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ABSTRACT
Motivated by emerging big streaming data processing paradigms
(e.g., Twitter Storm, Streaming MapReduce), we investi-
gate the problem of scheduling graphs over a large cluster
of servers. Each graph is a job, where nodes represent com-
pute tasks and edges indicate data-flows between these com-
pute tasks. Jobs (graphs) arrive randomly over time, and
upon completion, leave the system. When a job arrives,
the scheduler needs to partition the graph and distribute
it over the servers to satisfy load balancing and cost con-
siderations. Specifically, neighboring compute tasks in the
graph that are mapped to different servers incur load on
the network; thus a mapping of the jobs among the servers
incurs a cost that is proportional to the number of “broken
edges”. We propose a low complexity randomized scheduling
algorithm that, without service preemptions, stabilizes the
system with graph arrivals/departures; more importantly, it
allows a smooth trade-off between minimizing average par-
titioning cost and average queue lengths. Interestingly, to
avoid service preemptions, our approach does not rely on
a Gibb’s sampler; instead, we show that the corresponding
limiting invariant measure has an interpretation stemming
from a loss system.

Keywords
Graph Partitioning, Dynamic Resource Allocation, Markov
Chains, Probabilistic Algorithms

1. INTRODUCTION
In recent years, a new computing model – stream pro-

cessing – is gaining traction for large-scale cloud computing
systems. These systems [15,25,29,32] are driven by real time
and streaming data applications. For instance, consider the
computation needed to answer the question: How may times
does the hashtag “#sigmetrics2015” appear in Twitter over
the next two hours? The key feature here is that the data is
not (yet) in a database; instead it is appearing as and when
people tweet this hashtag. Applications of such stream com-
puting are in many domains including social network ana-
lytics and e-commerce.

To address such stream processing, the emerging compu-
tation model of choice is that of graph processing. A compu-
tation is represented by a graph, where nodes in the graph
represent either data sources or data processing (and oper-
ate sequentially on a stream of atomic data units), and edges
in the graph correspond to data flows between nodes. To ex-
ecute such computations, each node of a graph is mapped

to a machine (server/blade) in a cloud cluster (data center),
and the communication fabric of the cloud cluster supports
the data flows corresponding to the graph edges. A canoni-
cal example (and one of the early leaders in this setting) is
Twitter’s Storm [29], where the (directed) graph is called a
“topology”, an atomic data unit is a “tuple”, nodes are called
“spouts” or “bolts”, and tuples flow along the edges of the
topology. We refer to [2] for additional discussion.

From the cloud cluster side, there are a collection of ma-
chines interconnected by a communication network. Each
machine can simultaneously support a finite number of graph
nodes. This number is limited by the amount of resources
(memory/processing/bandwidth) that is available at the ma-
chine; in Storm, these available resources are called “slots”
(typically order of ten to fifteen per machine). Graphs (cor-
responding to new computations) arrive randomly over time
to this cloud cluster, and upon completion, leave the cluster.
At any time, the scheduling task at the cloud cluster is to
map the nodes of an incoming graph onto the free slots in
machines to have an efficient cluster operation. As an ex-
ample, the default scheduler for Storm is round-robin over
the free slots; however, this is shown to be inefficient, and
heuristic alternatives have been been proposed [2].

In this paper we consider a queueing framework that mod-
els such systems with graph arrivals and departures. Jobs
are graphs that are dynamically submitted to the cluster and
the scheduler needs to to partition and distribute the jobs
over the machines. Once deployed in the cluster, the job (a
computation graph) will retain the resources for some time
duration depending on the computation needs, and will re-
lease the resources after the computation is done (i.e., the
job departs). The need for efficient scheduling and dynamic
graph partitioning algorithms naturally arises in many par-
allel computing applications [12, 13]; however, the theoreti-
cal studies in this area are very limited. To the best of our
knowledge, this is the first paper that develops models of
dynamic stochastic graph partitioning and packing, and the
associated low complexity algorithms with provable guaran-
tees for graph-based data processing applications.

From an algorithmic perspective, our low complexity al-
gorithm has connections to the Gibbs sampler and other
MCMC (Monte Carlo Markov Chain) methods for sampling
probability distributions (see for example [3]). In the setting
of scheduling in wireless networks, the Gibb’s sampler has
been used to design CSMA-like algorithms for stabilizing the
network [17, 19, 23, 26]. However, unlike wireless networks
where the solutions form independent sets of a graph, there
is no natural graph structure analog in the graph partition-

ar
X

iv
:1

50
2.

05
96

8v
1 

 [
cs

.N
I]

  2
0 

Fe
b 

20
15



ing. The Gibbs sampler can still be used in our setting by
sampling partitions of graphs, where, each site of the Gibbs
sampler is a unique way of partitioning and packing a graph
among the machines in the cloud cluster. The difficulty,
however, is that there are an exponentially large number of
graph partitions, leading to a correspondingly large number
of queues. The second issue is that a Gibbs sampler poten-
tially can interrupt ongoing service of jobs. The analog of a
service interruption in our setting is the migration of a job
(graph) from one set of machines to another in the cloud
cluster. This is an expensive operation that requires saving
the state, moving and reloading on another set of machines.

A novelty of our algorithm is that we only need to main-
tain one queue for each type of graph. This substantial re-
duction is achieved by developing an efficient method to ex-
plore the space of solutions in the scheduling space. Fur-
ther, our low complexity algorithm performs updates at ap-
propriate time instances without causing service interrup-
tions. In summary, our approach allows a smooth trade-off
between minimizing average partitioning cost and average
queue sizes, by using only a small number of queues, with
low complexity, and without service interruptions. As it will
become clear later, the key ingredient of our method is to
minimize a modified energy function instead of the Gibbs
energy; specifically, the entropy term in the Gibbs energy is
replaced with the relative entropy with respect to a proba-
bility distribution that arises in loss systems.

1.1 Related Work
Dynamic graph scheduling occurs in many computing set-

tings such as Yahoo!’s S4 [25], Twitter’s Storm [29], IBM’s
InfoSphere Stream [15], TimeStream [22], D-Stream [32],
and online MapReduce [6]. Current scheduling solutions in
this dynamic setting are primarily heuristic [2, 16,24].

The static version of this problem (packing a collection
of graphs on the machines on a one-time basis) is tightly
related to the graph partitioning problem [4, 31], which is
known to be hard. There are several algorithms (either
based on heuristics or approximation bounds) available in
the literature [1, 8, 14,16,30].

More broadly, dynamic bin packing (either scalar, or more
recently vector) has a rich history [5, 7], with much recent
attention [11, 27, 28]. Unlike bin packing where single items
are placed into bins, our objective here is to pack graphs in
a dynamic manner.

1.2 Main Contributions
We study the problem of partitioning and packing graphs

over a cloud cluster when graphs arrive and depart dynami-
cally over time. The main contributions of this work can be
summarized as follows.

• A Stochastic Model of Graph Partitioning. We de-
velop a stochastic model of resource allocation for graph-
based applications where either the computation is repre-
sented by a graph (Storm [29], InfoSphere Stream [15]) or
the data itself has a graph structure (GraphLab [13], Gi-
raph [12]). Most efforts have been on the systems aspects,
while employing a heuristic scheduler for graph partition-
ing and packing. One of the contributions of this paper
is the model itself which allows an analytical approach
towards the design of efficient schedulers.

• Deficiencies of Max Weight-type Algorithms. The

dynamic graph partitioning problem can be cast as a net-
work resource allocation problem; to illustrate we describe
a frame-based Max Weight algorithm that can jointly sta-
bilize the system and minimize packing costs. However,
such Max Weight-type solutions have two deficiencies:

(1) they involve periodically solving the static graph par-
titioning problem (NP-hard in general); thus there is little
hope that this can be implemented in practice,

(2) they require periodic reset of the system configuration
to the Max Weight configuration; this interrupts a signif-
icant number of ongoing computations or services of the
jobs in the system and require them to be migrated to
new machines (which is expensive).

• Low Complexity Algorithms without Service In-
terruptions. We develop a new class of low complexity
algorithms, specifically targeted for the stochastic graph
partitioning problems, and analytically characterize their
delay and partitioning costs. In particular, the algorithms
can converge to the optimal solution of the static graph
partitioning problem, by trading-off delay and partition-
ing cost (a tunable parameter). Equally important, this
class of algorithms do not interrupt the ongoing services in
the system. The algorithms rely on creating and removing
templates, where each template represents a unique way of
partitioning and distributing a graph over the machines.
A key ingredient of the low complexity algorithms is that
the decision to remove or add templates to the system
is only made at the instances that a graph is submitted
to the cluster or finishes its computation; thus preventing
interruption of ongoing services.

1.3 Notations
Some of the basic notations used in this paper are the

following. |S| denotes the cardinality of a set S. A\B is
the set difference defined as {x ∈ A, x /∈ B}. 1{x ∈ A} is
the indicator function which is 1 if x ∈ A, and 0 otherwise.
1n is the n-dimensional vector of all ones. R+ denotes the
set of real nonnegative numbers. For any two probability
vectors π, ν ∈ Rn, the total variation distance between π
and ν is defined as ‖π − ν‖TV = 1

2

∑n
i=1 |πi − νi|. Further,

the Kullback–Leibler (KL) divergence of π from ν is defined
as DKL(π‖ν) =

∑
i πi log πi

νi
. Given a stochastic process

z(t) which converges in distribution as t→∞, we let z(∞)
denote a random variable whose distribution is the same as
the limiting distribution. Given x ∈ Rn, xmin = mini xi,
xmax = maxi xi.

2. SYSTEM MODEL AND DEFINITIONS
Cloud Cluster Model and Graph-structured Jobs: Consider a
collection of machines L. Each machine ` ∈ L has a set of
slots m` which it can use to run at most |m`| processes in
parallel (see Figure 1). These machines are inter-connected
by a communication network. Let M =

∑
` |m`| be the total

number of slots in the cluster.
There is a collection of jobs types J , where each job type

j ∈ J is described by a graph Gj(Vj , Ej) consisting of a set
of nodes Vj and a set of edges Ej . Each graph Gj represents
how the computation is split among the set of nodes Vj .
Nodes correspond to computation with each node requiring
a slot on some machine; edges represent data flows between
these computations (nodes).



Job Arrivals and Departures: Henceforth, we use the word
job and graph interchangeably. We assume graphs of type
j arrive according to a Poisson process with rate λj , and
will remain in the system for an exponentially distributed
amount of time with mean 1/µj . Node of the graph must
be assigned to an empty slot on one of the machines. Thus
a graph of type Gj requires a total number of |Vj | free slots
(|Vj | < M). For each graph, data center needs to decide how
to partition the graph and distribute it over the machines.

Queueing Dynamics: When jobs arrive, they can either be
immediately served, or queued and served at a later time.
Thus, there is a set of queues Q(t) = (Q(j)(t) : j ∈ J ) repre-
senting existing jobs in the system either waiting for service
or receiving service. Queues follow the usual dynamics:

Q(j)(t) = Q(j)(0) +H(j)(0, t)−D(j)(0, t), (1)

where H(j)(0, t) and D(j)(0, t) are respectively the number
of jobs of type j arrived up to time t and departed up to
time t.

Job Partition Cost: For any job, we assume that the cost of
data exchange between two nodes that are inside the same
machine is zero, and the cost of data exchange between two
nodes of a graph on different machines is one. This models
the cost incurred by the data center due to the total traffic
exchange among different machines. Note that this model
is only for keeping notation simple; in fact, if we make the
cost of each edge different (depending for instance on the
pair of machines on which the nodes are assigned, thus cap-
turing communication network topology constraints within
the cloud cluster), there is minimal change in our description
below. Specifically, we only need to redefine the appropriate
cost in (2), and the ensuing analysis will remain unchanged.

Templates: An important construct in this paper is the con-
cept of template. Observe that for any graph Gj , there are
several ways (exponentially large number) in which it can
be partitioned and distributed over the machines (see Fig-
ure 1). A template corresponds to one possible way in which
a graph Gj can partitioned and distributed over the machines
(see Figure 1). Rigorously, a template A for graph Gj is an
injective function A : Vj →

⋃
`∈Lm` which maps each node

of Gj to a unique slot in one of the machines. We use A(j) to
denote the set of all possible templates for graph Gj . Tying

back to the cost model, for A ∈ A(j), let b
(j)
A be the cost of

partitioning Gj according to template A, then

b
(j)
A =

∑
(x,y)∈Ej

1{A(x) ∈ m`, A(y) ∈ m`′ , ` 6= `′}. (2)

Configuration: While there are an extremely large number
of templates possible for each graph, only a limited number
of templates can be present in the system at any instant of
time. This is because each slot can be used by at most one
template at any given time.

To track the collection of templates in the system, we let
C(j)(t) ⊂ A(j) to be the set of existing templates of graphs
Gj in the system at time t. The system configuration at each
time t is then defined as

C(t) =
(
C(j)(t); j ∈ J

)
. (3)
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Figure 1: Illustrative templates for partitioning and
distributing a five-node graph in a cluster of 3
servers, with each server having 4 empty slots. In
this stylized example, all the edges have unit “break-
ing” costs, i.e., two connected nodes being scheduled
on different servers incurs a unit cost. The cost
of partitioning the graph according to these tem-
plates is as follows: bTemplate 1 = 1, bTemplate 2 = 2,
bTemplate 3 = 3, and bTemplate 4 = 4.

By definition, there is a template in the system correspond-
ing to each job that is being served on a set of machines.
Further, when a new job arrives or departs, the system
can (potentially) create a new template that is a pattern
of empty slots across machines that can be “filled” with a
specific job type (i.e., one particular graph topology). We
call the former as actual templates, and the latter as vir-
tual templates. Further, when a job departs, the system can
potentially destroy the associated template.

The set of all possible configurations is denoted by C. Note
that this collection is a union of the actual and virtual tem-
plates. Mathematically, C(j) = C

(j)
a ∪C(j)

v where C
(j)
a is the

set of templates that contain actual jobs of type j and C
(j)
v is

the set of virtual templates, i.e., templates that are reserved
for jobs of type j but currently do not contain any such jobs.

System State and Updates: Finally the system state at each
time is then given by:

S(t) = (Q(t),C(t)). (4)

It is possible that |C(j)(t)| > Q(j)(t) in which case not all

the templates in C(j) are being used for serving jobs, these
unused templates are the virtual templates.

Define the operation C⊕A(j) as adding a feasible template
A for graphs of type Gj to the configuration C, thus A will

be added to C(j) while C(j′) remains unchanged for j′ 6= j.
Define A(j)(C) as the set of possible templates that can be
used for adding a graph Gj when the configuration is C.
Clearly, A ∈ A(j)(C) must be an injective function that
maps graph Gj to the available slots that have not been
used by the current templates in the system configuration,
i.e.,

A : Vj →

(⋃
`∈L

m`

)
\

 ⋃
j′∈J

⋃
A′∈C(j′)

A′(Vj′)

 .

3. PROBLEM FORMULATION



Given any stationary (and Markov) algorithm for schedul-
ing arriving graphs, the system state evolves as an irre-
ducible and aperiodic Markov chain. Our goal is to minimize
the average partitioning cost, i.e.,

minimize E
[∑
j∈J

∑
A∈A(j)

xA(∞)b
(j)
A

]
(5)

subject to system stability

where xA(∞) is a random variable denoting the fraction of
time that a template A is used in steady state. The system
stability in (5) means that the average delay (or average
queue size) remains bounded. There is an inherent tradeoff
between the average delay and the average partitioning cost.
For more lenient delay constraints, the algorithm can defer
the scheduling of jobs further until a feasible template with
low partitioning cost becomes available.

Throughout the paper, let ρj = λj/µj be the load of
graphs of type Gj .

Definition 1 (Capacity Region). The capacity region
of the system is defined as

Λ =
{
z ∈ R|J |+ : ∃π s.t. zj =

∑
C∈C

π(C)|C(j)|,

∑
C∈C

π(C) = 1, π(C) ≥ 0
}
,

where |C(j)| denotes the number of templates of graph Gj in
configuration C.

By the definition, any load vector z ∈ Λ can be supported
by a proper time-sharing among the configurations, accord-
ing to π. Equivalently, for any z ∈ Λ, there exists an
x = [xA : A ∈ ∪jA(j)] such that

zj =
∑

A∈A(j)

xA; j ∈ J ,

where xA is the average fraction of time that template A is
used, given by

xA =
∑
C∈C

π(C)1(A ∈ C(j)); A ∈ A(j), j ∈ J .

It follows from standard arguments that for loads outside
Λ, there is no algorithm that can keep the queues stable.
Given the loads ρ = [ρj : j ∈ J ], we define an associated
static problem.

Definition 2 (Static Partitioning Problem).

min
x

G(x) :=
∑
j∈J

∑
A∈A(j)

xAb
(j)
A (6)

subject to :
∑

A∈A(j)

xA ≥ ρj ; j ∈ J (7)

xA ≥ 0; A ∈ ∪jA(j) (8)[ ∑
A∈A(j)

xA; j ∈ J
]
∈ Λ (9)

The constraints (7)-(9) are the required stability conditions.
In words, given ρj graphs of type Gj , for j ∈ J , the static
partitioning problem is to determine how to partition and
distribute the graphs over the servers so as to minimize the
total partitioning cost. For the set of supportable loads (ρ ∈

Λ), the static problem is feasible and has a finite optimal
value.

If the loads ρj ’s are known, one can solve the static parti-
tioning problem and subsequently find the fraction of time
π(C) that each configuration C is used. However, the static
partitioning problem is a hard combinatorial problem to
solve.

In the next sections, we will describe two approaches to
solve the dynamic problem (5) that could converge to the
optimal solution of the static partitioning problem, at the
expense of growth in delay. The inherent tradeoff between
delay and partitioning cost can be tuned in the algorithms.
First, we describe a high complexity frame-based algorithm
(based on traditional Max Weight resource allocation). Then,
we proceed to propose our low complexity algorithm which
is the main contribution of this paper.

4. HIGH COMPLEXITY FRAME-BASED AL-
GORITHM

The first candidate for solving the dynamic graph parti-
tioning problem is to use a Max Weight-type algorithm, with
a proper choice of weight for each configuration. However
changing the configuration of the system can potentially in-
terrupt a significant number of ongoing services of the jobs
in the system. Such service interruptions are operationally
very expensive as they incur additional delay to the service
or require the storage and transfer of the state of interrupted
jobs for future recovery. Hence, to reduce the cost of service
interruptions, one can reduce the frequency of configuration
updates. In particular, we describe a Frame-Based algo-
rithm which updates the configuration once every T time
units. As expected, a smaller value of T could improve the
delay and the partitioning cost of the algorithm at the ex-
pense of more service interruptions. The description of the
algorithm is as follows.

Algorithm 1 Frame-Based Algorithm

1: The configuration is changed at the epochs of cycles of
length T . At the epoch of the k-th cycle, k = 0, 1, · · · ,
choose a configuration C?(kT ) that solves

max
C∈C

∑
j∈J

∑
A∈C(j)

(
αf
(
Q(j)(kT )

)
− b(j)A

)
. (10)

If there are more than one optimal configuration, one of
them is chosen arbitrarily at random. α > 0 is a fixed
parameter and f is a concave increasing function.

2: The configuration C?(kT ) is kept fixed over the interval
[kT, (k + 1)T ) during which jobs are fetched from the
queues and are placed in the available templates. It is
possible that at some time, no jobs of type j are waiting
to get service, in which case some of the templates in
C?(j)(kT ) might not be filled with the actual jobs. These
are virtual templates which act as place holders (tokens)
for future arrivals.

The algorithm essentially needs to find a maximum weight
configuration at the epochs of cycles, where the weight of
template A for partitioning graph Gj is

w
(j)
A (t) = αf(Q(j)(t))− b(j)A .

The parameter α controls the tradeoff between the queue



size and the partitioning cost of the algorithm. For small
values of α, the algorithm defers deploying the graphs in
favor of finding templates with smaller partitioning cost. For
larger values of α, the algorithm gives a higher priority to
deployment of job types with large queue sizes.

The optimization (10) is a hard combinatorial problem, as
the size of the configuration space C might be exponentially
large, thus hindering efficient computation of the max weight
configuration. Theorem 1 below characterizes the the inher-
ent tradeoff between the average queue size and the average
partitioning cost.

Theorem 1. Suppose ρ(1+δ?) ∈ Λ for some δ? > 0. The
average queue size and the average partitioning cost under
the Frame-Based algorithm are

E
[∑
j∈J

f(Q(j)(∞))
]
≤ (B1 +B2T ) + (1 + δ?)G(x?)/α

δ?ρmin
+B1T

E
[∑
j∈J

∑
A∈A(j)

xA(∞)b
(j)
A

]
≤ G(x?) + α(B1 +B2T )

where x? is the optimal solution to the static partitioning
problem, ρmin = minj ρj, and B1, B2 are constants.

Hence, as α → 0, the algorithm yields an α-optimal par-

titioning cost, and an O
(
f−1( 1

α
)
)

queue size. Also as ex-

pected, infrequent configuration updates could increase the
delay and partitioning cost by multiples of T . The proof of
Theorem 1 follows from standard Lyapunov arguments and
can be found in the appendix.

5. LOW COMPLEXITY ALGORITHMS WITH-
OUT SERVICE INTERRUPTIONS

In this section, we develop a low complexity algorithm
that can be used to solve (5) without interrupting/migrating
the ongoing services. Before describing the algorithm, we
first introduce a (modified) weight for each template. Given
the vector of queue sizes Q(t), and a concave increasing

function f : R+ → R+, the weight of template A ∈ A(j),
j ∈ J , is defined as

w̃
(j)
A (t) = αf (j)

(
h + Q(t)

)
− b(j)A , (11)

where f (j) : R+
|J | → R+ is

f (j)(x) = max
{
f(xj),

ε

8M
f(xmax)

}
; xmax = max

j∈J
xj , (12)

where h = h1|J |, and α, h ∈ R+, and ε ∈ (0, 1) are the
parameters of the algorithm.

At the instances of job arrivals and departures, the al-
gorithm makes decisions on the templates that are added
to/removed from the system configuration. It is important
that the addition/removal of templates by the algorithm
does not disrupt the ongoing service of existing jobs in the
configuration.

The low complexity algorithm is a randomized algorithm
in which the candidate template to be added to the config-
uration is chosen randomly among the set of feasible tem-
plates. In particular, the following Random Partition Proce-
dure is used as a subroutine in our low complexity algorithm.

Algorithm 2 Random Partition Procedure

Input: current configuration C, and a graph G(V,E), V =
{v1, · · · , v|V |}
Output: a virtual template A for distributing G over the
machines.

1: k ← 1
2: slot-available ← 1
3: while k ≤ |V | and slot-available do
4: if there are no free slots available on any of the ma-

chines then
5: slot-available ← 0; A← ∅
6: else
7: place vk uniformly at random in one of the free slots

8: A(vk) = index of the slot containing vk
9: k ← k + 1

10: end if
11: end while

When a random template is generated according to Ran-
dom Partition Procedure, the decision to keep or remove the
template is made probabilistically based on the weight of the
template. The description of the low complexity algorithm
(called Dynamic Graph Partitioning (DGP) algorithm) is as
follows. In the the description, β > 0 is a fixed parameter.

Algorithm 3 Dynamic Graph Partitioning (DGP)

Arrival instances. Suppose a graph (job) Gj arrives at
time t, then:

1: This job is added to queue Q(j).
2: A virtual graph Gj is randomly distributed over the ma-

chines, if possible, using Random Partition Procedure,
which creates a virtual template A(j) for distributing
a graph Gj over the machines with some partitioning

cost b
(j)
A . Then, this virtual template is added to the

current configuration with probability
exp( 1

β
w̃

(j)
A

(t+))

1+exp( 1
β
w̃

(j)
A

(t+))
,

otherwise, it is discarded and the configuration does not
change. The virtual templates of type j leave the system
after an exponentially distributed time duration with
mean 1/µj .

3: If there is one or more virtual templates available for
accommodating graphs of type Gj , a job from Q(j) (e.g.,
the head-of-the-line job) is placed in one of the virtual
templates chosen arbitrarily at random. This converts
the virtual template to an actual template.

Departure instances. Suppose a departure of a
(virtual or actual) template A(j) occurs at time t,
then:

1: If this an actual template, the job departs and queue
Q(j)(t+) is updated.

2: A virtual template of the same type A(j) is added back

to the configuration with probability
exp( 1

β
w̃

(j)
A

(t+))

1+exp( 1
β
w̃

(j)
A

(t+))
.

3: If a virtual template for accommodating a graph Gj is
available in the system, and there are jobs in Q(j)(t+)

waiting to get service, a job from Q(j) (e.g. the head-
of-the line job) is placed in one of the virtual templates
chosen arbitrarily at random. This converts the virtual
template to an actual template.



To simplify the description, we have assumed that the
system starts from empty initial configuration and empty
queues but this is not necessary for the results to hold. We
emphasize that the DGP algorithm does not interrupt the
ongoing services of existing jobs in the system. The following
theorem states our main result regarding the performance of
the algorithm.

Theorem 2. Suppose ρ(1+δ?) ∈ Λ for some 0 < δ? < 1.
Consider the Dynamic Graph Partitioning (DGP) algorithm
with function

f(x) = log1−b(x); b ∈ (0, 1),

and parameters

α ≤ β < 1; ε ≤ δ?; h ≥ exp
(
C0

1

β
(
1

ε
)
2−b+1/b

1−b
)
,

where C0 is a large constant independent of all these param-
eters. Then the average queue size and the average parti-
tioning cost under the DGP algorithm are∑

j∈J

E
[
f(Qj(∞))

]
≤ 2

ρminδ?

(
K̂2 + K̂3 −

β

α
log γmin+

1

α
(1 + δ?/2)G(x?) +

ε

α
bmax

)
,

E
[∑
j∈J

∑
A∈A(j)

xA(∞)b
(j)
A

]
≤ G(x?) + α(K̂2 + K̂3)

− β log γmin + εbmax,

where x? is the optimal solution to the static partitioning
problem, ρmin = minj ρj, K̂2 ≤ f ′(h)(M+

∑
j ρj) and K̂3 ≤

f(M + h)M , and γmin, and bmax are constants.

We would like to point out that in the above theorem the
bounds are explicit for any choices of α, β, ε, h. The constant
γmin is minC γC for a distribution γ to be defined in (14) and
has a loss-system interpretation (see Step 1 in the Proof of
Theorem 2), and bmax is the maximum partitioning cost of
any job type (which is obviously less than M2).

The parameter h is called the bias and adds an offset to
the queues to ensure the algorithm operates near the optimal
point at (effectively) all times. The parameter β has the
similar role as the temperature in Gibbs sampler. As β →
0, in steady state, the algorithm generates configurations
that are closer to the optimal configuration, however at the
expense of growth in queue sizes. We refer to Section 6 for
the proof and also more insight into the operation of the
algorithm.

The following corollary gives an interpretation of the re-
sult for a particular choice of the parameters.

Corollary 1. Choose α = β2, h = exp
(

( 1
β

)1/(1−b)
)

,

ε = βb
2/4, then as β → 0,∑
j∈J

E
[
f(Qj(∞))

]
≤ Θ((

1

β
)2),

E
[∑
j∈J

∑
A∈A(j)

xA(∞)b
(j)
A

]
≤ G(x?) + Θ(βb

2/4).

The corollary above demonstrates how the choice of β con-
trols the tradeoff between approaching the optimal parti-
tioning cost and the queueing performance.

Remark 1. Comparison with CSMA: In the setting of
scheduling in wireless networks, the Gibbs sampler has been
used to design CSMA-like algorithms for stabilizing the net-
work [17,19,23,26]. Our algorithm is different from this line
of work in three fundamental aspects:

(i) Not relying on Gibbs sampler: Unlike wireless networks
where the solutions form independent sets of a graph, there
is no natural graph structure analog in the graph partition-
ing. The Gibbs sampler (and CSMA) can still be used in our
setting by sampling partitions of graphs, where, each site of
the Gibbs sampler is a unique way of partitioning and pack-
ing a graph among the machines. The difficulty, however, is
that there are an exponentially large number of graph par-
titions, leading to a correspondingly large number of queues
for each type of graph. A novelty of our algorithm is that we
only need to maintain one queue for each type of graph. This
substantial reduction is achieved by using Random Partition
Procedure for exploring the space of solutions. This leads to
minimizing a modified energy function instead of the Gibbs
energy; specifically, the entropy term in the Gibbs energy is
replaced with the relative entropy with respect to a prob-
ability distribution that arises in an associated loss system
(see Step 1 in Section 6).

(iii) No service interruptions: Our low complexity algo-
rithm performs updates at appropriate time instances with-
out causing service interruptions.

(iii) Adding bias to the queues: The queue-based CSMA
algorithms are concerned with stability which pertains to
the behavior of the algorithm for large queue sizes. This
is not sufficient in our setting because we are not only con-
cerned with stability, but more importantly with the optimal
(graph partitioning) cost of the system. The bias h boosts
the queue sizes artificially to ensure that the system operates
effectively near the optimal point at all queue sizes. With-
out the bias, when the queue sizes are small, the optimal
cost of the algorithm could be far from optimal.

Remark 2. An Alternative Algorithm: An alternative de-
scription of the algorithm is possible using a dedicated Pois-
son clock for each queue (independent of arrivals) where the
template decisions are made at the ticks of the dedicated
clocks. We have presented this alternative algorithm in the
appendix.

6. PROOFS
In this section, we present the proof of of Theorem 2.

Before describing the proof outline, we make the following
definition.

Definition: DGP(W̃ ). Consider the dynamic graph parti-

tioning algorithm with fixed weights W̃ = [w̃
(j)
A ;A ∈ A(j), j ∈

J ], namely, when weights are not chosen according to (11)
but they are simply some fixed numbers all the time. With
minor abuse of notations, we use DGP(W̃ ) to denote this

algorithm that uses weights W̃ all the time. Description
of DGP(W̃ ) is exactly the same as the dynamic partition-
ing algorithm, except that at arrival/departure instance at

time t, the decision to add/keep a virtual template A(j) is

made according to probability
exp( 1

β
w̃

(j)
A

)

1+exp( 1
β
w̃

(j)
A

)
, independently

of Q(t).
Proof Outline. The proof of Theorem 2 has three steps:

Step 1: We analyze the steady-state distribution of configura-
tions under DGP(W̃ ) with fixed weights W̃ , and show



that for small values of β, DGP(W̃ ) will generate con-
figurations which are “close” to the max weight config-
uration, when the template weights are per W̃ .

Step 2: We show that when weights are chosen according to
(11), although the weights W̃ (t) are time-varying, ,
the distribution of configurations in the system will be
“close” to the corresponding steady-state distribution
of DGP(W̃ (t)), for all times t long enough. We show
that such “time-scale decomposition” holds under the
suitable choice of the bias h and the function f .

Step 3: Finally, we stitch the dynamics of queues and con-
figurations together through Lyapunov optimization
method to compute the queueing and partitioning cost
of our algorithm.

Step 1: Steady-State Analysis of DGP(W̃ )

Under DGP(W̃ ), the configuration of the system evolves as
a “time-homogeneous” Markov chain over the state space C.
Note that from the perspective of evolution of configuration
in the system, we do not need to distinguish between virtual
and actual templates, since transition rates from any config-
uration C do not depend on whether the templates in C are
actual or virtual. To see this, consider any virtual template
of graphs Gj in C(t). No matter if the virtual template is
filled with an actual job or not, the residual time until the
departure of this template is still exponential with rate µj ,
due to the memoryless property of exponential distribution
and because both virtual templates and jobs have exponen-
tial service times with the same mean 1/µj . The following

proposition states the main property of DGP(W̃ ).

Proposition 1. Consider the DGP(W̃ ) with fixed weights

W̃ = [w̃
(j)
A ;A ∈ A(j), j ∈ J ]. Then in steady state, the

distribution of configurations π will solve the following opti-
mization problem

max
π∈R|C|+ ,

∑
C∈C πC=1

Eπ
[∑
j∈J

∑
A∈C(j)

w̃
(j)
A

]
− βDKL(π ‖ γ), (13)

where DKL(· ‖ ·) is the KL divergence of π from the proba-
bility distribution γ, where

γC =
1

Zγ

(∑
`

|ml| −
∑
j

|C(j)||Vj |

)
!
∏
j

ρj
|C(j)|

, C ∈ C (14)

and Zγ is the normalizing constant.

Before describing the proof of Proposition 1, we briefly high-
light the main features of DGP(W̃ ) algorithm:

(i) The algorithm does not interrupt the ongoing services
of existing jobs in the system and does not require
dedicated computing resources.

(ii) The algorithm is different from Gibbs sampler as it
does not maximize the Gibbs energy. The entropy
term H(π) in the Gibbs energy has been replaced by
the relative entropy DKL(π, γ).

(iii) The distribution γ has the interpretation of the steady-
state distribution of configurations in an associated loss
system defined as follows: at arrival instances, the ar-
riving graph is randomly distributed over the machines
if possible (according to Random Partition Procedure),

otherwise it is dropped; at the departure instances, the
job (and hence its template) leaves the system.

Proof of Proposition 1. Consider the maximization prob-
lem

max
{π(C)}

F (β)(π)

subject to
∑
C∈C π(C) = 1

π(C) ≥ 0, ∀C ∈ C.

with function F (β)(π) as in (13), which is

F (β)(π) =
∑
C

π(C)
∑
j∈J

∑
A∈C(j)

w̃
(j)
A − β

∑
C

π(C) log π(C)

+β
∑
C

π(C) log γ(C).

Notice that F (β)(π) is strictly concave in π. The lagrangian

is given by L(π, η) = F (β)(π)+η(
∑
C π(C)−1) where η ∈ R

is the lagrange multiplier. Taking ∂L/∂π(C) = 0 yields

π(C) = exp(−1 +
η

β
)γ(C) exp(

1

β

∑
j∈J

∑
A∈C(j)

w̃
(j)
A ); C ∈ C,

which is automatically nonnegative for any η. Hence, by
KKT conditions (π?, η?) is the optimal primal-dual pair if
it satisfies

∑
C π

?(C) = 1. Thus the optimal distribution π?

is

π?(C) =
1

Zβ
γ(C) exp(

1

β

∑
j∈J

∑
A∈C(j)

w̃
(j)
A ). (15)

where Zβ is the normalizing constant.

Next we show that the DGP(W̃ ) algorithm indeed pro-
duces the steady-state distribution (15) with the choice of γ
in (14), by checking the detailed balance equations. Con-

sider a template A(j) for graphs of type Gj . The detail
balanced equation for the pair C and C ⊕ A(j), such that
C ⊕A(j) ∈ C, is given by

π(C ⊕A(j))µj
1

1 + e
1
β
w

(j)
A

= π(C)
λj

|A(j)(C)|
e

1
β
w̃

(j)
A

1 + e
1
β
w̃

(j)
A

.

The left-hand-side is the departure rate of (virtual or actual)

template A(j) from the configuration C ⊕ A(j). The right-
hand-side is the arrival rate of (actual or virtual) graphs Gj
to the configuration C that are deployed according to tem-
plate A(j) chosen uniformly at random from A(j)(C) (Recall
that Random Partition Procedure used in the algorithm se-
lects a template A ∈ A(j)(C) uniformly at random). Thus
the detailed balanced equation is simply

π(C ⊕A(j)) = π(C)
ρj

|A(j)(C)|
e

1
β
w̃

(j)
A . (16)

Noting that

|A(j)(C)| =

(∑
` |m`| −

∑
j |C

(j)||Vj |
|Vj |

)
|Vj | !,

it is then easy to see that (15) with γ as in (14), indeed
satisfies the detailed balance equations, and the normalizing
condition that

∑
C π(C) = 1. This concludes the proof.

The parameter β has the similar role as the temperature in
Gibbs sampler. As β → 0, in steady state, the DGP(W̃ )



algorithm generates configurations that are closer to the op-
timal configuration with maximum weight

W̃ ? = max
C∈C

∑
j∈J

∑
A∈C(j)

w̃
(j)
A . (17)

The following corollary contains this result.

Corollary 2. Let F (β)(π?(β)) be the optimal objective

function in (13). The algorithm DGP(W̃ ) is asymptotically

optimal in the sense as β → 0, F (β)(π?(β)) → W̃ ?. More-
over, for any β > 0,

Eπ?(β)
[∑
j∈J

∑
A∈C(j)

w̃
(j)
A

]
≥ max

C∈C

∑
j∈J

∑
A∈C(j)

w̃
(j)
A + βmin

C∈C
log γC

Proof of Corollary 2. Let C̃? be the maximizer in
(17). As a direct consequence of Proposition 1,

Eπ?(β)
[∑
j∈J

∑
A∈C(j)

w̃
(j)
A

]
− βD(π?

(β) ‖ γ) ≥ W̃ ? − βD(δC̃? ‖ γ).

Since D(υ ‖ γ) ≥ 0, for any distribution υ,

Eπ?(β)
[∑
j∈J

∑
A∈C(j)

w̃
(j)
A

]
≥ W̃ ? − βD(δC? ‖ γ)

= W̃ ? + β log γC̃?

≥ W̃ ? + βmin
C∈C

log γC .

Step 2: Time-Scale Decomposition for DGP(W̃ (t)).
Recall that DGP(W̃ (t)) denotes the algorithm that uses the

weight W̃ (t) at all times s ≥ 0. With minor abuse of no-

tation, we use DGP(W̃ (t)) to denote the Dynamic Graph
Partitioning algorithm (Section 5) and its associated time-
inhomogeneous Markov chain over the space of configura-
tions C. The weights W̃ (t) are time-varying (because of the

queue dynamics), however the DGP(W̃ (t)) algorithm can
still provide an adequately accurate approximation to the
optimization (17) at each time, for proper choices of func-
tion f and the bias h.

Roughly speaking, for the proper choices of f and h, f(h+

Q(j)(t)) will change adequately slowly with time such that
a time-scale separation occurs, i.e., convergence of Markov
chain DGP(W̃ (t)) to its steady state distribution πt

(β) will
occur at a much faster time-scale than the time-scale of
changes in f(h+Q(j)(t)) (and thus in the weights). Hence,

the probability distribution of configurations under DGP(W̃ (t))

will remain “close” to πt
(β) (the steady state distribution

of configurations under DGP(W̃ (t))). The proof of such a
time-scale separation follows from standard arguments in
e.g., [9, 10,23].

We first uniformize (e.g. [18, 21]) the continuous Markov
chain S(t) = (C(t),Q(t)) by using a Poisson clock Nξ(t) of
rate

ξ = 2

(∑
j

λj +M
∑
j

µj

)
. (18)

Let S[k] = (C[k],Q[k]) be the corresponding jump chain of
the uniformized chain. Note that S[k] is discrete time and
at each index k, either a graph Gj arrives with probabil-

ity
λj
ξ

, or a (virtual/actual) template of type j leaves the

system with probability
|C(j)|µj

ξ
, or S[k] remains unchanged

otherwise. The following proposition states the main “time-
scale decomposition”property with respect to the associated
jump chain (which can be naturally mapped to the original
Markov chain).

Proposition 2. Let νn denote the (conditional) probabil-
ity distribution of configuration at index n given the queues
Q[n] under DGP(W̃ (Q[n])). Let πn be the steady state dis-

tribution of configurations corresponding to DGP(W̃ (Q[n])).
Given any 0 < ε < 1, and any initial state S[0] = (Q[0],C[0]),
there exists a time n? = n?(ε, β,S[0]) such that for all n ≥
n?, ‖πn − νn‖TV ≤ ε/16.

Corollary 3. Given 0 < ε < 1, for all n ≥ n?(ε, β,S(0)),

Eνn
[∑

j

∑
A∈C(j)

w
(j)
A (n)

]
≥ βmin

C∈C
log γC − εbmax

+(1− ε

4
) max
C∈C

∑
j∈J

∑
A∈C(j)

w
(j)
A (n).

Proof. Consider any n ≥ n?(ε, β,S(0)). Let W̃ ?(n) :=

maxC∈C
∑
j∈J

∑
A∈C(j) w̃

(j)
A (n). First note that from Corol-

lary 2, Proposition 2, and definition of ‖ · ‖TV ,

Eνn
[∑

j

∑
A∈C(j)

w̃
(j)
A (n)

]
= Eπn

[∑
j

∑
A∈C(j)

w̃
(j)
A (n)

]
+
∑
C

[
(πn(C)− νn(C))

∑
j

∑
A∈C(j)

w̃
(j)
A (n)

]
≥ W̃ ?(n) + βmin

C∈C
log γC − 2(

ε

16
)W̃ ?(n)

= (1− ε

8
)W̃ ?(n) + βmin

C∈C
log γC . (19)

Next, note that by the definition of w
(j)
A (see (11), (12)), for

any j ∈ J , A ∈ A(j),

w
(j)
A (n) ≤ w̃(j)

A (n) ≤ w(j)
A (n) +

αε

8M
f(Qmax(n) + h),

hence for any configuration C ∈ C,

0 ≤
∑
j∈J

∑
C∈C(j)

(w̃
(j)
A (n)− w(j)

A (n)) ≤ α
ε

8
f(Qmax(n) + h).

Suppose Q(j′)(n) = Qmax(n) for some j′ ∈ J . Then for any

A′ ∈ A(j′),

αf(Qmax(n) + h)− b(j
′)

A′ = w
(j′)
A′ (n)

≤ max
C∈C

∑
j∈J

∑
A∈C(j)

w
(j)
A (n).

Therefore, it follows that

0 ≤
∑
j∈J

∑
C∈C(j)

(w̃
(j)
A (n)− w(j)

A (n)) ≤ ε

8
max
C

∑
j∈J

∑
C∈C(j)

w
(j)
A

+
ε

8
bmax.

Let W ?(n) := maxC∈C
∑
j∈J

∑
A∈C(j) w

(j)
A (n). Using the



above inequality and (19),

Eνn
[∑

j

∑
A∈C(j)

w
(j)
A (n)

]
≥ Eνn

[∑
j

∑
A∈C(j)

w̃
(j)
A (n)

]
− ε

8
W ?(n)− ε

8
bmax

≥ (1− ε

8
)W̃ ?(n) + β log γmin −

ε

8
W ?(n)− ε

8
bmax

≥ (1− ε

4
)W ?(n) + β log γmin −

ε

8
bmax.

Proof of Proposition 2. Below we mention a sketch
of the proof of the “time-scale decomposition” property for
our algorithm.

Let ΦQ be the infinitesimal generator of the Markov chain
(C(t)) under DGP(W̃ (Q)), for some vector of queues Q. Let

PQξ = I + 1
ξ
ΦQ denote the corresponding transition prob-

ability matrix of the jump chain (C[n]), obtained by uni-
formizing (C(t)) using the Poison clock Nξ(t) of rate ξ in

(18). We use PQξ (C,C′) to denote the transition probability

from configuration C to configuration C′.
The Markov chain (C[n]) is irreducible, aperiodic, and

reversible, with the unique steady-state distribution π in
(15). In this case, it is well known that the convergence to
the steady-state distribution is geometric with a rate equal
to the Second Largest Eigenvalue Modulus (SLEM) of PQξ
[3]. Further, using the choice of ξ in (18), (C[n]) is a lazy
Markov chain because at each jump index n, the chain will
remain in the same state with probability greater than 1/2.
In this case, for any initial probability distribution µ0 and
for all n ≥ 0,

‖µ0(PQξ )n − π‖TV ≤ θn2
1

2
√
πmin

, (20)

where θ2 is the second largest eigenvalue of PQξ , and πmin =

minC π(C). Correspondingly, the mixing time of the chain
(defined as inf{n > 0 : ‖ν(n) − π(n)‖TV ≤ δ}) will be less

than
− log(2δ

√
πmin)

(1−θ2)
.

Lemma 1 below provides a bound on θ2 and hence on the
convergence rate of Markov chain PQξ .

Lemma 1. Let K0 =
(
ρmin∧1
ρmax∨1

)M ∧j(µj∧λj)
|C|(M !)2

. Then,

1

1− θ2
≤ 2ξ2

K2
0

exp
[2(M + 1)

β
(αf(Qmax + h) + bmax)

]
. (21)

Proof of Lemma 1. It follows from Cheeger’s inequal-
ity [3] that 1

1−θ2
≤ 2

Ψ2(Pξ)
where Ψ(Pξ) is the conductance of

the Markov chain PQξ . The conductance is further bounded
from below as

Ψ(Pξ) ≥ 2πmin min
C 6=C′

PQξ (C,C′). (22)

Under DGP(W̃ ), with W̃ = W̃ (Q),

min
C 6=C′

PQξ (C,C′) =
1

ξ
min
j

µj

1 + e
1
β
w̃

(j)
A

∧ λj
|A(j)(C)|

e
1
β
w̃

(j)
A

1 + e
1
β
w̃

(j)
A

≥ ∧j(µj ∧ λj)
ξM !

exp( 1
β
w̃min) ∧ 1

1 + exp( 1
β
w̃max)

≥ ∧j(µj ∧ λj)
ξM !

exp(−1
β
bmax)

1 + exp(α
β
f(Qmax + h))

Note that the steady state distribution of the jump chain

is still π(C) = γ(C)
Zβ

exp( 1
β

∑
j

∑
A∈C w̃

(j)
A ), for γ defined in

(14). Then

ZγZβ ≤
∑
C∈C

exp(
1

β

∑
j

∑
A∈C

w̃max)M !(ρmax ∨ 1)M

≤ |C| exp(
Mα

β
f(Qmax + h))M !(ρmax ∨ 1)M ,

therefore

πmin ≥ K1 exp
(
− Mα

β
f(Qmax + h)− M

β
bmax

)
, (23)

where K1 =
(
ρmin∧1
ρmax∨1

)M
1

|C|M !
. Hence

Ψ(PQξ ) ≥ K0

ξ
exp

(
− M + 1

β
(αf(Qmax + h) + bmax)

)
.

where K0 = K1
∧j(µj∧λj)

M !
.

Lemma 2. For any configuration C ∈ C, e−σn ≤ πn+1(C)

πn(C)
≤

eσn , where

σn =
2Mα

β
f ′
(
f−1

( ε

8M
f(h+Qmax(n+ 1))

)
− 1
)
. (24)

Proof of Lemma 2. Note that

πn+1(C)

πn(C)
=

Zn(β)

Zn+1(β)

e
α
β

∑
j,A∈C(j) f

(j)(Q(n+1)+h)−f(j)(Q(n)+h)
.

It is easy to show that

Zn(β)

Zn+1(β)
≤ max

C
e
α
β

∑
j,A∈C(j) f

(j)(Q(n+1)+h)−f(j)(Q(n)+h)
.

LetQ∗(n) := f−1( ε
8M

f(h+Qmax(n)))−h, and define Q̃(j)(n) :=

max{Q∗(n), Q(j)(n)}. Then,

f (j)(Q(n+ 1) + h)− f (j)(Q(n) + h)

= f(Q̃(j)(n+ 1) + h)− f(Q̃(j)(n) + h)

≤ f ′(Q̃(j)(n+ 1) + h− 1)|Q̃(j)(n+ 1)− Q̃(j)(n)|
≤ f ′(Q?(n+ 1) + h− 1)

= f ′(f−1(
ε

8M
f(h+Qmax(n+ 1)))− 1)

where we have used the mean value theorem and the facts
that f is a concave increasing function and at each index n,
one queue can change at most by one. Therefore,

πn+1(C)

πn(C)
≤ e2Mα

β
f ′(f−1( ε

8M
f(h+Qmax(n+1)))−1)

.

A similar calculation shows that also

πn(C)

πn+1(C)
≤ e2Mα

β
f ′(f−1( ε

8M
f(h+Qmax(n+1)))−1)

.



This concludes the proof.

Next, we use the following version of Adiabatic Theorem
from [23] to prove the time-scale decomposition property of
our algorithm.

Proposition 3. (Adapted from [23]) Suppose

σn
1− θ2(n+ 1)

≤ δ′/4 for all n ≥ 0, (25)

for some δ′ > 0, where θ2(n+ 1) denotes the second largest

eigenvalue of P
Q(n+1)
ξ . Then ‖πn − νn‖TV ≤ δ′, for all

n ≥ n?(β, δ′,S(0)), where n? is the smallest n such that

1√
πmin(0)

exp(−
n∑
k=0

(1− θ2(k))2 ≤ δ′. (26)

In our context, Proposition 3 states that under (25) and (26),
after n? steps, the distribution of the configurations over
templates will be close to the desired steady-state distribu-
tion. To get some intuition, σn has the interpretation of the
rate at which weights change, and 1/(1−θ2(n+1)) has the in-
terpretation of the time taken for the system to reach steady-
state after the weights change. Thus, condition (25) ensures
a time-scale decomposition – the weights change slowly com-
pared to the time-scale that the system takes in order to
respond and “settle down” with these changed weights.

It remains to show that that our system indeed satisfies
the conditions of Proposition 3 as we do next, for the choice
of δ′ = ε

16
. Suppose f(x) = log1−b(x), for some 0 < b < 1.

Let y = f(Qmax(n + 1) + h). Obviously f ′(x) ≤ 1/x, so in
view of equations (24), (21), (25), it suffices to have

2Mα

β

1

f−1( ε
8M

y)− 1
exp

[
4M

β
(bmax + αy)

]
≤ K2

0 ε

128ξ2
.

Note that f−1(x) = exp(x
1

1−b ). Suppose α ≤ β. A simple
calculation shows that it suffices to jointly have

y ≥ 8M

ε
log1−b 3,

4Mµmaxy −
1

2
(
ε

8M
y)

1
1−b ≤ 0,

4M

β
bmax −

1

2
(
ε

8M
y)

1
1−b ≤ log

(
K2

0 ε

512ξ2M

)
.

In summary, the condition (25) holds if

y ≥
(1

ε

)2−b+ 1
b
( 1

β

)1−b
C0 (27)

or as a sufficient condition, if

h ≥ exp
(
C0

1

β
(
1

ε
)
2−b+1

b
1−b

)
(28)

for

C0 ≥ 8M
(

8Mbmax + 2| log
512ξ2

K2
0

|+ 2 + (8M)2/bµ(1−b)/b
max

)
.

Next, we find n? that satisfies

n?−1∑
k=0

(1− θ2(k))2 ≥ − log(
ε

16
)− 1

2
log(πmin(0)).

From (23), and since α ≤ β,

− log(πmin(0)) ≤ logK1 +Mµmaxf(Qmax(0) + h) +
M

β
bmax.

Using Lemma 1, it can be shown that

n?−1∑
k=0

(1− θ2(k))2

≥ 2ξ2

K2
0

e
−4Mbmax

β

n?−1∑
k=0

e−4Mµmaxf(Qmax(k)+h)

≥ 2ξ2

K2
0

e
−4Mbmax

β

n?−1∑
k=0

e−4Mµmaxf(Qmax(0)+h+n?)

≥ 2ξ2

K2
0

e
−4Mbmax

β n?(Qmax(0) + h+ n?)
−4Mµmax

logb h .

For h ≥ exp((8Mµmax)1/b), it then suffices that

2ξ2

K2
0

e
−4Mbmax

β n?(Qmax(0) + h+ n?)−1/2 ≥

log(
16

ε
) +

1

2
logK1 +

Mµmax
2

f(Qmax(0) + h) +
M

2β
bmax

which is clearly satisfied by choosing n? = Qmax(0) + h for
h in (28) and C0 a large enough constant.

Step 3: Lyapunov Analysis
The final step of the proof is based on a Lyapunov opti-
mization method [20]. We develop the required Lyapunov
arguments for S(k) = (Q(k), C(k)), i.e., the jump chain of
the uniformized Makov chain. Consider the following Lya-
punov function

V (k) =
∑
j∈J

1

µj
F (Q(j)(k) + h),

where F (x) =
∫ x
h
f(τ)dτ . Recall that f(x) = log1−b x.

Therefore F is convex, and following the standard one-step
drift analysis

V (k + 1)− V (k) ≤∑
j∈J

1

µj
f(Q(j)(k + 1) + h)

(
Q(j)(k + 1)−Q(j)(k)

)
=

∑
j∈J

1

µj
f(Q(j)(k) + h)

(
Q(j)(k + 1)−Q(j)(k)

)
+

∑
j∈J

1

µj

(
f(Q(j)(k + 1) + h)− f(Q(j)(k) + h)

)(
Q(j)(k + 1)

−Q(j)(k)
)
.

By the mean value theorem, and using the fact that f is a
concave increasing function, it follows that

|f(Q(j)(k + 1) + h)− f(Q(j)(k) + h)| ≤

f ′(h)|Q(j)(k + 1)−Q(j)(k))|

Recall that C(k) =
(
C

(j)
a (k), C

(j)
v (k)

)
where C

(j)
v is the

set of virtual templates (i.e., the templates that do not con-

tain jobs of type j) and C
(j)
a is the set of actual templates.



For notational compactness, let ES(k)[·] = E[·|S(k)], where
S(k) is the state of the system at each index k. Then

ES(k)

[
V (k + 1)− V (k)

]
≤ f ′(h)

∑
j

1

µj

(λj
ξ

+
|C(j)(k)µj

ξ

)
+

∑
j

1

µj
f(Q(j)(k) + h)

[λj
ξ
−
(
|C(j)(k)| − |C(j)

v (k)|
) µj
ξ

]
,

where we have used the fact that at most one arrival or
departure can happen at every jump index, i.e., |Q(j)(k +

1)−Q(j)(k)| ∈ {0, 1}.
Note that clearly the maximum number of templates of

any type of jobs that can fit in a configuration is less than
M (recall that M =

∑
`∈L |m`|). Moreover, none of the

templates of type j will be virtual if more than M jobs of
type j are available in the system, hence,

|C(j)
v (k)|f(h+Q(j)(k)) ≤ |C(j)

v (k)|f(h+M).

and therefore,

ES(k)

[
V (k + 1)− V (k)

]
≤ K2 +K3

+
1

ξ

∑
j

f(Q(j)(k) + h)
(
ρj − |C(j)(k)|

)

where K2 ≤ f ′(h)(M +
∑
j ρj)/ξ, and K3 ≤Mf(h+M)/ξ.

Therefore, it follows that

αES(k)

[
V (k + 1)− V (k)

]
+

1

ξ
ES(k)

[∑
j∈J

∑
A∈C(j)(k)

b
(j)
A

]
≤

α(K2 +K3) +
α

ξ

∑
j∈J

ρjf
(
Q(j)(k) + h

)
− 1

ξ

∑
j∈J

∑
A∈C(j)(k)

[
αf
(
Q(j)(k) + h

)
− b(j)A

]

Taking the expectation of both sides with respect to νn (dis-
tribution of configurations given the queues at n > n∗), we
get

αEQ(k)

[
V (k + 1)− V (k)

]
+

1

ξ
EQ(k)

[∑
j∈J

∑
A∈A(j)

xA(k)b
(j)
A

]
≤ α(K2 +K3) +

α

ξ

∑
j∈J

ρjf(Q(j)(k) + h)

− 1

ξ
EQ(k)

[∑
j∈J

∑
A∈C(j)(k)

(αf(Q(j)(k) + h)− b(j)A )
]

≤ α(K2 +K3)− β

ξ
log γmin +

α

ξ

∑
j∈J

ρjf(Q(j)(k) + h)

− 1

ξ
(1− ε

4
)W ?(k) +

ε

ξ
bmax, (29)

where the last inequality is based on Corollary 3, where

W ?(k) = max
C∈C

∑
j∈J

∑
A∈C(j)

(
αf(Q(j)(k) + h)− b(j)A

)

Notice that equivalently

W ?(k) = max
{xA}

∑
j∈J

∑
A∈A(j)

xA
(
αf(Q(j)(k) + h)− b(j)A

)
subject to (

∑
A∈A(j)

xA; j ∈ J ) ∈ Λ

xA ≥ 0;∀A ∈ ∪jA(j)

Let x? be the optimal solution to the static partitioning
problem. By the feasibility of x?, ρj ≤

∑
A∈A(j) x

?
A, for all

j ∈ J , hence∑
j∈J

ρjf(Q(j)(k) + h) ≤
∑
j∈J

∑
A∈A(j)

x?Af(Q(j)(k) + h). (30)

Further, by assumption, ρ is strictly inside Λ, thus there
exists a δ? such that ρ(1+δ?) ∈ Λ. It is easy to show by the

monotonicity of C (i.e., if C ∈ C, C\A ∈ C, for all A ∈ C(j),
j ∈ J ) that, at the optimal solution, the constraint (7)
should in fact hold with equality. Hence ∑

A∈A(j)

x?A(1 + δ?) : j ∈ J

 ∈ Λ.

Therefore,

W ?(k) ≥
∑
j∈J

∑
A∈A(j)

((1 + δ)x?A)
(
αf(Q(j)(k) + h)− b(j)A

)
(31)

For ε ≤ δ?, (1− ε
4
)(1 + δ?) ≥ 1 + δ

2
, for any δ ∈ [0, δ?]. Then

using (30) and (31) in (29),

αEQ(k)

[
V (k + 1)− V (k)

]
+

1

ξ
EQ(k)

[∑
j∈J

∑
A∈A(j)

xA(k)b
(j)
A

]
≤ α(K2 +K3) +

α

ξ

∑
j∈J

∑
A∈A(j)

x?Af(Q(j)(k) + h)

− 1

ξ
(1 +

δ

2
)
∑
j∈J

∑
A∈A(j)

x?A
(
− b(j)A + αf(Q(j)(k) + h)

)
− β

ξ
log γmin +

ε

ξ
bmax

=
1

ξ
(1 +

δ

2
)G(x?)− α

ξ

δ

2

∑
j∈J

∑
A∈C(j)(k)

x?Af(Q(j)(k) + h)

− β

ξ
log γmin +

ε

ξ
bmax + α(K2 +K3). (32)

It follows from this that the Markov chain (Q(k),C(k)) is
positive recurrent as a consequence of the Foster-Lyapunov
theorem, with Lyapunov function V (·). Taking the expec-
tation of both sides of (32) with respect to Q(k), and then
taking summation over k = 0, ..., N − 1, and dividing by N ,
and letting N →∞ yields

lim sup
N

1

N

N−1∑
k=0

∑
j∈J

E
[
f(Q(j)(k) + h)

]
≤ αξ(K2 +K3)− β log γmin + εbmax + (1 + δ/2)G(x?)

αρminδ/2

lim sup
N

1

N

N−1∑
k=0

E
[
G(x(k))

]
≤ (1 + δ/2)G(x?) + αξ(K2 +K3)− β log γmin + εbmax



where we have used the fact that contribution of queue sizes
and costs in (0, n?] to the average quantities vanishes to zero
as N → ∞. The above inequalities can be independently
optimized over δ ∈ [0, δ?] (the performance of the algorithm
is independent of δ). Here we choose δ = δ∗ in the queue
inequality and δ = 0 in the cost inequality. The statement
of Theorem then follows using the Ergodic theorem and the
fact that the jump chain and the original chain have the
same steady-state average behaviour.

7. CONCLUSIONS
Motivated by modern stream data processing applications,

we have investigated the problem of dynamically scheduling
graphs in cloud clusters, where a graph represents a specific
computing job. These graphs arrive and depart over time.
Upon arrival, each graph can either be queued or served
immediately. The objective is to develop algorithms that
assign nodes of these graphs to free (computing) slots in the
machines of the cloud cluster. The performance metric for
the scheduler (partition graphs and map it to slots) is to
minimize the average graph partitioning cost, while keeping
the system stable.

We have proposed a novel class of low complexity algo-
rithms which can approach the optimal solution by exploit-
ing the trade-off between delay and partitioning cost, with-
out causing service interruptions. The key ingredient of the
algorithms is the generation/removal of random templates
from the cluster at appropriate instances of time, where each
template is a unique way of partitioning a graph.
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APPENDIX
A. PROOF OF THEOREM 1

The proof is standard and based on a Lyapunov optimiza-
tion method [20]. Consider a Lyapunov function V (t) =∑
j∈J

1
µj
F (Q(j)(t)), where F (x) =

∫ x
0
f(τ)dτ . Recall that

f : R+ → R+ is a concave increasing function; thus F is
convex. Choose an arbitrarily small u > 0. It follows from
convexity of F that for any t ≥ 0,

V (t+ u)− V (t) ≤
∑
j∈J

1

µj
f(Q(j)(t+ u))(Q(j)(t+ u)−Q(j)(t))

=
∑
j∈J

1

µj
f(Q(j)(t))(Q(j)(t+ u)−Q(j)(t))

+
∑
j∈J

1

µj
(f(Q(j)(t+ u))− f(Q(j)(t)))(Q(j)(t+ u)−Q(j)(t)).

By definition

Q(j)(t+ u)−Q(j)(t) = H(j)(t, t+ u)−D(j)(t, t+ u),

where for any 0 ≤ t1 ≤ t2,

H(j)(t1, t2) = NH
j (λj(t2 − t1))

D(j)(t1, t2) = ND
j (

∫ t2

t1

Ca(τ)µjdτ),

where NA
j (z) and ND

j (z) denote independent Poisson ran-
dom variables with rate z, for all j ∈ J . Recall that C(t) =(
C

(j)
a (t), C

(j)
v (t)

)
where C

(j)
v is the set of virtual templates

(i.e., the templates that do not contain jobs of type j) and

C
(j)
a is the set of actual templates. It is easy to see that

|f(Q(j)(t+ u))− f(Q(j)(t))| ≤ f ′(0)|Q(j)(t+ u)−Q(j)(t)|,

by the mean value theorem, and the fact that f is a con-
cave increasing function. For notational compactness, let
ES(t)[·] = E[·|S(t)], where S(t) is the state of the system at
each time t. Clearly the the maximum number of templates
that can fit in a configuration is less than M . It is easy to
see that

ES(kT)

[
V (t+ u)− V (t)

]
≤∑

j

1

µj
ES(kT)

[
f(Q(j)(t))(A(j)(t, t+ u)−D(j)(t, t+ u)

]
+K2u+ o(u),

where K2 = f ′(0)
∑
j∈J

(ρj + M). Clearly virtual templates

do not exist in the configuration if there are more than M

jobs in the system. Hence it follows that∑
j∈J

1

µj
ES(kT)

[
D(j)(t, t+ u)f(Q(j)(t))

]
≥

∑
j∈J

ES(kT)

[
|C(j)(t)|f(Q(j)(t))

]
u−K3u− o(u)

for K3 = Mf(M). Note that the algorithm keeps the config-
uration fixed over intervals [kT, (k+1)T ), i.e., C(t) = C(kT )

for t ∈ [kT, (k+1)T ). Let ∆t,u := 1
u
ES(kT)

[
V (t+u)−V (t)

]
,

then,

∆t,u ≤ ES(kT)

[∑
j∈J

f(Q(j)(t))
(
ρj − |C(j)(kT )|

)]
+K2 +K3 + o(1)

≤
∑
j∈J

f(Q(j)(kT )
(
ρj − |C(j)(kT )|

)
+K2

2T +K2 +K3 + o(1)

Taking the limit u→ 0,

dES(kT)

[
V (t)

]
dt

≤
∑
j∈J

f(Q(j)(kT )
(
ρj − |C(j)(kT )|

)
+K4

where K4 = K2
2T + K2 + K3. Let ∆k = ES(kT)

[
V ((k +

1)T )− V (kT )
]
, then over the k-th cycle

α

T
∆k + ES(kT)

[∑
j∈J

∑
A∈C(j)(kT )

b
(j)
A

]
≤ Term1 − Term2 + αK4,

where

Term1 = α
∑
j∈J

ρjf(Q(j)(kT )),

Term2 =
∑
j∈J

∑
A∈C(j)(kT )

(
αf(Q(j)(kT ))− b(j)A

)
.

Let x? be the optimal solution to the static partitioning
problem. The rest of the proof is similar to the Lyapunov
analysis in the proof of Theorem 2 (step 3), i.e., for any
0 ≤ δ ≤ δ?,

Term1 ≤ α
∑
j∈J

∑
A∈A(j)

x?Af(Q(j)(kT ))

Term2 ≤
∑
j∈J

∑
A∈A(j)

(
(1 + δ)x?A

)(
αf(Q(j)(kT )− b(j)A )

)
Putting everything together,

α

T
∆k + ES(kT)

[∑
j∈J

∑
A∈C(j)

b
(j)
A

]
≤ (1 + δ)G(x?)

−αδρmin
∑
j∈J

f(Q(j)(kT )) + αK4.

Then it follows from the Foster-Lyapunov theorem that the
Markov chain veS(kT ), k = 0, 1, 2, · · · (and therefore Markov
chain S(t), t ≥ 0) is positive recurrent. As in the step 3 in
the proof of of Theorem 2, we take the expectation from
both sides of the above equality with respect to S(kT ),
and then sum over k = 0, .., N − 1, divide by N , and let
N → ∞. Then the statement of the theorem follows by
choosing B1 = K2 +K3 and B2 = K2

2 .
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B. AN ALTERNATIVE DESCRIPTION OF
DYNAMIC GRAPH PARTITIONING AL-
GORITHM

The Dynamic Graph Partitioning (DGP) algorithm, as
described in Section 5, does not require any dedicated clock
as the decisions are made at the instances of job arrival and
departure. In this section, we present an alternative de-
scription of the algorithm by using dedicated clocks. Each
queue Q(j) is assigned an independent Poisson clock of rate

λ̂eαf
(j)(h+Q(t))/β , where λ̂ is a fixed constant depending on

how fast the iterations in the algorithm can be performed.
Equivalently, at each time t, the time duration until the tick
of the next clock is an exponential random variable with

parameter λ̂eαf
(j)(h+Q(t))/β . This means if Q(j) changes at

time t′ > t before the clock makes a tick, the time duration
until the next tick is reset to an independent exponential

random variable with parameter λ̂eαf
(j)(h+Q(t′))/β . The de-

scription of the algorithm is given below.

Algorithm 4 Alternative Dynamic Graph Partitioning
(ADGP) Algorithm

At the instances of dedicated clocks.
Suppose the dedicated clock of queue Q(j) makes a tick,
then:

1: A virtual template A(j) is chosen randomly from cur-
rently feasible templates for graph Gj , given the current
configuration, using Random Partition Procedure, if pos-
sible. Then this template is added to the configuration

with probability e
− 1
β
b
(j)
A and discarded otherwise. The

virtual template leaves the system after an exponentially
distributed time duration with mean 1/µj .

2: If there is a job of type j in Q(j) waiting to get service,
and a virtual template of type j is created in step 1,
this virtual template is filled by a job from Q(j) which
converts the virtual template to an actual template.

At arrival instances.

1: Suppose a graph (job) of type Gj arrives. The job is

added to queue Q(j).

At departure instances.

1: At the departure instances of actual/vitual templates,
the algorithm removes the corresponding template from
the configuration.

2: If this is a departure of an actual template, the job is
departed and the corresponding queue is updated.

The algorithm will yield average queue size and partition-
ing cost performance similar to those in Theorem 2. The
proof essentially follows the three steps of the proof of The-
orem 2. Here, we only describe the main property of the Al-
ternative Dynamic Graph Partitioning algorithm with fixed
weights, which we refer to as ADGP(W̃ ) (the counterpart

DGP(W̃ ) in Section 6).

Proposition 4. Under ADGP(W̃ ), the steady state dis-
tribution of configurations solves

max
π

Eπ
[∑
j∈J

∑
A∈C(j)

w̃
(j)
A

]
− βDKL(π ‖ γ̂)

for the following distribution γ̂

γ̂C =
1

Zγ̂

(∑
`

|ml| −
∑
j

|C(j)||Vj |

)
!
∏
j

(
λ̂

µj

)|C(j)|

(33)

where Ẑγ̂ is the normalizing constant.

Similarly to the DGP(W̃ ) algorithm, as β → ∞, the opti-
mizing π converges to γ̂. The distribution γ̂ has the inter-
pretation of the steady state distribution of configurations
in a loss system with arrival rates λ̂j = λ̂, j ∈ J , and ser-
vice rates µ̂j = µj , j ∈ J . In the loss system, when a graph
arrives, it is randomly distributed over the machines if pos-
sible; otherwise it is dropped. At the departure instances,
the job and hence its template leave the system.

Proof of Proposition 4. The proof is basically identi-
cal to the proof of Proposition 1. The only difference is that
the detailed balance equations are given by

π(C ⊕A(j))µj = π(C)
λ̂eαf(Q(j))/β

|A(j)(C)|
e
− 1
β
b
(j)
A

for any configuration C and C ⊕ A(j) ∈ C; A(j) ∈ A(j),
j ∈ J . Here the LHS is the departure rate of (virtual or

actual) template A(j) from the configuration C ⊕A(j). The

RHS is the rate at which the (actual or virtual) templateA(j)

for graphs Gj is added to configuration C (the Random par-

tition Procedure selects a template A ∈ A(j)(C) uniformly
at random). Thus the detailed balanced equations are given
by

π(C ⊕A(j)) = π(C)
λ̂/µj
|A(j)(C)|

e
1
β
w

(j)
A . (34)

and it is easy to see that (15) with γ replaced with γ̂ in
(33), indeed satisfies the detailed balance equations, with
the normalizing condition that

∑
C π(C) = 1. The fact that

that this distribution maximizes the stated objective func-
tion follows in parallel with the arguments in the proof of
Proposition 1.
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