
OpinionDynamics in SocialNetworkswithStubbornAgents:

EquilibriumandConvergenceRate

J. Ghaderi a, R. Srikant b

aDepartment of Electrical Engineering, Columbia University

bDepartment of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Abstract

The process by which new ideas, innovations, and behaviors spread through a large social network can be thought of as a
networked interaction game: Each agent obtains information from certain number of agents in his friendship neighborhood,
and adapts his idea or behavior to increase his benefit. In this paper, we are interested in how opinions, about a certain
topic, form in social networks. We model opinions as continuous scalars ranging from 0 to 1 with 1 (0) representing extremely
positive (negative) opinion. Each agent has an initial opinion and incurs some cost depending on the opinions of his neighbors,
his initial opinion, and his stubbornness about his initial opinion. Agents iteratively update their opinions based on their own
initial opinions and observing the opinions of their neighbors. The iterative update of an agent can be viewed as a myopic cost-
minimization response (i.e., the so-called best response) to the others’ actions. We study whether an equilibrium can emerge as
a result of such local interactions and how such equilibrium possibly depends on the network structure, initial opinions of the
agents, and the location of stubborn agents and the extent of their stubbornness. We also study the convergence speed to such
equilibrium and characterize the convergence time as a function of aforementioned factors. We also discuss the implications
of such results in a few well-known graphs such as Erdos-Renyi random graphs and small-world graphs.
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1 Introduction

Rapid expansion of online social networks, such as
friendships and information networks, in recent years
has raised an interesting question: how do opinions
form in a social network? The opinion of each per-
son is influenced by many factors such as his friends,
news, political views, area of professional activity, etc.
Understanding such interactions and predicting how
specific opinions spread throughout social networks
has triggered vast research by economists, sociologist,
psychologists, physicists, etc.

We consider a social network consisting of n agents. The
social network can be modeled as a graph G(V, E) where
agents are the vertices and edges indicate pairwise ac-
quaintances. We model opinions as continuous scalars
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ranging from 0 to 1 with 1(0) representing extremely pos-
itive(negative) opinion. For example, such scalers could
represent people opinions about the economic situation
of the country, ranging from 0 to 1, with an opinion 1
corresponding to perfect satisfaction with the current
economy and 0 representing an extremely negative view
towards the economy. Agents have some private initial
opinions and iteratively update their opinions based on
their own initial opinions and observing the opinions of
their neighbors. We study whether an equilibrium can
emerge as a result of such local interactions and how
such equilibrium possibly depends on the graph struc-
ture and initial opinions of the agents. In the interaction
model, we also incorporate stubbornness of agents with
respect to their initial opinions and investigate the de-
pendency of the equilibrium on such stubborn agents.
Characterizing the convergence rate to the equilibrium
as a function of graph structure, location of stubborn
agents and their levels of stubbornness is another goal
of the current paper.

There has been an interesting line of research trying to
explain emergence of new phenomenon, such as spread of
innovations and new technologies, based on local inter-
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actions among agents, e.g., [5], [6], [22]. Roughly speak-
ing, a coordination game is played between the agents
in which adopting a common strategy has a higher pay-
off and agents behave according to (noisy) best-response
dynamics. The references [34], [35] demonstrate how co-
operative control problems, e.g. consensus, can be for-
mulated into game-theoretic setting.

There is also a rich and still growing literature on so-
cial learning using a Bayesian perspective where indi-
viduals observe the actions of others and update their
beliefs iteratively about an underlying state variable,
e.g., [8], [9], [10]. There is also opinion dynamics based on
non-Bayesian models, e.g., those in [1], [2], [3], [7], [11].
In particular, [11] investigates a model in which agents
meet and adopt the average of their pre-meeting opin-
ions and there are also forceful agents that influence the
opinions of others but may not change their opinions.
Under such a model, and assuming that even forceful
agents update their opinions when meeting some agents,
[11] investigates convergence to the average of the ini-
tial opinions and characterizes the amount of divergence
from the average due to such forceful agents. As reported
in [11], it is significantly more difficult to analyze social
networks with several forceful agents that do not change
their opinions and requires a different mathematical ap-
proach. Our model is closely related to the non-Bayesian
framework, this keeps the computations tractable and
can characterize the equilibrium in presence of agents
that are biased towards their initial opinions (the so-
called partially stubborn agents in our paper) or do not
change their opinions at all (the so-called fully stubborn
agents in our paper). Furthermore, the equilibrium be-
havior is relevant only if the convergence time is reason-
able [6]. Thus, we develop bounds on the rate of con-
vergence that depend on the structure of the social net-
work (such as the diameter of the graph and the relative
degrees of stubborn and non-stubborn agents), and the
location of stubborn agents and their levels of stubborn-
ness. Based on such bounds, we study the convergence
time in social networks with different topologies such
as expander graphs, Erdos-Renyi random graphs, and
small-world networks. The recent work [12] studies opin-
ion dynamics based on the so-called voter model where
each agent holds a binary 0-1 opinion and at each time a
randomly chosen agent adopts the opinion of one of its
neighbors, and there are also stubborn agents that do not
change their states. Under such model, [12] shows that
the opinions converge in distribution and characterizes
the first and the second moments of this distribution.

When there are no stubborn agents, our model reduces to
a continuous coordination game where the (noisy) best-
response dynamics converge to consensus (i.e., a com-
mon opinion in which the impact of each agent is directly
proportional to its degree in the social network). In this
case, the convergence issues are already well understood
in the context of consensus and distributed averaging,
e.g., [13], [14], [15], [16], [17], [37], [38], [39], [41]. Thus

we do not consider this case in this paper.

In this paper, we investigate the convergence issues in
presence of stubborn agents. In this case, the opinions
do not converge to consensus; however, the opinion of
each agent converges to a convex combination of the
initial opinions of the stubborn agents. Then our main
contributions are the following:

• We exactly characterize the impact of each stubborn
agent on such an equilibrium based on appropriately
defined hitting probabilities of a random walk over the
social network. We also give an interesting electrical
network interpretation of the equilibrium.

• Since the exact characterization of convergence time
is difficult, we derive appropriate upper-bounds and
lower-bounds on the convergence time by extending
the frameworks of Diaconis-Stroock [20] and Sinclair
[21] to approximate the largest eigenvalue of sub-
stochastic matrices. In particular, we develop a tech-
nique based on completing sub-stochastic matrices
to stochastic matrices by adding fictitious stubborn
nodes to the social graph.

The organization of the paper is as follows. We start with
the definitions and introduce our model in Section 2.
Section 3 and 4 contain our main results regarding con-
vergence issues in social networks with stubborn agents.
In section 5 we use the results of Section 4 to develop
some canonical bounds on the convergence time and dis-
cuss the implications of such results in a few well-known
graphs. Finally, Section 6 contains our concluding re-
marks. The proofs of the results are provided in the ap-
pendix.

The basic notations used in the paper are as follows. All
the vectors are column vectors. xT denotes the transpose
of vector x. A diagonal matrix with elements of vector
x as diagonal entries is denoted by diag(x). xmax means
the maximum element of vector x. Similarly, xmin is the
minimum element of vector x. 1n denotes a vector of all
ones of size n. |S| denotes the cardinality of set S. Given
two functions f and g, f = O(g) if supn |f(n)/g(n)| <
∞. f = Ω(g) if g = O(f). If both f = O(g) and
f = Ω(g), then f = Θ(g). We will use the following
convenient scalar product and its corresponding norm:
given vectors z, y, π in Rn, 〈z, y〉π =

∑n
i=1 ziyiπi, and

‖z‖π :=
(∑n

i=1 z
2
i πi
)1/2

.

2 Model and definitions

Consider a social network with n agents, denoted by a
graph G(V, E) where agents are the vertices and edges
indicate the pairs of agents that have interactions. For
each agent i, define its neighborhood ∂i as the set of
agents that node i interacts with, i.e., ∂i := {j : (i, j) ∈
E}. Each agent i has an initial opinion xi(0) ∈ [0, 1].
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Let x(0) := [x1(0) · · ·xn(0)]T denote the vector of initial
opinions. We assume each agent i has a cost function of
the form

Ji(xi, x∂i) =
1

2

∑
j∈∂i

(xi − xj)2 +
1

2
Ki(xi − xi(0))2, (1)

that he tries to minimize where Ki ≥ 0 measures the
stubbornness of agent i regarding his initial opinion 1 .
When none of the agents are stubborn, correspondingly
Ki’s are all zero, the above formulation defines a coordi-
nation game with continuous payoffs because any vector
of opinions x = [x1 · · ·xn]T with x1 = x2 = · · · = xn is a
Nash equilibrium [43]. Here, we consider a synchronous
version of the game between the agents. At each time,
every agent observes the opinions of his neighbors and
updates his opinion based on these observations and also
his own initial opinion in order to minimize his cost func-
tion. It is easy to check that, for every agent i, the best-
response strategy is

xi(t+ 1) =
1

di +Ki

∑
j∈∂i

xj(t) +
Ki

di +Ki
xi(0), (2)

where di = |∂i| is the degree of node i in graph G. Similar
models have been considered in social influence theory,
e.g., see [40] where the model assessment is also done
by comparing the observed and predicted opinions of
groups. Define a matrix An×n such that Aij = 1

di+Ki
for (i, j) ∈ E and zero otherwise. Also define a diagonal
matrix Bn×n with Bii = Ki

di+Ki
for 1 ≤ i ≤ n. Thus, in

the matrix form, the best response dynamics are given
by

x(t+ 1) = Ax(t) +Bx(0). (3)

Iterating (3) shows that the vector of opinions at each
time t ≥ 0 is

x(t) = Atx(0) +

t−1∑
s=0

AsBx(0). (4)

In the rest of the paper, we investigate the existence of
equilibrium, x(∞) := limt→∞ x(t), under the dynamics
(3) in different social networks, with stubborn agents.
The equilibrium behavior is relevant only if the conver-
gence time is reasonable [6]. Thus we also characterize
the convergence time of the dynamics, i.e., the amount
of time that it takes for the agents’ opinions to get close
to the equilibrium. To be specific, we investigate the con-
vergence issues under the following assumption.

1 Although we have considered uniform weights for the
neighbors, the results in the paper hold under a more general
setting when each agent puts a weight wij for his neighbor j.

Assumption 1 (i) G is an undirected connected graph
(otherwise, we can consider opinion dynamics separately
over each connected subgraph). (ii) At least one agent is
stubborn, i.e., Ki > 0 for at least one i ∈ V (otherwise,
it is well known that the dynamics in (2) converge to
consensus, i.e. xi(∞) = 1

2|E|
∑n
j=1 djxj(0) for all i).

3 Existence and characterization of equilibrium

Consider a social network G(V, E) under Assumption 1.
Then A is an irreducible sub-stochastic matrix with the
row-sum of at least one row less than one. Let ρ1(A) :=
maxi |λi(A)| denote the spectral radius of A. It is well-
known that ρ1(A) of a sub-stochastic matrix A is less
than one, and hence, limt→∞At = 0. Therefore, by
the Perron-Ferobenius theorem, the largest eigenvalue
should be positive, real 1 > λ1 > 0 and ρ1(A) = λ1.
Hence, in this case, based on (4), the equilibrium exists
and is equal to

x(∞) =

∞∑
s=0

AsBx(0) = (I −A)−1Bx(0). (5)

Therefore, since Bii = 0 for all non-stubborn agents i,
the initial opinions of non-stubborn agents will vanish
eventually and have no effect on the equilibrium (5).

The matrix form (5) does not give any insight on how
the equilibrium depends on the graph structure and the
stubborn agents. Next, we describe the equilibrium in
terms of explicit quantities that depend on the graph
structure, location of stubborn agents and their levels of
stubbornness.

Let S ⊆ V be the set of stubborn agents and |S| ≥
1. Any agent i in S is either fully stubborn, meaning
its corresponding Ki = ∞, or it is partially stubborn,
meaning 0 < Ki < ∞. Hence, S = SF ∪ SP where
SF is the set of fully stubborn agents and SP is the
set of partially stubborn agents 2 . Next, we construct a
weighted graph Ĝ(V̂, Ê) based on the original social graph
G(V, E) and the location of partially stubborn agents SP
and their levels of stubbornness Ki, i ∈ SP as follows.
Assign weight 1 to all the edges of G. Connect a new
vertex ui to each i ∈ SP and assign a weight Ki to the
corresponding edge. Let V̂ := V ∪ {ui : i ∈ SP } and

Ê := E∪{(i, ui) : i ∈ SP }. Also let wij denote the weight

of edge (i, j) ∈ Ê . Then Ĝ(V̂, Ê) is a weighted graph with
weights wij = 1 for all (i, j) ∈ E (the edges of G) and
wiui = Ki for all i ∈ SP . Let u(SP ) := {ui : i ∈ SP }.

2 We need to distinguish between the case 0 < Ki <∞ and
Ki = ∞ for technical reasons; however, as it will become
clear later, the conclusions for Ki = ∞ are equivalent to
those for Ki <∞ if we let Ki →∞
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Define wi :=
∑
j:(i,j)∈Ê wij as the weighted degree of

vertex i ∈ V̂. It should be clear that

wi =


di +Ki for i ∈ SP ,
di for i ∈ V\SP ,
Kj for i = uj , j ∈ SP .

(6)

Consider the random walk Y (t) over Ĝ where the proba-
bility of transition from vertex i to vertex j is Pij =

wij
wi

.

Assume the walk starts from some initial vertex Y (0) =

i ∈ V. For any j ∈ V̂ define

τj := inf{t ≥ 0 : Y (t) = j}, (7)

as the first hitting time to vertex j. Also define τ :=∧
j∈SF∪u(SP ) τj as the first time that the random walk

hits any of the vertices in SF ∪ u(SP ). The following
Lemma characterizes the equilibrium. The proof is pro-
vided in Appendix A.

Lemma 1 The best-response dynamics converge to a
unique equilibrium where the opinion of each agent is a
convex combination of the initial opinions of the stubborn
agents. Based on the random walk over the graph Ĝ,

xi(∞) =
∑
j∈SP

Pi(τ = τuj )xj(0) +
∑
j∈SF

Pi(τ = τj)xj(0),

(8)

for all i ∈ V, where Pi(τ = τk), k ∈ SF ∪ u(SP ), is
the probability that the random walk hits vertex k first,
among vertices in SF ∪ u(SP ), given the random walk
starts from vertex i.

Note that limKi→∞ Pi(τ = τui) = 1 for any partially
stubborn agent i ∈ SP . This intuitively makes sense be-
cause as an agent i becomes more stubborn, his opinion
will get closer to his own opinion and behaves similarly
to a fully stubborn agent.

It should be clear that when there is only one stubborn
agent or there are multiple stubborn agents with identi-
cal initial opinions, eventually the opinion of every agent
will converge to the same opinion as the initial opinion
of the stubborn agents.

In general, to characterize the equilibrium, one needs to
find probabilities Pi(τ = τk), k ∈ SF ∪ u(SP ). Such hit-
ting probabilities have an interesting electrical network
interpretation (see Chapter 3 of [18]) as follows. Let Ĝ
be an electrical network where each edge (i, j) ∈ Ê has a
conductance wij (or resistance 1/wij). Then Pi(τ = τk)
is the voltage of node i in the electrical network where
node k ∈ SF ∪ u(SP ) is a fixed voltage source of 1 volt
and nodes SF ∪u(SP )\{k} are grounded (zero voltage).

This determines the contribution of the voltage source
k where all the other sources are turned off. Now let
vertices SF ∪ u(SP ) be fixed voltage sources where the
voltage of each source i ∈ SF is xi(0) volts and the volt-
age of each source uj ∈ u(SP ), j ∈ SP , is xj(0) volts.
By the linearity of the electrical networks (the superpo-
sition theorem in circuit analysis), the voltage of each
node in such an electrical network equals to the sum of
the responses caused by each voltage source acting alone,
while all other voltage sources are grounded. Therefore,
the opinion of agent i, at equilibrium (8), is just the volt-
age of node i in the electrical network model. We men-
tion the result as the following lemma and will prove it
directly in Appendix B.

Lemma 2 Consider G as an electrical network where
the conductance of each edge is 1 and each stubborn
agent i is a voltage source of xi(0) volts with an internal
conductance Ki. Fully stubborn agents are ideal voltage
sources with infinite internal conductance (zero internal
resistance). Then, under the best-response dynamics, the
opinion of each agent at equilibrium is just its voltage in
the electrical network.

We illustrate the use of the above lemma through the
following example.

Example 1 Consider a one-dimensional social graph,
where agents are located on integers 1 ≤ i ≤ n. Assume
nodes 1 and n are stubborn with initial opinions x1(0)
and xn(0), and stubbornness parameters K1 > 0 and
Kn > 0. Using the electrical network model, the current
is the same over all edges and equal to I = (x1(0) −
xn(0))( 1

K1
+ 1
Kn

+n− 1)−1, and thus the voltage of each

node i is vi = x1(0)−I( 1
K1

+i−1), for 1 ≤ i ≤ n. Hence,

xi(∞) = (1− αi)x1(0) + αixn(0),

where αi :=
K−1

1 +i−1

K−1
1 +K−1

n +n−1
. As K1 increases, the final

opinion of i will get closer to stubborn agent 1, and as
Kn increases, it will get closer to the opinion of agent n.

4 Convergence time

Although we are able to characterize the equilibrium, the
equilibrium behavior is relevant only if the convergence
time is reasonable [6]. Next, we characterize convergence
time in the case that there is at least one stubborn agent.
Let e(t) = x(t) − x(∞) be the error vector. Trivially
ei(t) = 0 for all fully stubborn agents i ∈ SF , so we focus
on ẽ(t) := [ei(t) : i ∈ V\SF ]T . The convergence to the
equilibrium (5) is geometric with a rate equal to largest
eigenvalue of A as stated by the following lemma whose
proof is provided in Appendix C.

Lemma 3 Let π̃ = [wiZ : i ∈ V\SF ]T for the weights wi
as in (6) and Z be the normalizing constant such that
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∑
i∈V\SF π̃i = 1. Then,

‖ẽ(t)‖π̃ ≤ (λA)t‖ẽ(0)‖π̃, (9)

where λA is the largest eigenvalue of A. 3

Defining the convergence time as τ(ν) := inf{t ≥ 0 :
‖ẽ(t)‖π̃ ≤ ν} for some fixed ν > 0, we have(

1

1− λA
− 1

)
≤ τ(ν)

log(‖ẽ(0)‖π̃/ν)
≤ 1

1− λA
,

so τ(ν) = Θ
(

1
1−λA

)
as n grows. Let T := 1

1−λA . With a

little abuse of terminology, we also call T the convergence
time.

The exact characterization of λA in social networks with
very large number of users and many stubborn agents is
difficult, hence, we will derive appropriate upper-bounds
and lower-bounds that depend on the graph structure,
the location of stubborn agents and their levels of stub-
bornness. The techniques used here are similar to geo-
metric bounds in [20], [21], however, careful modification
of such bounds is needed as the results in [20], [21] are
for the second largest eigenvalue of stochastic matrices
whereas here we are dealing with the largest eigenvalue
of sub-stochastic matrices.

Consider the weighted graph Ĝ(V̂, Ê) as defined in Sec-
tion 3. A path γij from a vertex i to another vertex j

in Ĝ is a collection of oriented edges that connect i to
j. For any vertex i ∈ V\SF , consider a path γi from
i to the set SF ∪ u(SP ) that does not intersect itself,
i.e., γi ≡ γij = {(i, i1), (i1, i2), · · · , (im, j)} for some
j ∈ SF ∪ u(SP ).

Proceeding along similar arguments as in Diaconis-
Stroock [20], we get the following bound that yields an
upper-bound on the convergence time (see Appendix D
for the proof).

Proposition 1 Consider the weighted graph Ĝ. Given a
set of paths {γi : i ∈ V\SF }, from V\SF to SF ∪ u(SP ),
let |γi|w :=

∑
(s,t)∈γi

1
wst

. Then, the convergence time

T ≤ 2ξ, where

ξ := max
(x,y)∈Ê

ξ(x, y), (10)

and, for each oriented edge (x, y) ∈ Ê,

ξ(x, y) :=
∑

i:γi3(x,y)

wi|γi|w. (11)

3 In Euclidian norm, ‖e(t)‖2 ≤ (λA)t
√

wmax
wmin

‖e(0)‖2, where

wmax := maxi∈V\SF wi and wmin := mini∈V\SF wi.

It is also possible to modify the arguments of Sinclair
[21]. This gives a different bound stated in the following
lemma.

Proposition 2 Consider the weighted graph Ĝ(V̂, Ê).
Given a set of paths {γi : i ∈ V\SF } from V\SF to
SF ∪ u(SP ), we have T ≤ 2η, where

η := max
(x,y)∈Ê

η(x, y), (12)

and, for each oriented edge (x, y) ∈ Ê,

η(x, y) :=
1

wxy

∑
i:γi3(x,y)

wi|γi|. (13)

The above proposition is very similar to the bound re-
ported in [22] for analyzing the convergence time of a
two-strategy coordination game with no stubborn agents
but differs by a factor of 2. The factor 2 is not impor-
tant in investigating the order of the convergence time;
however, in graphs with finite number of agents, ignor-
ing this factor yields convergence times that are smaller
than the actual convergence time. A short proof is pro-
vided in Appendix D for the above lemma.

Intuitively, both ξ(x, y) and η(x, y) are measures of
congestion over the edge (x, y) due to paths that pass
through (x, y). See [45] for examples of applications of
the above bounds in complete and ring graphs and per-
formance comparison with exact numerical values. In
general, computing the upper-bound using Proposition
2 seems to be easier than using Proposition 1.

An upper bound on 1 − λA, and thus a lower-bound
on the convergence time T , is given by the following
proposition whose proof is provided in Appendix D

Proposition 3 Consider the weighted graph Ĝ(V̂, Ê),
then

1− λA ≤ min
U⊆V\SF

ψ(U ; Ĝ), (14)

where ψ(U ; Ĝ) :=

∑
i∈U,j/∈U

wij∑
i∈U

wi
. The minimum is

achieved for some connected subgraph with vertex set U .

It is worth emphasizing that the above bounds are quite
general and hold for social networks with any finite size
and any set of stubborn agents.

5 Canonical bounds via shortest paths

In this section, to gain more insight into factors domi-
nating the convergence speed, we apply Propositions 1,
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2, and 3 with the special class of shortest paths in social
networks with large number of agents. Let γ = {γi : i ∈
V\SF } be the set of shortest paths from vertices V\SF
to the set SF ∪ u(SP ), so, in fact, for each i ∈ V\SF ,
γi = γij for some j ∈ SF ∪ u(SP ). Let Γj ⊆ V\SF be
the set of nodes that are connected to j ∈ SF ∪ u(SP )
via the shortest paths. We use |γ| := maxi∈V\SF |γi| to
denote the maximum length of any shortest path and
|Γ| := maxj∈SF∪u(SP ) |Γj | to denote the maximum num-
ber of nodes connected to any node in SF ∪ u(SP ) via
shortest paths.

Using Proposition 2, for each partially stubborn agent
j ∈ SP ,

η(j, uj) =
1

Kj
(Kj + dj +

∑
i∈Γj

di|γi|) ≤ 1 +
d̂+ |γ||Γ|d̃
Kmin

,

where d̃ := maxi∈V\S di is the maximum degree of non-

stubborn agents, d̂ := maxi∈S di is the maximum degree
of stubborn agents, andKmin := minj∈SP Kj is the min-
imum stubbornness. Hence, the congestion is dominated
by some edge (j, uj), j ∈ SP , only if the stubbornness
Kj is sufficiently small.

It follows from our construction of shortest paths that
all the paths that pass through an edge (x, y) ∈ E are
connected to the same j ∈ SF ∪ u(SP ), or equivalently
to the same stubborn agent. So for each (x, y) ∈ E ,

η(x, y) =
∑

i:γi3(x,y)

di|γi| ≤ |γ|Bd̃,

where

B := max
(x,y)∈E

|{i : γi 3 (x, y)}|, (15)

is the bottleneck constant, i.e., the maximum number of
shortest paths that pass through any edge of the social

network. It is clear that |Γ|/d̂ ≤ B ≤ |Γ| because B is at
least equal to the number of paths that pass through an
edge directly connected to a stubborn agent. Therefore,

for Kmin ≤ K∗ := d̂+|γ||Γ|d̃
|γ|Bd̃−1

, η is dominated by conges-

tion over some edge (j, uj), j ∈ SP , and in this regime

T ≤ 2

(
1 +

d̂+ |γ||Γ|d̃
Kmin

)
. (16)

For Kmin > K∗, η is dominated by an edge of the social
network which is the bottleneck, and in this regime

T ≤ 2|γ|Bd̃. (17)

Dependence on |γ|, in both regimes, intuitively makes
sense as it represents the minimum time required to

reach any node in the network from stubborn agents.
Hence, the convergence time in general depends on the
structure of the social network and the location of the
stubborn agents and their levels of stubbornness. There
is a dichotomy for high and low levels of stubbornness.
For high levels of stubbornness, and in the extreme case
of fully stubborn agents, the opinion of the stubborn
agent is almost fixed and the convergence time is dom-
inated by the the bottleneck edge and the structure of
the social network. For low levels of stubbornness, the
transient opinion of stubborn agent may deviate a lot
from its equilibrium which could deteriorate the speed
of convergence. In fact, for very low levels of stubborn-
ness, this could be the main factor in determining the
convergence time. It is worth pointing out that adding
more fully stubborn agents, with not necessarily equal
initial opinions, or increasing the stubbornness of the
agents makes the convergence faster.

5.1 Scaling laws in large social networks

In this section, we use the canonical bounds to derive
scaling laws for the convergence time as the size of the
social network n grows. For any social network, we can
consider two cases: (i) There exists no fully stubborn
agent, i. e., all the stubborn agents are partially stubborn
(ii) At least one of the agents is fully stubborn.

In both cases, the upper-bound on the convergence time
is given by (16) and (17) depending on the levels of stub-
bornness of partially stubborn agents. In case (ii), if all
the stubborn agents are fully stubborn, then the upper-
bound on the convergence time is given by (17).

To find a simple lower-bound, we consider the set U
in (14) to include all the nodes V\SF . This gives the
following lower-bound

T ≥
∑
j∈SP Kj + 2|E| −

∑
j∈SF dj∑

j∈SP Kj +
∑
j∈SF dj

. (18)

In investigating the scaling laws, the scaling of the num-
ber of stubborn agents and their levels of stubbornness
with n could play an important role. Here, we study
scaling laws in graphs with a fixed number of stubborn
agents, with fixed levels of stubbornness, as the total
number of agents n in the network grows. Then, in any
connected graph G, based on (18), the smallest possi-
ble convergence time is T = Ω(|E|) in the case (i) which

could be as small as Ω(n), and T = Ω( |E|∑
j∈SF

dj
) in the

case (ii) which could be as small as Ω(1). It is possi-
ble to combine the upperbounds (16) and (17) as fol-
lows to obtain a looser upper-bound that holds for so-
cial networks with any fixed number of (partially/fully)
stubborn agents and fixed levels of stubbornness. Let
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dmax be the maximum degree of the social graph (pos-
sibly depending on n). The upper-bounds show that
T = O(|γ|ndmax) for Kmin < K∗ (a threshold depend-
ing on the structure of the graph) and T = O(|γ|Bdmax)
otherwise. Recall that B was the bottleneck constant,
and obviously B < n, implying that T = O(n|γ|dmax),
for a fixed number of stubborn agents consisting of any
mixture of partially/fully stubborn agents. Furthermore,
it should be clear that |γ| is at most equal to the diam-
eter δ of the graph, hence,

T = O(nδdmax). (19)

Dependence on the diameter intuitively makes sense as
it represents the minimum time required to reach any
node in the network from an arbitrary stubborn agent.

Fastest convergence: It should be intuitively clear that a
star graph G, in which a stubborn agent is directly con-
nected to n − 1 non-stubborn agents with no edges be-
tween the non-stubborn agents, should have the fastest
convergence. In fact, it is easy to check that K∗ = Θ(n),
hence, if the stubborn agent is partially stubborn (case
(i)), by (16), T = Θ(n), and if the stubborn agent is fully
stubborn (case (ii)), by (17), T = Θ(1), both achieving
the smallest possible lower-bounds.

Complete graph and ring graph: In the complete graph,

with a fixed number of stubborn agents, d̃ = d̂ = n− 1,
|Γ| = Θ(n), |γ| = 2, B = 1, and K∗ = Θ(n). Hence, if
at least one of the agents is partially stubborn, by (16)
and (18), T = Θ(n2). If all the stubborn agents are fully
stubborn, by (17) and (18), T = Θ(n).

In the ring network, d̃ = d̂ = 2, |Γ| = Θ(n), |γ| = Θ(n),
B = Θ(n), and K∗ = Θ(1). Thus T = O(n2) and Ω(n)
in both cases (i) and (ii).

None of the graphs always has a faster convergence than
the other one. For example, in the case of one stubborn
agent with a fixed K1, and n large enough (larger than a
constant depending on the value ofK1), the ring network
has a faster convergence than the complete graph, while
for any fixed n, andK1 large enough, the complete graph
has a faster convergence than the ring.

Expander graphs and trees: Expanders are graph se-
quences such that any graph in the sequence has good
expansion property, meaning that there exists α > 0
(independent of n) such that each subset S of nodes
with size |S| ≤ n/2 has at least α|S| edges to the rest
of the network. Expander graphs have found extensive
applications in computer science and mathematics (see
the survey of [30] for a discussion of several applica-
tions). An important class of expanders are d-regular
expanders, where each node has a constant degree d.
Existence of d-regular expanders, for d > 2, was first
established in [32] via a probabilistic argument. There

are various explicit constructions of d-regular expander
graphs, e.g., the Zig Zag construction in [29] or the
construction in [31].

Recall the upper-bound (19) when there is a fixed num-
ber of (fully/partially) stubborn agents. So, for any
bounded degree graph, with maximum degree d > 2,
and diameter δ, T = O(nδ). It is easy to see that the
diameter of a bounded degree graph, with maximum de-
gree d, is at least logd−1 n (Lemma 4.1, [23]). In fact, for
a d-regular tree or a d-regular expander, δ = O(log n)
4 . Hence, for these graphs, T = O(n log n) which is
almost as fast as the smallest possible convergence
time Ω(n) when there is at least on partially stubborn
agent. When all the stubborn agents are fully stubborn,
T = O(n log n) still holds, by (17) because B = Θ(n) in
any bounded degree graph, but, in this case, the conver-
gence is slow compared to the best possible convergence
time Ω(1).

Erdos-Renyi random graphs: Consider an Erod-Renyi
random graph with n nodes where each node is con-
nected to any other node with probability p, i.e., each
edge appears independently with probability p. To en-
sure that the graph is connected, we consider p = λ logn

n
for some number λ > 1 [42]. Assume there are a fixed
set of stubborn agents with fixed stubbornness param-
eters. Using the well-known results, the maximin de-
gree of an Erdos-Renyi random graph is O(log n) with
high probability, i.e., with probability approaching to
1 as n grows [42]. Also we know that the diameter is

O
(

logn
lognp

)
= O

(
logn

log(λ logn)

)
with high probability (in

fact, the diameter concentrates only on a few distinct
values [24]). Hence, using the upper-bound (19) gives

T = O
(
n log2 n

log logn

)
with high probability. This is very

close to the best possible convergence time in case (i) but
far from the best possible convergence time in case (ii).

Small-world graphs: The previous graph models do
not capture many spatial and structural aspects of
social networks and, hence, are not realistic models
of social networks [23]. Motivated by the small world
phenomenon observed by Milgram [25], Strogatz-Watts
[26] and Kleinberg [27] proposed models that illustrate
how graphs with spatial structure can have small di-
ameters, thus, providing more realistic models of social
networks. We consider a variant of these models, pro-
posed in [23], and characterize the convergence time to
equilibrium in presence of stubborn agents. We consider

4 To show the latter, consider the lazy random walk over
a d-regular expander graph, i.e., with transition probabil-
ity matrix P = M

2d
+ I

2
where M is the graph’s adjacency

matrix. Then, it follows from Cheeger’s inequality and the

expansion property, that the spectral gap 1− λ2(P ) ≥ α2

8d2
.

Using the relation between the special gap and the diameter

δ < logn
1−λ2(P )

[33], we get δ ≤ 8d2

α2 logn.
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two-dimensional graphs for simplicity but results are
extendable to the higher dimensional graphs as well.

Start with a social network as a grid
√
n×
√
n of n nodes.

Hence, nodes i and j are neighbors if their l1 distance
‖i − j‖ = |xi − xj | + |yi − yj | is equal to 1. It follows
from (19) that, in presence of a fixed number of stubborn
agents in a bounded degree graph, T = O(nδ), and in
the grid, δ = 2

√
n obviously, hence T = O(n

√
n). Note

that changing the location of the stubborn agents can
change the convergence time only by a constant and does
not change the order.

Now assume that each node creates q shortcuts to other
nodes in the network. A node i chooses another node
j as the destination of the shortcut with probability
‖i−j‖−α∑
k 6=i
‖i−k‖−α

, for some parameter α > 0. Parameter α

determines the distribution of the shortcuts as large val-
ues of α produce mostly local shortcuts and small values
of α increase the chance of long-range shortcuts. In par-
ticular, q = 1 and α = 0 recovers the Strogatz-Watts
model where the shortcuts are selected uniformly at ran-
dom. It is shown in [28] that for α < 2, the graph is
an expander with high probability and hence, using the
inequality between the diameter and the spectral gap
[33] (see the footnote 4), its diameter is of the order of
O(log n) with high probability. We also need to charac-
terize the maximum degree in such graphs. The follow-
ing lemma is probably known but we were not able to
find a reference for it, hence, we have included a proof
for it in our technical report [45] for completeness.

Lemma 4 Under the small-world network model,
dmax = O(log n) with high probability.

Hence, putting everything together, using the upper-
bound (19), we get T = O(n log2 n). This differs from
the smallest possible convergence time in case (i) by a
factor of log2 n but far from Ω(1) in case (ii).

6 Conclusions

We viewed opinion dynamics as a local interaction game
over a social network. When there are no stubborn
agents, the best-response dynamics converge to a com-
mon opinion in which the impact of the initial opinion of
each agent is proportional to its degree. In the presence
of stubborn agents, agents do not reach a consensus but
the dynamics converge to an equilibrium in which the
opinion of each agent is a convex combination of the ini-
tial opinions of the stubborn agents. The coefficients of
such convex combinations are related to appropriately
defined hitting probabilities of the random walk over the
social network’s graph. An alternative interpretation is
based on an electrical network model of the social net-
work where, at equilibrium, the opinion of each agent is
simply its voltage in the electrical network.

The bounds on the convergence time in the paper can be
interpreted in terms of location and stubbornness levels
of stubborn agents, and graph properties such as diame-
ter, degrees, and the so-called bottleneck constant (15).
The bounds provide relatively tight orders for the con-
vergence time in the case of a fixed number of partially
stubborn agents (case (i)) but there is a gap between
the lower-bound and the upper-bound when some of the
stubborn agents are fully stubborn (case (ii)). Tighten-
ing the bounds in case (ii) remains as a future work.

Appendix

A Proof of Lemma 1

The transition probability matrix of the random walk
over Ĝ is given by

P =

[
Ân×n B̂n×|SP |

I|SP | 0

]
. (A.1)

I|SP | is the identity matrix of size |SP |, i.e., when the
walk reaches ui, it returns to its corresponding stubborn
agent i with probability 1. Nonzero elements of Â cor-
respond to transitions between vertices of V. Nonzero
elements of B̂ correspond to transitions from a partially
stubborn agent i ∈ SP to ui. The matrices Â and A
only differ in the rows corresponding to agents SF which
are all-zero rows in A. Notice that xi(t) = xi(0) for all
i ∈ SF and t ≥ 0. Hence, we can focus on the dynamics
of x̃(t) = [xi(t) : i ∈ V\SF ]T .

Let Ã be the matrix obtained from Â (or A) by remov-
ing rows and columns corresponding to fully stubborn
agents SF . Let ÂSF (ASF ) denote the columns of Â (A)

corresponding to SF . Let B̃ be the matrix obtained from
B by (i) replacing the columns corresponding to fully

stubborn agents SF with ÂSF (or ASF ), (ii) removing
rows corresponding to SF , (iii) removing the columns
corresponding to non-stubborn agents (which are all zero
columns). Then, we have

x̃(t+ 1) = Ãx̃(t) + B̃xS(0), (A.2)

where xS(0) = [xi(0) : i ∈ S]T . Note that both A and

Ã have the same largest eigenvalue, i.e., λA = λÃ. The
dynamics (A.2) converge to the equilibrium x̃(∞) = (I−
Ã)−1B̃xS(0).

For each vertex i ∈ V, and j ∈ SF , let Fij := Pi(τ = τj)
be the probability that random walk hits j first, among
vertices in SF∪u(SP ), given the random walk starts from
vertex i. Also, for each vertex i ∈ V, and uj ∈ u(SP ),
let Fij := Pi(τ = τuj ) be the probability that random
walk hits uj first, among vertices in SF ∪ u(SP ), given
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the random walk starts from vertex i. Then, we have the
following recursive formulas for the Fij probabilities. For
every i ∈ V\SF and every j ∈ SF ,

Fij = Âij +
∑

k∈V\SF

ÂikFkj , (A.3)

and for every i ∈ V\SF and every j ∈ SP ,

Fij = B̂ij +
∑

k∈V\SF

ÂikFkj . (A.4)

Note that B̃ is [B̂ÂSF ] without the rows corresponding
to SF . Hence, putting the two equations together in the
matrix form, F = B̃ + ÃF or F = (I− Ã)−1B̃.

Note that for any i ∈ SF , Fii = 1 and xi(t) = xi(0) at all
times t ≥ 0. Hence, the equilibrium at each node i ∈ V,
is a convex combination of initial opinions of stubborn
agents, where xi(∞) =

∑
j∈S Fijxj(0).

B Proof of Lemma 2

Recall graph Ĝ with edge weights {wij : (i, j) ∈ Ê}. By
(2), and taking the limit as t → ∞, the equilibrium is
the solution to the following set of linear equations

xi(∞) =
1

wi

∑
j∈∂i

wijxj(∞), (B.1)

for each node i ∈ V̂, with boundary conditions xui(∞) =
xi(0), i ∈ SP , and xi(∞) = xi(0) for i ∈ SF . Now

assume each edge (i, j) ∈ Ê has a conductance wij and
vertices SF ∪u(SP ) are voltage sources where the voltage
of each source i ∈ SF is xi(0) volts and the voltage of
each source uj ∈ u(SP ), j ∈ SP , is xj(0) volts. Let vi
be the voltage of node i. Kirchhoff’s current law states
that the total current entering each node must be zero,
i.e., for each node i ∈ V\SF ,

∑
j∈∂i wij(vi − vj) = 0 or

equivalently,

wivi =
∑
j∈∂i

wijvj (B.2)

which, comparing to (B.1), shows that xi(∞) = vi. Note
that having a fully stubborn agent i, with Ki =∞, cor-
responds with connecting i to a fixed voltage of xi(0)
volts with an edge of infinite conductance (short circuit).
Hence, Ki’s can be interpreted as the internal conduc-
tance of the voltage sources. A fully stubborn agent i
with Ki = ∞ corresponds to an ideal voltage source
with zero internal resistance.

C Proof of Lemma 3

From the definition of e(t),

e(t) =Atx(0) +

t−1∑
s=0

AsBx(0)−
∞∑
s=0

AsBx(0)

=Atx(0)−
∞∑
s=t

AsBx(0)

=At
(
x(0)−

∞∑
s=0

AsBx(0)
)
.

Hence e(t+ 1) = Ae(t). Let λA denote the largest eigen-
value of the irreducible sub-stochastic matrix A. Triv-
ially ei(t) = 0 for all fully stubborn agents i ∈ SF . Let
ẽ(t) := [ei(t) : i ∈ V\SF ]T denote the vector of errors

without the fully stubborn agents. Then ẽ(t) = Ãẽ(t−1)

holds, where Ã is the matrix obtained from A by re-
moving rows and columns corresponding to agents SF .
Note that Ã and A have the same largest eigenvalue, i.e.,
λA = λÃ.

Consider the Markov chain defined by P in (A.1).
It is easy to check that P is reversible 5 with re-
spect to a distribution π = [πi = wi

Z : i ∈ V̂]T

where wi is the weighted degree of vertex i, given
by (6), and Z = 2(|E| +

∑
i∈SP Ki) is the normaliz-

ing constant. Note that πiÃij = πjÃji holds for all
i, j ∈ V\SF . By minor abuse of terminology, we would

also call Ã reversible with respect to the distribution

π̃ =
[
πi/π(Ã) : i ∈ V\SF

]T
, where π(Ã) is the nor-

malization constant. Let D̃ = diag(π̃). Then, using
the same trick as in the characterization of eigenvalues
of a reversible stochastic matrix, A∗ = D̃1/2ÃD̃−1/2

is symmetric and has the same (real) eigenvalues as

Ã. Moreover A∗ is diagonalizable with a set of equal
right and left eigenvectors θ1, · · · , θn−|SF |. Correspond-
ingly, if u1, · · · , un−|SF | denote the left eigenvectors of

Ã and v1, · · · , vn−|SF | denote its right eigenvectors, it

should hold that ui = D̃vi. Also from the orthogonality
of θ′is, we have 〈ui, uj〉1/π̃ = δij and 〈vi, vj〉π̃ = δij .

Using {v1, · · · , vn−|SF |} as a base for Rn−|SF |, ẽ(t)

can be expressed as ẽ(t) =
∑n−|SF |
i=1 〈ẽ(t), vi〉π̃vi, so

Ãẽ(t) =
∑n−|SF |
i=1 λi〈ẽ(t), vi〉π̃vi. Therefore,

‖ẽ(t+ 1)‖2π̃ =
∑
i

λ2
i 〈ẽ(t), vi〉2π̃‖vi‖2π̃ =

∑
i

λ2
i 〈ẽ(t), vi〉2π̃

≤ λ2
A

∑
i

〈ẽ(t), vi〉2π̃ = λ2
A‖ẽ(t)‖2π̃.

5 By definition of reversibility, πiPij = πjPji for all i, j ∈ V̂
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So ‖ẽ(t + 1)‖π̃ ≤ λA‖ẽ(t)‖π̃. Accordingly, ‖ẽ(t)‖π̃ ≤
λtA‖ẽ(0)‖π̃.

D Proofs of Propositions 1, 2, and 3

The three Propositions are based on the extremal char-
acterization of the eigenvalues. First, we present an ex-
tremal characterization for the largest eigenvalue of a
sub-stochastic (and reversible) matrix. Then, we state
the proofs of individual propositions.

Recall that A and Ã have the same largest eigenvalue
and Ã is reversible with respect to π̃ = [πi/π(Ã) : i ∈
V\SF ]T (see Appendix C). Thus, it follows from ex-
tremal characterization of eigenvalues [19], [4] that

1− λA = inf
f 6=0

〈(I− Ã)f, f〉π̃
〈f, f〉π̃

,

where the infimum is over all functions f : V\SF → R.
The above characterization can also be written as

1− λA = inf
φ 6=0

〈(I− P )φ, φ〉π
〈φ, φ〉π

,

where now the infimum is over functions φ : V̂ → R,
such that φ (SF ∪ u(SP )) = 0, and P is the random walk
(A.1). Then, 〈(I − P )φ, φ〉π = E(φ, φ) where E(φ, φ) is
the Dirichlet form

E(φ, φ) =
1

2

∑
i,j∈V̂

πiPij(φ(i)− φ(j))2,

which, in terms of the edge weights of Ĝ, is equal to

E(φ, φ) =
1

2w

∑
i,j∈V̂

wij(φ(i)− φ(j))2,

where w :=
∑
i∈V̂ wi. Similarly,

〈φ, φ〉π =
1

w

∑
i∈V\SF

wiφ
2(i).

For any vertex i ∈ V\SF , consider a path γi from i to the
set SF ∪ u(SP ) that does not intersect itself, i.e., γi =
{(i, i1), (i1, i2), · · · , (im, j)} for some j ∈ SF ∪ u(SP ).
Note that in this definition the edges are oriented mean-
ing that we distinguish between (x, y) and (y, x). Then,
we can write φ(i) =

∑
(x,y)∈γi(φ(x) − φ(y)) because

φ(y) = 0 if y ∈ SF ∪ u(SP ).

Proof of Proposition 1 The result follows from the

extremal characterization of 1− λA. Note that

〈φ, φ〉π =
1

w

∑
i∈V\SF

wi

( ∑
(x,y)∈γi

(φ(x)− φ(y))
)2

=
1

w

∑
i∈V\SF

wi

( ∑
(x,y)∈γi

1
√
wxy

√
wxy(φ(x)− φ(y))

)2

≤ 1

w

∑
i∈V\SF

wi

( ∑
(x,y)∈γi

1

wxy

)( ∑
(x,y)∈γi

wxy(φ(x)− φ(y))2
)

=
1

w

∑
i∈V\SF

wi|γi|w
( ∑

(x,y)∈γi

wxy(φ(x)− φ(y))2
)

=
1

w

∑
x,y∈V̂

wxy(φ(x)− φ(y))2
( ∑
i:γi3(x,y)

wi|γi|w
)

≤ 2E(φ, φ)ξ.

This concludes the proof. The first inequality follows
from Cauchy-Schwarz inequality and the second one
from the definition of ξ.

Proof of Proposition 2 The proof is again based on
the extremal characterization. Note that

〈φ, φ〉π =
1

w

∑
i∈V\SF

wi

( ∑
(x,y)∈γi

(φ(x)− φ(y))
)2

≤ 1

w

∑
i∈V\SF

wi|γi|
∑

(x,y)∈γi

(φ(x)− φ(y))2

=
1

w

∑
x,y∈V̂

(φ(x)− φ(y))2
∑

i:γi3(x,y)

wi|γi|

=
1

w

∑
x,y∈V̂

wxy(φ(x)− φ(y))2 1

wxy

∑
i:γi3(x,y)

wi|γi|

≤ 2E(φ, φ)η,

which concludes the proof. Again the first inequality fol-
lows from Cauchy-Schwarz inequality and the second one
from the definition of η.

Proof of Proposition 3 To find an upper bound on
1−λA, consider indicator functions of the form 1U , U ⊆
V\SF , in the extremal characterization of eigenvalues.
Then, we have

1− λA ≤
E(1U ,1U )

〈1U ,1U 〉π

=

∑
i∈U,j /∈U wij∑
i∈U wi

=: ψ(U ; Ĝ)

And accordingly, 1 − λA ≤ minU⊆V\SF ψ(U ; Ĝ). It is
easy to see that the minimizing U is the vertex set of a
connected subgraph of G\SF .
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