive user. However, within a single user’s
egocentric network, Interactions Rank allows for a clean or-
dering of the user’s implicit groups by estimated relationship
strength. We are actively working on incorporating other
signals of importance, such as the percentage of emails re-
ceived from a contact that the user chooses to read.

3.2 Core Routine
The core routine of the Friend Suggest algorithm, Ex-

pandSeed is shown in Table 1.

function ExpandSeed(u, S):
input: u, the user

S, the seed
returns: F , the friend suggestions

1. G ← GetGroups(u)
2. F ← ∅
3. for each group g ∈ G:
4. for each contact c ∈ g, c /∈ S:
5. if c /∈ F :
6. F [c] ← 0

7. F [c]
+← UpdateScore(c, S, g)

Table 1: Core algorithm for suggesting contacts
that expand a particular seed, given a user’s con-
tact groups.

The ExpandSeed function takes as inputs a user, u, who
is the mailbox owner of a single egocentric network in the
implicit social graph, and a seed, S, consisting of a set of
contacts that make up the group to be expanded. Expand-
Seed returns a set of friend suggestions, F , which maps
each suggested contact to a score. Each contact’s score in-
dicates the algorithm’s prediction for how well that given
contact expands the seed, relative to the other contacts in
u’s network. Note that not all contacts from u’s network are
guaranteed to be returned in F .

Friend suggestions are computed as follows: The user
u’s egocentric network is extracted from the implicit social
graph. The network, G, is represented as a set of contact
groups, where each group g ∈ G is a set of contacts with
whom u has exchanged emails. Each group g has an Inter-
actions Rank, computed as described in Section 3.1, indi-
cating the strength of u’s connection to the group g. The
goal of ExpandSeed is to find, among all the contacts in
G, those whose interactions with u are most similar to u’s
interactions with the contacts in the seed S.

ExpandSeed iterates over each group g in G, computing a
score for each contact c that is a member of g. The algorithm
does not suggest contacts that are already members of the
seed S. Scores for each contact are computed iteratively via
a helper function, UpdateScore, which takes the contact
being considered, the contact’s score so far, F [c], the seed
S, and the group g. In the following section, we discuss
several possible scoring heuristics that were considered for
UpdateScore.

3.3 Scoring Functions
UpdateScore is a function template that takes a single

contact, c, from a user u’s egocentric network and an implicit
group g to which c belongs, and returns an incremental score
based on the group g’s similarity to the seed group, S. The
sum of UpdateScore for a contact c over all of the implicit
groups to which it belongs is an estimate of c’s fitness to ex-
pand the seed. Because both the implicit groups making up
an egocentric network and the seed group that is the input
to Friend Suggest are unordered sets of contacts, they can
be compared via standard measures of set similarity [19]. In
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this work, we look only at set member intersection, leaving
more complex metrics for future exploration. We define be-
low several implementations of UpdateScore. In the next
section, we evaluate their relative merits.

The most basic instantiation of UpdateScore, shown in
Table 2, simply returns a group g’s Interactions Rank if the
group has a non-empty intersection with the seed set.

function IntersectingGroupScore(c, S, g):
input: c, a single contact

S, the seed being expanded
g, a single contact group

returns: g’s contribution to c’s score

1. if g ∩ S 6= ∅:
2. return IR(g)
3. else:
4. return 0

Table 2: An implementation of UpdateScore that
sums the scores of all of the groups to which that
contact belongs, for groups that have a non-empty
intersection with the seed.

Intuitively, IntersectingGroupScore finds all the con-
texts in which the proposed contact c exchanged emails or
was a co-recipient with at least one seed group member.
However, a larger intersection between the members of the
seed group and the members of a given implicit group seems
to indicate a higher degree of similarity. Table 3 shows
a metric, IntersectionWeightedScore, that takes this
into account.

function IntersectionWeightedScore(c, S, g):
input: c, a single contact

S, the seed being expanded
g, a single contact group

returns: g’s contribution to c’s score

1. return IR(g) × k|g ∩ S|

Table 3: An implementation of UpdateScore that
sums the scores of all groups with a non-empty in-
tersection with the seed, weighted by the size of the
intersection times some constant k.

We investigate the contribution of group importance to
friend suggestion by comparing against a metric, Inter-
sectingGroupCount in Table 4, that simply counts the
number of groups a contact c belongs to that have some in-
tersection with the seed S. This metric ignores Interactions
Rank entirely, and treats all implicit groups as having equal
value to the user.

Finally, to highlight the importance of using a seed of con-
tacts that characterize a distinct friend group, we compare
against an UpdateScore instantiation, shown in Table 5,
that ignores the seed and always suggests the top-ranked
contacts. Contact ranks are computed by summing the In-
teractions Ranks of the implicit groups containing each con-
tact.

In each metric, the final friend suggestion scores are nor-
malized with respect to the highest-ranked contact, so that

function IntersectingGroupCount(c, S, g):
input: c, a single contact

S, the seed being expanded
g, a single contact group

returns: g’s contribution to c’s score

1. if g ∩ S 6= ∅:
2. return 1
3. else:
4. return 0

Table 4: An implementation of UpdateScore that
counts the number of groups to which a contact be-
longs, for groups that have a non-empty intersection
with the seed.

function TopContactScore(c, S, g):
input: c, a single contact

S, the seed being expanded
g, a single contact group

returns: an updated rank for the contact c

1. return IR(g)

Table 5: An implementation of UpdateScore that
computes the InteractionsRank of a single contact
by summing the scores of all of the groups to which
that contact belongs.

a single threshold can be used across all users, to cut off the
list of suggested contacts.

4. EVALUATION
In this section, we evaluate the quality of the Friend Sug-

gest algorithm on real user data. We compare the different
scoring functions discussed in the previous section, and ex-
plore the impact of seed size of friend prediction.

4.1 Methodology
Evaluation is one of the major challenges of developing

algorithms that make predictions based on online social net-
work data. Often, researchers build their data sets by sur-
veying a small set of users who are willing to provide the
ground truth about their online social relationships [8, 9,
21]. By asking users to categorize their contacts into groups,
or rate contacts as ”close to me” or ”not close to me”, re-
searchers can build a labeled data set that serves for both
training and testing. However, the nature of this type of sur-
vey necessarily limits the number and variety of users who
can be included in an experiment. Small sample size and
user selection bias can harm the accuracy of the evaluation.

We therefore propose a novel, alternate evaluation method-
ology. From a stream of real email traffic, we randomly sam-
pled 10000 email interactions with between 3 and 25 recip-
ients. Each recipient list is, in essence, a group of contacts
that was implicitly clustered by the user. We can test the ac-
curacy of the Friend Suggest algorithm, and compare the rel-
ative success of different scoring functions, by sampling a few
recipients from each group, and measuring how well Friend
Suggest is able to recreate the remaining recipient list. Our
approach is similar to the evaluation methodology used by
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Pal and McCallum [15], but whereas they removed one re-
cipient from each interaction and verified whether their al-
gorithm could restore him, we begin with small seeds and
attempt to generate multiple additional recipients per email.

To generate the 10000 random test interactions, we first
sampled 100000 interactions, and then defined rules that
aggressively filtered this set to produce a set of email inter-
actions likely to have been generated by active human users.
We define an active user as a user with a minimum of 5 im-
plict groups in his social network, who has sent at least one
other email in the 7 days prior to the sampled interaction.
We attempt to limit our data set to human users by exclud-
ing, via regular expression matching, bots and auto-reply
addresses such as ”info@domain”, and ”noreply@domain”.

Our experiment tests the ability of our algorithm to use
a user’s existing social graph to predict his future group in-
teractions. Therefore, when testing our algorithm’s ability
to predict the remaining recipients in a given email inter-
action, we use a snapshot of the user’s egocentric network
based only on interactions that occurred earlier than the
sampled interaction.

4.2 Results
Each graph below shows precision-recall curves for the

Friend Suggest algorithm using the different scoring func-
tions defined in Section 3.3, with seed groups ranging in size
from 1 to 5. For the purposes of our evaluation, we measure
precision as the percent of correct suggestions out of the to-
tal number of contacts suggested for each seed group, and
recall as the percent of correct suggestions out of the total
number of email recipients who were not already members
of the seed group. A correct suggestion is any contact who
was a recipient of the email being evaluated.

Figure 1: Precision/recall curves for the Friend Sug-
gest algorithm with a seed of 2 contacts, run over
the four different scoring functions defined in Sec-
tion 3.3.

Note that, for all seed sizes, the scoring functions that take
into account both group membership and relative group im-
portance, IntersectingGroupScore and Intersection-
WeightedScore, significantly out-perform TopContact-
Score, which ignores the similarity of the seed contacts to

the implicit groups and always suggests the top-ranked con-
tacts, and IntersectingGroupCount, which ignores the
Interactions Ranks of the groups and simply counts the num-
ber of groups in which a contact was a co-recipient with at
least one seed contact.

Figure 2: Precision/recall curves for the Friend Sug-
gest algorithm with a seed of 3 contacts, run over
the four different scoring functions defined in Sec-
tion 3.3.

Overall, the scoring function with the best performance
is IntersectionWeightedScore. For small seed sizes,
its performance is similar to IntersectingGroupScore.
However, as the size of the seed contact group increases, In-
tersectionWeightedScore’s performance remains fairly
constant, while IntersectingGroupScore’s ability to cor-
rectly predict email recipients decreases. Because it includes
in each contact’s score the score of every implicit group that
contains at least one member of the seed group, Intersec-
tionGroupScore is noisy and prone to false positives. By
taking into account the size of the intersection between each
implicit group and the seed group, IntersectionWeight-
edScore is able to discount the impact of spurious implicit
groups that have low similarity to the seed group.

These experimental results demonstrate that the Friend
Suggest algorithm, with a correctly chosen scoring function,
is able to predict the remaining recipients of an email with
high accuracy, given the first few contacts who were added
by the user.

5. APPLICATIONS
We use the Friend Suggest algorithm in two Gmail Labs

features, ”Don’t forget Bob!”, and ”Got the wrong Bob?”

5.1 Don’t Forget Bob!
”Don’t forget Bob” is a straightforward user interface on

top of the Friend Suggest algorithm. As seen in Figure 4,
”Don’t forget Bob” operates when a user is composing an
email message. The lab treats the first contacts added by
the user as the seed set, and uses them to generate a set
of possible suggested recipients that the user may wish to
add to the the email. Once the user has added at least two
contacts, the application queries the implicit social graph to
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Figure 3: Precision/recall curves for the Friend Sug-
gest algorithm with a seed of 5 contacts, run over
the four different scoring functions defined in Sec-
tion 3.3.

fetch the user’s egocentric network, and uses Friend Suggest
to generate up to four contacts who best expand the seed
set of existing contacts. These contacts are displayed as
clickable links below the ”To:” input field. If the user clicks
on a suggestion, or types in another email address, it is
added to the list of recipients, and a new set of suggestions
is generated.

”Don’t forget Bob” has been enabled and used by hun-
dreds of thousands of users, and overall, the user response
has been positive. One user posted to the lab’s feedback
group6, ”This is incredibly helpful for work/school/family
groups without having to create contact groups.” However,
accurately measuring the performance of ”Don’t forget Bob”
remains a challenge. We know that users click on a sig-
nificant fraction of suggestions. Our informal user surveys
suggest, though, that many users prefer to continue enter-
ing contacts via the keyboard and traditional auto-complete
mechanism, and find it inefficient to switch to the mouse
in order to click on a suggested contact. Those users report
that the displayed suggestions serve as a useful memory trig-
ger, but the added value is difficult to quantify.

5.2 Got the Wrong Bob?
A more complex use of the Friend Suggest algorithm can

be found in the ”Got the wrong Bob?”lab, shown in Figure 5.
”Got the wrong Bob” addresses the known problem of email
autocompletion errors [4]. While previous approaches have
relied heavily on message content, ”Got the wrong Bob” uses
the Friend Suggest algorithm to detect the inclusion of con-
tacts in a message who are unlikely to be related to the other
recipients.

The WrongBob algorithm, shown in Table 6, works as
follows: From the current recipients of an email that have
been entered by the user, the algorithm attempts to find a
single contact whose removal and replacement with another
contact from the user u’s egocentric network would lead to

6https://groups.google.com/group/gmail-labs-help-suggest-
more-recipients

a more coherent recipient list. For each contact ci in the
current recipient list L, WrongBob builds a seed set that
includes all of the members of L except ci (lines 4-5). This
seed is expanded via ExpandSeed to generate a set of con-
tacts that are similar to the current members of the seed.
If the excluded contact ci is a member of the suggestion
set, it is considered to be related to the other recipients and
unlikely to be a mistake (lines 7-8). WrongBob therefore
stops searching for a replacement for ci.

If, however, ci is not returned as a suggestion from Ex-
pandSeed, it is a potential mistake. WrongBob searches
for another contact that could replace ci. Each contact cj in
the result set returned by ExpandSeed is compared to the
error candidate ci via a helper function IsSimilar. In our
implementation, we measured similarity by checking to see if
cj was listed as an autocomplete suggestion at the time that
the user entered the contact ci. If ci and cj are similar, and
cj ’s score as a member of the seed expansion is higher than
the current maximum, ci and cj are saved as the current
candidate pair (lines 10-13). After examining all contacts in
L, the candidate pair with the highest score is returned and
displayed to the used as ”Did you mean Contact A instead
of Contact B”?

function WrongBob(u, L):
input: u, the user

L, a list of the recipients of an email
returns: a pair {c,s} where

c is a contact ∈ L
s is a suggested contact to replace c

1. scoremax ← 0
2. wrongRecipient ← null
3. suggestedContact ← null
4. for each contact ci ∈ L:
5. seed ← L \ ci
6. results ← ExpandSeed(u, seed)
7. if ci ∈ results:
8. continue
9. for each contact cj ∈ results:
10. if IsSimilar(ci, cj) and score(cj) > scoremax:
11. scoremax ← score(cj)
12. wrongRecipient ← ci
13. suggestedContact ← cj
14. return {wrongRecipient, suggestedContact}

Table 6: The WrongBob algorithm which, based on
the user’s egocentric network, checks if one of the
existing recipients would be a good candidate for
replacement with another contact.

For example, consider the recipient list L = {a, b, c}. As-
sume that when removing a to create the seed list {b, c},
ExpandSeed generates the suggestion set {a, d}. In this
case, because the excluded contact a is a member of the
suggestion set, WrongBob determines that it is not a mis-
take. Then, when removing b, if the algorithm observes
{b′, d}, where b′ is similar to b but d is not, the algorithm
will consider {b, b′} as candidates for replacement. If, after
removing c, the algorithm generates another candidate pair
{c, c′}, then it will return the pair with the highest score.

Like ”Don’t forget Bob”, the ”Got the wrong Bob?” lab has
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Figure 4: Example screenshot of the ”Don’t forget Bob!” lab in action. Given the user’s initial seed con-
tacts, ”Dopey”, ”Grumpy”, and ”Doc”, the Friend Suggest algorithm suggests additional recipients ”Happy”,
”Sneezy”, and ”Sleepy”.

Figure 5: Example screenshot of ”Got the wrong Bob?” In the context of an email to recipients ”Tim” and
”Angela”, the Wrong Bob algorithm detects that the user may have intended to include ”Bob Smith” instead
of ”Bob Jones”.

been enabled and used by hundreds of thousands of users.
Additionally, ”Got the wrong Bob?”has received a great deal
of favorable media attention in both popular forums such as
the New York Times and Esquire, and more technical fo-
rums like TechCrunch [3, 17, 16]. As in the previous lab,
measuring the true performance is challenging. While some
users do click on many suggestions, others prefer to edit
email recipient lists via the input textbox after being noti-
fied by the lab that they may have made a mistake. Overall,
user feedback has been positive, with many anecdotal re-
ports of how the lab has helped users to avoid embarrassing
mistakes. Together, the Bob labs contribute to an ongoing
effort to improve the interactions between Google users and
their contacts and groups.

6. RELATED WORK
In this section, we discuss related work in three areas: au-

tomatic creation of contact groups, analysis of interactions
to predict tie strength, and other explorations of communi-
cation networks.

6.1 Clustering
There has been some previous work on automatic clus-

tering of online contacts into groups. Reto et al. present
Cluestr, a clustering algorithm that groups contacts using
known graph clustering algorithms [12]. They build an un-
weighted social graph and cluster it based on edge density

between contacts. For example, if a user u has a set of con-
tacts {c1 . . . cn} who are highly connected to each other,
then they are likely to form a group that is meaningful to
u. However, this sociocentric algorithm can only apply to
networks in which u is aware of the connections between his
contacts. Recall that in our work, we use only the egocen-
tric network of each user, to avoid exposing to the user the
private information of his contacts.

In their work on email networks, Pal and McCallum use
message content to cluster email recipients into groups [15].
For each user, they build a model that maps keywords and
phrases extracted from email messages to the contents who
are likely to receive an email containing those terms. They
show how these models can be used to successfully predict
the recipients of an unaddressed message, and even more
successfully, how the ”CC:” and ”BCC:” recipients can be
predicted, given the ”TO:” recipients. Carvalho and Cohen
use a similar content-based model to solve the inverse prob-
lem of finding group anti-members, or email recipients who
were likely added to a message by mistake [4]. Unlike these
approaches, our analysis is based only on interactions, and
disregards content.

The C-Rank algorithm of Bar-Yossef et al. is the most sim-
ilar to the Friend Suggest algorithm described in this paper,
in that it is applied to email egocentric networks formed
by creating edges between contacts if they appear as co-
recipients in email messages [2]. Edges are assigned weights
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according to the number of email messages involving each
pair of contacts. The graph is then thresholded at a num-
ber of different edge weight thresholds, with edges falling
below the threshold removed, to created a set of unweighted
graphs. C-Rank identifies clusters of contacts within these
graphs by finding vertex separators, or contacts whose re-
moval from the graph creates disconnected subgraphs. The
authors claim that a good cluster is one that exists in several
graphs with different threshold levels.

Within enterprise networks, where expectations of privacy
are lower than in consumer email networks, researchers have
used sociocentric analysis to cluster and classify groups of
users. For example, De Choudhury et al. use an inferred
social network constructed from email interactions to assign
roles to the various participants, such as ”student”, ”faculty”,
or ”director” [6]. They use email frequency to filter noisy and
potentially spurious edges from the graph.

6.2 Tie-Strength Prediction
Another body of related work has explored the use of in-

teractions as a signal for measuring the strength of social
ties. Much of this work has studied the relationship be-
tween Facebook users and their contacts. Gilbert and Kara-
halios use a set of 70 different features to predict the strength
of connection between a user and his Facebook friends [8].
These features range from demographic features of the users,
such as age and religion, to interaction frequency and re-
cency features such as the number of comments a user has
left on his friend’s photos and the time elapsed since their
last email exchange. They found that the strongest predic-
tor of tie strength between two individuals is a short elapsed
time between message exchanges.

In other work on Facebook tie strength prediction, Ka-
handa and Neville compare the relative predictive value of
interactions, which they call transactional features, as com-
pared to graph topology or profile attribute features [9].
They found the highest predictive value in network-trans-
actional features, which extend transactional features to in-
clude friend-of-friend links. For example, ”Person X posted
on Person Y’s wall” is a network-transactional feature about
the relationship between Person X and some other Person
Z, if Y and Z are friends. Xiang et al. also build a predic-
tive model of the strength of ties on Facebook, looking at
interactions such as face-tagging in photos [20].

In email networks, researchers have primarily been inter-
ested in tie-strength as a useful feature for predicting the
emails to which a user is likely to reply [10]. Yoo et al. find
that including social features along with message content-
based features in the vector of classifier input led to a signif-
icant reduction in prediction error when learning to identify
the emails that a given user will consider important [21].

6.3 Communication Networks
Finally, there has been significant recent interest in explor-

ing and understanding the properties of communication net-
works. Ting et al. propose a general-purpose architecture for
extracting communication-based social networks from mul-
tiple sources of interaction data [18]. Leskovec et al. sur-
vey a large number of different communication networks to
answer the question of whether they share a common com-
munity structure [14]. An in-depth study of one particular
explicit network, the social network formed by MSN Instant
Messenger users, is performed by Leskovec and Horvitz [13].

They find that users tend to communicate most frequently
with users who are demographically similar to themselves.
Furthermore, they find that the overall network is robust to
the removal of random nodes, in that it does not disturb the
overall connectivity of the graph.

Email networks are the most commonly studied implicit
social graphs. Dodds et al. show that email networks follow
a small-world property, with an average shortest path of 4.1
steps between any two nodes [7]. Adamic and Adar fur-
ther explore strategies that users can employ to exploit this
dense connectivity in order to efficiently propagate infor-
mation through an enterprise email network [1]. Kossinets
and Watts study the social network formed by email ex-
changes between students and faculty of a large university,
and find that, although the local connections between indi-
viduals evolve over time, the overall network structure re-
mains stable [11].

7. CONCLUSIONS
In this paper, we studied the implicit social graph, a so-

cial network that is constructed by the interactions between
users and their groups. We proposed an interaction-based
metric for computing the relative importance of the con-
tacts and groups in a user’s egocentric network, that takes
into account the recency, frequency, and direction of interac-
tions. We then defined the Friend Suggest algorithm which,
given a single user’s egocentric network with computed edge
weights and a seed set of a few labeled contacts, finds other
contacts who are related to the seed contacts, and therefore
form a semantically meaningful group. We demonstrated
the effectiveness of the Friend Suggest algorithm via a novel
experimental methodology. Finally, we showed two appli-
cations of the Friend Suggest algorithm, the Gmail Labs
”Don’t forget Bob!” and ”Got the wrong Bob?”

Although the experimental results described in this pa-
per were performed by examining email interactions from
the Google Mail system, the algorithms and approaches de-
scribed in this paper apply to any interaction-based social
network. Some other interaction types that could form sim-
ilar implicit networks are photo and document sharing, in-
stant messenger chatting, online calendar meeting invita-
tions, or comments on blog posts. Even offline interactions,
such as mobile text messages or telephone calls, form an
implicit social graph between individuals and groups. Our
future research is intended to study the relative importance
of different interaction types in determining the social rela-
tionships between individuals. We are also interested in ex-
ploring other applications of the Friend Suggest algorithm,
such as identifying trusted recommenders for online recom-
mendation systems, or improving content sharing between
users in various online contents.
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