

On the Difficulty of Nearest Neighbor Search

Junfeng He*, Sanjiv Kumar+ and Shih-Fu Chang*, Columbia University* and Google Research+

Introduction

Large Scale NN Search in the Era of Big Data

- ■Big data: web multimedia, enterprise data centers, mobile/surveillance sensor systems, network nodes, etc....
- Large scale NN search for many big data applications
- Retrieval from massive data such as multimedia search
- Build neighborhood graphs for learning tasks like spectral clustering

Large Scale NN Search Methods

- Exhaustive NN search: prohibitively expensive for large scale data
- Recently many approximate NN search Methods
- Tree based methods: kd-tree, metric tree,...
- Hashing based methods: Locality Sensitive Hashing (LSH), spectral hashing, ...

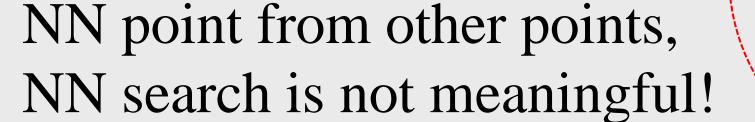
A More Fundamental Problem

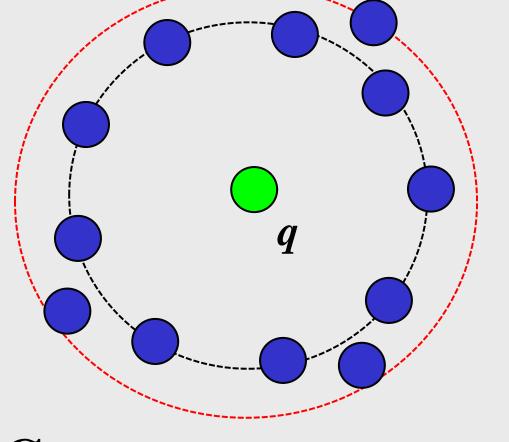
- How to measure the difficulty of a given data set for NN search, independent of NN search Methods?
- Moreover, what data properties affect the difficulty, and how?

Difficulty Measure—Relative Contrast

A Toy Example

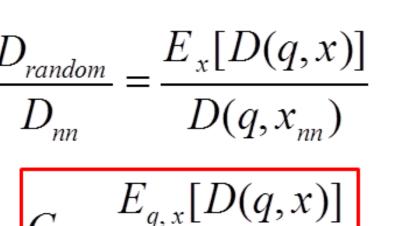
If we can not differentiate

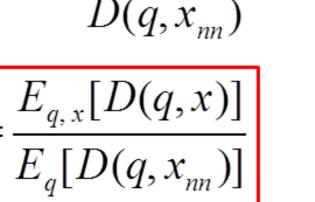


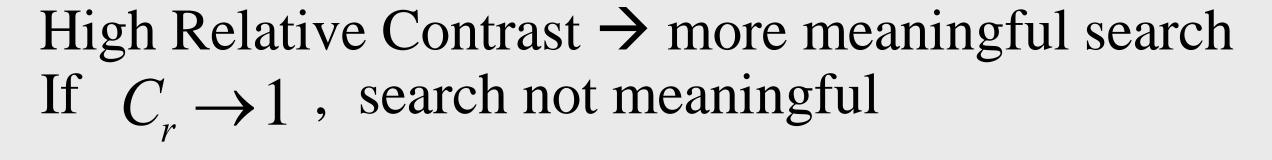


A Concrete Measure -- Relative Contrast

Relative Contrast







Normalized Variance O'

- Given a database $X = \{x_i\}_{i=1}^n \ x \in \Re^d$, a query q, and a distance metric (say L₁),

$$D(q,x) = \sum_{j=1}^{d} \left| q^{j} - x^{j} \right| \Longrightarrow D = \sum_{j=1}^{d} D_{j}$$

- Let dimensions be *i.i.d.* with $E[D_i] = \mu_{d_i} var[D_i] = \sigma_{d_i}^2$

From central limit theorem for large enough d

$$D \sim N(\mu, \sigma^2)$$
 $\mu = d\mu_d$ $\sigma^2 = d\sigma_d^2$

— If data is scaled such that $\mu'=1$, then new variance

$$\sigma'^2 = \frac{\sigma^2}{\mu^2} = \frac{1}{d} \frac{\sigma_d^2}{\mu_d^2} \quad \Longrightarrow \quad d \to \infty \Longrightarrow \sigma'^2 \to 0$$

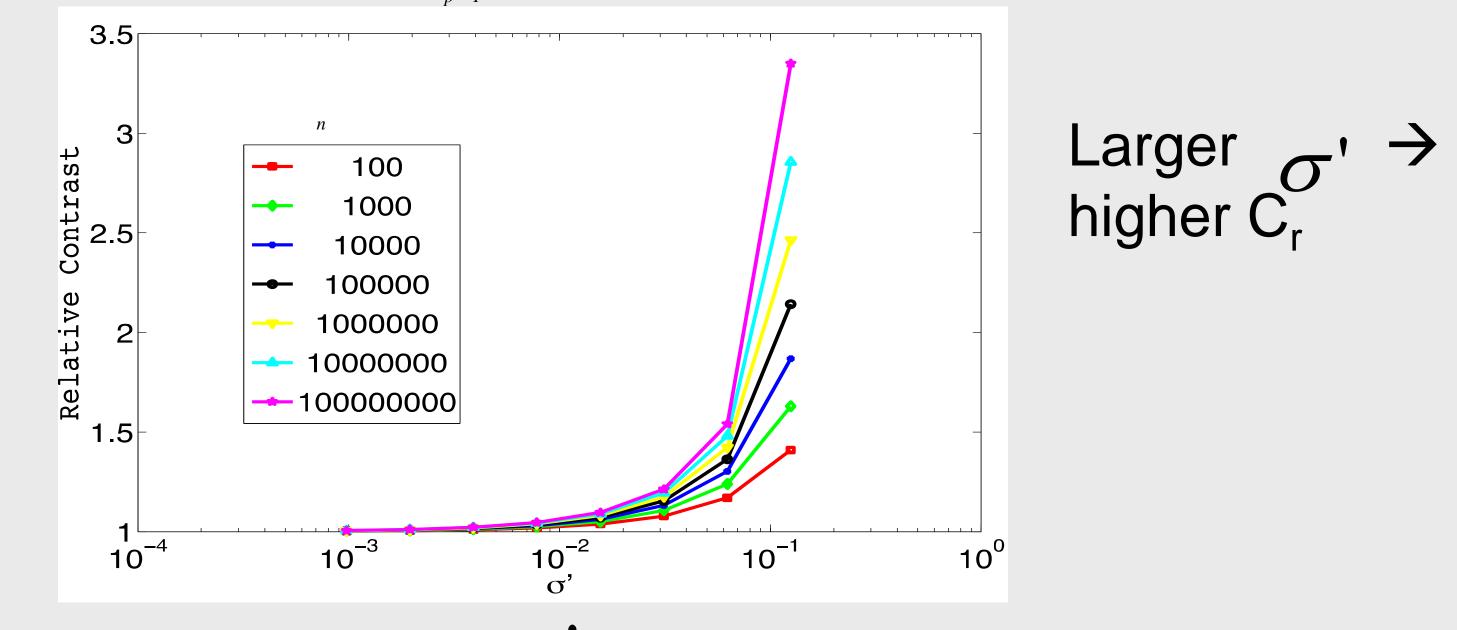
Distance to any point becomes roughly the same!

What Affect NN Search and How?

NN Search Difficulty — Relative Contrast C,

$$C_r = \frac{D_{mean}}{D_{min}} \approx \frac{1}{[1 + \phi^{-1}(\frac{1}{n} + \phi(\frac{-1}{\sigma'}))\sigma']^{\frac{1}{p}}}$$

φ - standard Gaussian cdf



Normalized Variance σ

Suppose dimensions are i.i.d., and each dimension has a probability s of being non-zero

Probability of both x^j and q^j being non-zero = s^2

Probability of either x^j or q^j being non-zero = 2s(1-s)For non-zero entries, let $E\left| \left| x^j \right|^p \right| = m_p$, $E\left| \left| q^j - x^j \right|^p \right| = m_p'$

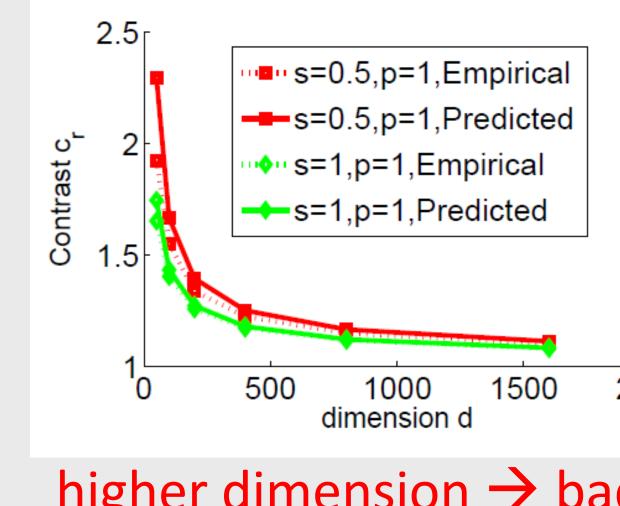
$$\mu_d = s^2 m_p' + 2s(1-s)m_p \quad \sigma_d^2 = s^2 m_{2p}' + 2s(1-s)m_{2p} - \mu_d^2$$

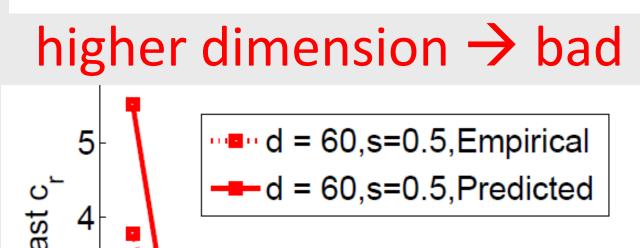
$$\sigma' = \frac{1}{d^{1/2}} \sqrt{\frac{s[(m'_{2p} - 2m_{2p})s + 2m_{2p}]}{s^2[(m'_p - 2m_p)s + 2m_p]^2}} - \frac{1}{s^2[(m'_p - 2m_p)s + 2m_p]^2}$$

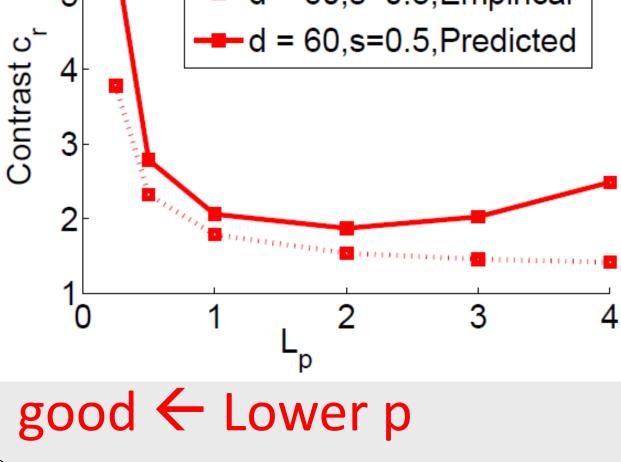
Data Properties:

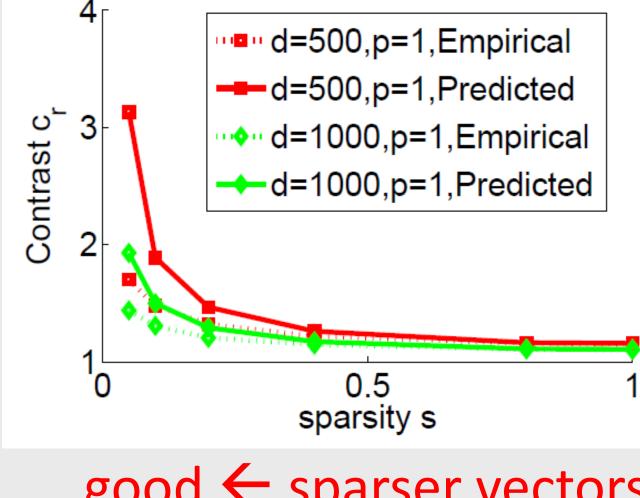
dimension d, sparsity s, Lp distance p, database size n

Experiments on Synthetic Data Sampled from U[0,1]

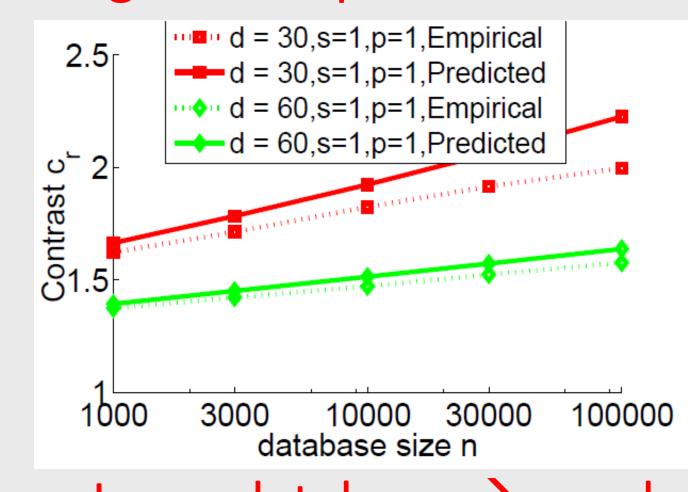








good ← sparser vectors



Large database → good

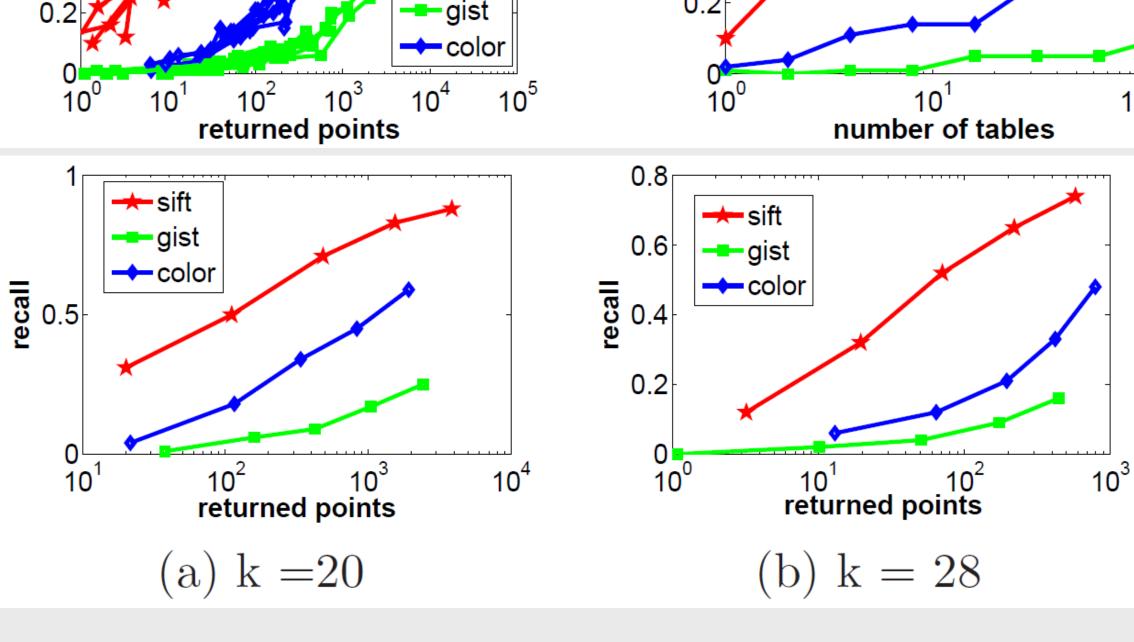
Relative Contrast and LSH Complexity

Theorem 3.1 LSH can find the exact nearest neighbor with probability $1 - \delta$ by returning $O(\log \frac{1}{\delta} n^{g(C_r)})$ candidate points, where $g(C_r)$ is a function monotonically decreasing with C_r .

Corollary 3.2 LSH can find the exact nearest neighbor with a probability at least $1 - \delta$ with a time complexity $O(d \log \frac{1}{\delta} n^{g(C_r)} \log n)$ and space complexity $O(\log \frac{1}{8}n^{(1+g(C_r))} + nd)$. l, the number of hash tables needed, is $l = O(\log \frac{1}{\delta} n^{g(C_r)})$.

Dataset	Dimensionality (d)	Sparsity (s)	Relative Contrast (C_r) for $p = 1$	
SIFT	128	0.89	4.78	
Gist	384	1.00	1.83	
Color Hist	1382	0.027	3.19	
LSH (with multiple hash table lookup)	0.2	sift gist color 10 ⁴ 10 ⁵	0.8	10 ²

LSH bits for hamming ranking



Relative Contrast and PCA Hashing

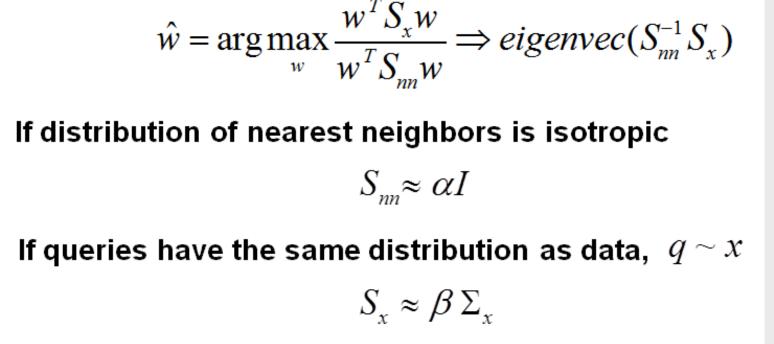
Linear Hashing

 $h(x) = \operatorname{sgn}(w^T x + b), w \in \Re^d$

- Suppose b = E[x] = 0

• Want to find w such that relative contrast of projections is maximized Projected distance to nearest neighbor $(w^Tq - w^Tx_{nn})^2$

Expected distance to a random point $E_{x}(w^{T}q - w^{T}x)^{2}$ $\hat{w} = \arg\max_{w} \frac{w^{T} E_{q} [\sum_{i} (q - x_{i}) (q - x_{i})^{T}] w}{w^{T} E_{q} [(q - x_{nn}) (q - x_{nn})^{T}] w} = \frac{w^{T} S_{x} w}{w^{T} S_{nn} w}$



 $\hat{w} = eigenvec(\Sigma_x)$ PCA-directions !

Recall of 1-NN with PCA hashing and Modified PCA hashing (MRC) for Hamming Ranking

