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Abstract—We consider the problem of scheduling jobs with
multiple-resource requirements (CPU, memory, disk, etc.) in a
distributed server platform, motivated by data-parallel and cloud
computing applications. Jobs arrive dynamically over time and
require certain amount of multiple resources for the duration of
their service. When a job arrives, it is queued and later served
by one of the servers that has sufficient remaining resources to
serve it. The scheduling of jobs is subject to two constraints: (i)
packing constraints: multiple jobs can be be served simultaneously
by a single server if their cumulative resource requirement does
not exceed the capacity of the server, and (ii) non-preemption:
to avoid costly preemptions, once a job is scheduled in a server,
its service cannot be interrupted or migrated to another server.
Prior scheduling algorithms rely on either Bin Packing heuristics
which have low complexity but can have a poor throughput,
or MaxWeight solutions that can achieve maximum throughput
but repeatedly require to solve or approximate instances of
a hard combinatorial problem (Knapsack) over time. In this
paper, we propose a randomized scheduling algorithm for placing
jobs in servers that can achieve maximum throughput with
low complexity. The algorithm is naturally distributed and
each queue and each server needs to perform only a constant
number of operations per time unit. Extensive simulation results,
using both synthetic and real traffic traces, are presented to
evaluate the throughput and delay performance compared to
prior algorithms.

Index Terms—Resource Allocation, Markov Chains, Stability,
Knapsack Problem, Datacenter

I. INTRODUCTION

Datacenters and clouds have emerged as cost-effective in-
frastructures for providing large-scale storage, computation,
and services by Google, Amazon, Facebook, etc. A key
challenge for the datacenters is to support a wide range of ap-
plications or jobs (e.g. queries, log analysis, machine learning,
graph processing, etc.) on their physical platform. A running
job may consist of multiple tasks, each running on a server
in the datacenter. A key component of such an ecosystem is
the resource manager (scheduler) that assigns tasks to servers
and reserve resources (e.g. CPU, memory, disk) on the servers
for running tasks. The resource reservation for each task is
done through requesting a container or virtual machine on
a server [2]–[5]. The jobs (tasks) often have diverse resource
requirements for CPU, memory, disk, etc. Hence, to guarantee
efficiency and scalability, we need to build a scheduler that
packs as many tasks (containers, virtual machines) as possible
in servers while retaining their resource requirements. For
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instance, suppose a CPU-intensive task, a disk-intensive task,
and a memory-intensive task are located on three individual
servers, we can pack these tasks in a single server to fully
utilize the server’s resources along CPU, disk, and memory.
Finding the right packing however is a challenging problem:
first, the traffic demand is a priori unknown and will likely
be variable over both time and space; and second, finding the
right packing even when the demand is known, in general, is
not easy, as it is related to multi-dimensional Bin Packing [6],
[7] and multi-dimensional Knapsack [8]–[10] which are hard
combinatorial problems.

In this paper, instead of learning the demand and solving
the corresponding combinatorial packing problem, we follow
a different approach: we exploit the dynamic nature of job
arrivals and departures to design a scalable low-complexity
scheduler which adaptively finds the right packings. Specif-
ically, by exploring random packings at proper instances in
time and probabilistically keeping good packings with higher
probability at departure instances, we can generate packings
that on average converge to the optimal packing.

Henceforth, we use the words job and task interchangeably.
We consider a finite model of the cloud, consisting of a
(possibly large) number of servers. Servers are not necessarily
homogeneous in terms of their capacity (e.g. CPU, memory,
storage). As an abstraction in our model, job (or task) is simply
a multi-dimensional vector of resource requirements that has to
be served by one server and cannot be fragmented among the
servers. Jobs of various types arrive dynamically over time.
Once a job arrives, it is queued and later served by one of
the servers that has sufficient remaining capacity to serve it.
Once the service is completed, the job departs from the server
and releases the resources. The throughput of the system is
defined as the average number of jobs of various types that
can be served by the system over time. We are interested in
efficient and scalable scheduling algorithms that maximize the
throughput. To avoid costly preemptions, we focus on non-
preemptive scheduling, i.e., without interrupting the ongoing
services of the jobs in the system. In general, preemption
requires the interrupted jobs to be migrated to new machines
or restored at a later time, which are both undesirable (costly)
operations [4], [11].

A. Related Work

There have been two main approaches to scheduling multi-
resource jobs in clouds and datacenters:

1) Greedy Bin Packing Heuristics. A natural way of
scheduling jobs is to greedily pack jobs in servers whenever
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there is resource available, based on online Bin packing
heuristics (e.g. Random-Fit, First-Fit, Best-Fit) [6]. For ex-
ample, Best-Fit places the job in the tightest server (i.e.,
the one with the least residual capacity) among the servers
that can accommodate it. Intuitively, this is expected to leave
less fragmented capacity behind and thus better utilize the
resources. Such heuristics are relatively easy to implement in
large-scale systems, and are widely used for job scheduling in
practice [4], [12]. Despite the huge literature on the analysis
of these heuristics for Bin Packing (minimizing the number
of used servers), e.g. [6], [7], [13]–[15], it is not clear if such
heuristics can achieve the maximum throughput in a finite
model of the cloud (fixed number of servers) with job arrivals
and departures. In fact, we show that direct application of such
heuristics might yield a poor throughput.

2) Algorithms with Throughput Guarantee. To ensure
throughput guarantee, prior work [16]–[20] essentially relies
on MaxWeight [21], by considering a weight for each job type,
equal to its queue size (the number of jobs of that type waiting
for service), and then choosing a feasible configuration with
the maximum weight for each server. As an example, consider
a server with capacity C (CPU units) and with two types of
jobs. Jobs of type 1 require s1 CPU units and jobs of type 2
require s2 CPU units. This implies that, at any time, the server
can simultaneously serve k1 jobs of type 1 and k2 jobs of type
2 if k1(s1) + k2(s2) ≤ C. We refer to (k1, k2) as the server
configuration. Let Q1(t) and Q2(t) denote the queue size of
type-1 and type-2 jobs at time t. In this case, the MaxWeight
algorithm selects a feasible server configuration (k1, k2) that
maximizes Q1(t)k1 +Q2(t)k2. Such algorithms however have
high complexity and require preemption or carefully refreshing
the schedule over time:

(i) High complexity: Finding the max weight configuration
is not easy, especially when there is a large number of multi-
dimensional job types and a large number of (inhomogeneous)
servers. In fact, this is an instance of the multi-dimensional
Knapsack problem which in general is NP-hard [8], and has no
polynomial-time approximation algorithm with constant factor
approximation (unless P = NP) [9], [10].

(ii) Preemption: As a result of job arrivals and departures,
queues change over time, and thus the algorithm needs to
repeatedly find a new max weight configuration. Enforcing the
new configuration however can interrupt the service of existing
jobs in servers. One proposal in [17], [18] to avoid preemption
is to reset the configuration to the max weight configuration
at the so-called refresh times, which are times when all the
jobs in a server leave and the server becomes empty. Such
times however might not occur frequently especially at high
traffic. Further, as noted in [17], [18], maximum throughput
is guaranteed only if the configuration of all the servers are
reset at the same time, i.e., at times when all the servers are
empty simultaneously. Such times can be very rare, which
has a negative impact on the delay, and further, requires
synchronization among the servers.

The scheduling algorithm proposed in [19], [20] uses ap-
proximation algorithms to Knapsack (in pseudo-polynomial
time, by each server) in a blackbox fashion, and can guarantee
a fraction of the maximum throughput. It repeatedly applies

a blackbox approximation algorithm, every time a job departs
from a server, and actively stops the server from scheduling
further jobs if the weight of its current configuration goes
below a certain fraction of the weight returned by the blackbox
approximation algorithm. The randomized algorithms pro-
posed in this paper have much lower complexity and can
guarantee maximum throughput.

The task and virtual machine packing in datacenters and
clouds have been also considered in e.g. [3], [5], [22]–[24],
however most of proposed solutions are simple application of
Bin Packing heuristics or require migration of tasks (or virtual
machines) across the servers.

B. Main Contributions

Our main contributions can be summarized as follows:
• Inefficiency of Bin Packing heuristics. We show that

commonly used bin packing heuristics (e.g., First-Fit, Best-
Fit, etc.), which greedily pack jobs in servers whenever there
is available resource, are not throughput optimal. In fact,
we show that there is no work-conserving greedy heuristic
that can guarantee a constant fraction of the maximum
throughput for all jobs/workload profiles.

• RMS: Randomized Multi-resource Scheduling. We
present RMS, a randomized scheduling algorithm which has
low complexity, is scalable to large-scale systems with cen-
tralized or distributed queues, and is provably throughput-
optimal. RMS is based on construction of Poisson clocks for
job types. Whenever the clock of a job type ticks, it samples
one of the servers at random and tries to fit a job of that type
in the server if possible. At the departure instance of a job
from a server, RMS probabilistically tries to replace the job
with another job of the same type, with a probability which
is an increasing function of the number of jobs of that type in
the queue. RMS provides a seamless transition between the
configurations without preemption and without coordination
among the servers, and each server or job type only needs to
perform a constant number of operations per time unit. The
clock rates represent the average number of servers sampled
by each job type per time unit, and can be tuned to provide
a trade-off between complexity and queueing delay.

• Empirical evaluations. We provide evaluation results, using
both synthetic and real traffic traces, that show RMS and
its variants display good delay performance in simula-
tions, comparable to delay of heuristics that may not be
throughput-optimal, and better than the delay performance
of the prior complex throughput-optimal policies.

C. Notations

Some of the basic notations used in this paper are as follows.
1(E) is the indicator function which is 1 if event E holds,
and 0 otherwise. ej denotes a vector whose j-th entity is 1
and its other entities are 0. eij denotes a matrix whose entity
(i, j) is one and its other entities are 0. R+ and Z+ denote
the set of nonnegative real numbers and nonnegative integer
numbers, respectively.

We use Ξn to denote the n-dimensional simplex of prob-
ability vectors Ξn = {x ∈ Rn+ :

∑n
i=1 xi = 1}. For
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any two probability vectors π, ν ∈ Ξn, the Kullback–Leibler
(KL) divergence of π from ν is defined as DKL(π‖ν) =∑
i πi log πi

νi
, and the total variation distance is defined as

‖π − µ‖TV = 1
2

∑
i |πi − µi|.

Given x, y ∈ Rn, x < y means xi < yi component-
wise. f(x) = o(g(x)) means f(x)/g(x) goes to 0 in a
limit in x specified in the context. x ∧ y := min(x, y),
x ∨ y := max(x, y), the norm ‖ · ‖ is `-infinity norm. For
compactness, EZ [·] = E[·|Z] denotes the expectation given a
random variable Z or expectation with respect to a distribution
Z specified in the context.

II. SYSTEM MODEL

Cloud Cluster: Consider a collection of L servers denoted
by the set L. Each server ` ∈ L has a limited capacity on
different resource types (CPU, memory, storage, etc.). We
assume there are n ≥ 1 types of resource. Servers may not be
homogeneous in terms of their capacity.

Job Types: There is a collection of J job types denoted
by the set J , where each job type requires certain amounts
of resources. We use sj = (s1

j , · · · , snj ) to denote the vector
of resource requirement for type-j jobs, i.e, sdj is the resource
requirement of type-j jobs for the d-th resource, d = 1, · · · , n.

Job Arrivals and Departures: We assume jobs of type j
arrive according to a Poisson process with rate λj . Each job
must be placed in a server that has enough available resources
to accommodate it. Jobs of type j require an exponentially
distributed service time with mean 1/µj . To avoid costly
preemptions, once a job is placed in a server, its service cannot
be preempted or migrated to another server. Once the service
is completed, the job departs from the server and releases
the resources. The assumptions such as Poisson arrivals and
Exponential service times are not necessary for our results to
hold and can in fact be relaxed (see Section IX), but for now
we consider this model to simplify the analysis.

Server Configuration and System Configuration: For each
server `, a vector k` = (k`1, · · · , k`J) ∈ ZJ+ is said to
be a feasible configuration if the server can simultaneously
accommodate k`1 type-1 jobs, k`2 type-2 jobs, · · · , k`J type-J
jobs. We use K` to denote the set of feasible configurations
for server `. Note that we do not necessarily need the resource
requirements to be additive, only the monotonicity of the
feasible configurations is sufficient, namely, if k` ∈ K`, and
k′
` ≤ k` (component-wise), then k′` ∈ K`. Hence our model

allows sub-additive resources as a special case, when the
cumulative resource used by the jobs in a configuration could
be less than the sum of the resources used individually [25].
We use M < ∞ to denote the maximum number of jobs (of
any type) that can fit in any server and assume that all servers
can fit any single job type.

We also define the system configuration as a matrix k ∈
ZL×J+ whose `-th row (k`) is the configuration of server `. We
use K to denote the set of all feasible configuration matrices.

Queueing Dynamics: When jobs arrive, they are queued and
then served by the servers with enough remaining capacity.
We use Qj(t) to denote the total number of type-j jobs in the
system waiting for service (excluding jobs which are getting

service or have been departed). The jobs can be queued either
centrally or locally as described below.

(i) Centralized Queueing: There are a total of J queues,
one queue for each job type. When a job arrives, it
is placed in the corresponding queue and later served
by one of the servers. Hence here Qj(t) is simply the
size of the j-th queue. We also define the queue vector
Q(t) = (Qj(t), j ∈ J ).

(ii) Distributed Queueing: Each server has J queues, one
queue for each job type (hence a total of J ×L queues).
When a job arrives, it is placed in a proper local queue
at one of the servers and then served by the same server
later. We use Q`j(t) to denote the size of the j-th queue
at server ` and define the vector Q`(t) = (Q`j(t), j ∈ J ).
Hence Qj(t) =

∑
`∈LQ

`
j(t) is the total number of type-

j jobs waiting for service in the system. In this case, we
use Q(t) to denote a matrix whose `-th row is Q`(t).

Remark 1: The centralized and distributed queueing
schemes are not equivalent in terms of queueing delay and
complexity in our setting of multi-resource jobs. In gen-
eral, centralized queueing outperforms distributed queueing in
terms of the queueing delay as it better utilizes the resources
and avoids some of the resource fragmentation created in
distributed queueing due to assignment of jobs to local queues
(see Section VII for comparison results). On the other hand,
distributed queueing might be easier to implement as each
queue memory needs to operate at a slower speed compared
to a centralized queue.

Stability and Throughput Optimality: Under both central-
ized and distributed queueing schemes, the total number of
jobs waiting for service follows the usual dynamics:

Qj(t) = Qj(t0) +Aj [t0, t)−Dj [t0, t); t ≥ t0,

where Aj [t0, t) is the number of type-j jobs arrived during
[t0, t) and Dj [t0, t) is the number of type-j jobs that have
started receiving service during [t0, t). The system is said to
be stable if the queues remain bounded in the sense that

lim sup
t→∞

E
[ ∑
j∈J

Qj(t)
]
<∞. (1)

A vector of job arrival rates λ and mean service durations
1/µ is said to be supportable if there exists a scheduling
algorithm under which the system is stable. Let ρj = λj/µj
be the workload of type-j jobs. Define

C =
{
x ∈ RJ+ : x =

∑
`∈L

x`, x` ∈ Conv(K`)
}
, (2)

where Conv(·) is the convex hull operator. It is known [16]–
[18] that the set of supportable workloads is the interior of C,
denoted by Co, i.e.,

Co =
{
ρ ∈ RJ+ : ∃x ∈ C s.t. ρ < x

}
. (3)

In other words, any supportable ρ should be dominated
by a feasible configuration or a convex combination of fea-
sible configurations. The main objective of this paper is to
develop low-complexity algorithms that can achieve maximum
throughput (i.e. can support all ρ ∈ Co), under both centralized
and distributed queueing schemes, without preemptions.
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III. INEFFICIENCY OF BIN PACKING HEURISTICS

The multi-resource scheduling (Section II) is closely related
to the classical Bin Packing problem [7]. In Bin Packing,
given a list of objects of various sizes, we are asked to pack
them into bins of unit capacity so as to minimize the number
of bins used. It is plausible that algorithms for Bin Packing
can be used to perform job scheduling, since packing jobs
in fewer servers, increases the number of jobs that could
be simultaneously served by the system, thus could increase
the throughput. The Bin Packing problem is known to be
NP-hard [7] and many approximation algorithms (e.g., Next-
Fit, First-Fit, Best-Fit [6], [26]) have been proposed that can
provide the optimal number of bins up to an approximation
factor. For example, First-Fit assigns each object to the “first”
bin (server) that has enough residual capacity to accommodate
it; whereas Best-Fit assigns it to a server with the “tightest”
residual capacity among the servers which can accommodate
the object. Best-Fit is in fact widely used in cloud and
datacenters in practice [4], [12].

In this section, we show that such bin packing heuristics are
not necessarily efficient for job scheduling in a finite model
of the cloud (i.e., with a finite number of servers) where jobs
arrive dynamically over time and depart after their service is
completed.

Definition 1 (Work-conserving greedy algorithm): A
scheduling algorithm is called work-conserving greedy if
whenever there is residual capacity in a server and there are
jobs in queue that can fit in the residual capacity, the algorithm
places one of the jobs in that server. The selection rule, i.e.,
which job to choose among the jobs that can fit in the residual
capacity, is arbitrary (e.g. Best-Fit, First-Fit, Random-Fit).

It has been shown in [16] that Best-Fit might not yield the
maximum throughput. Here, we show a stronger result stated
below.

Proposition 1: No work-conserving greedy algorithm can
achieve a non-vanishing fraction of the supportable workload
region Co for all job/workload profiles.

Proof: The proof is through a simple counter example.
Consider a single server with unit capacity (one type of
resource) and 2 job types: jobs of type 1 have size s1 and
jobs of type 2 have size s2 We show that for any given
k ≥ 2, work-conserving greedy algorithms cannot achieve
1/k fraction of the supportable workload region. To show this,
given a k ≥ 2, we choose s1 = (1 + k)−1 and s2 = 1. In
this case, the boundary of the supportable workload region C
is the convex hull of the maximal configurations (1 + k, 0)
and (0, 1), as depicted in Figure 1a. Let ρ1 and ρ2 be the
offered load by these job types such that (ρ1, ρ2) ∈ 1/k × C.
In particular, we choose ρ1 = a/b, for some a, b ∈ Z+, such
that a > b and a

b ≤
k+1
k . We then pick ρ2 > 0 such that

the point (ρ1, ρ2) is inside 1/k×C (i.e., inside the red dotted
region is Figure 1a). Now we construct the following arrival
and service time processes. Every b time units, there is an
arrival of job type 1 which requires service for the duration
of a time units. Also, in every time unit, a job of type 2
can arrive with probability ρ2 which requires one time unit
of service. Starting with initial condition in which there is a
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Fig. 1: (1a): The dotted region shows 1/k fraction of the
workload region C for a single server system with unit capacity
and two types of jobs with sizes 1/(1 + k) and 1.
(1b): Instability under work-conserving Best-Fit (BF) for a
10-server system with Poisson arrivals and exponential service
times. Our randomized algorithm (RMS) stabilizes the system.

job of type 1 in the server at time 0, since a > b and type-2
jobs require all the server capacity, it is easy to see that we
will never schedule a type-2 job, because there is at least one
job of type 1 present in the server at all times. Therefore,
the queue of type-2 jobs will grow to infinity and the system
becomes unstable. Note that if the system does not start with
the initial condition described above, any stable algorithm has
to schedule a type-1 job in the server at some point in time
(otherwise, the system is automatically unstable), from which
point onward the above argument holds.

Although the proof of Proposition 1 was through a counter
example (a single-server system with a specific traffic pattern),
the instability is indeed not specific to the example and can
occur for other traffic patterns as well. For example, Figure 1b
shows the total queue size under work-conserving Best-Fit
for a 10-server system, where type-1 jobs require 2 resource
units, type-2 jobs require 5 resource units, and each server’s
capacity is 10. Here, jobs arrive as Poisson processes with rates
λ1 = 20.8, λ2 = 10.4, and service times are exponentially
distributed with mean 1/µ1 = 1/µ2 = 1. Clearly the workload
ρ = λ/µ ∈ Co (since ρ < (22.22, 11.11) ∈ C), however the
total queue size blows to infinity.

The arguments above show that the direct application of bin
packing heuristics might not be efficient in terms throughput
and delay (might not even be stable!), and indicates that
packing should not always be work-conserving. The available
resource sometimes needs to be reserved for large-size jobs
arriving in future, instead of allocating it to small-size jobs
already in the system. This is the main idea behind our
randomized scheduling algorithms in which the use of residual
capacity is randomized over the existing jobs in the system
and jobs arriving shortly afterwards. Figure 1b plots the
total queue size under our randomized algorithm RMS (to
be described next) which clearly stabilizes the system.

IV. RMS: RANDOMIZED MULTI-RESOURCE SCHEDULING

A. Randomized Algorithm with Centralized Queues

In this section, we present RMS, our randomized scheduling
algorithm for the system with centralized queues. Recall that
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Algorithm 1 RMS (Randomized Multi-Resource Scheduling)
Job Arrival Instances:
Suppose a type-j job arrives at time t. The job is added to the
type-j queue, i.e., Qj(t+) = Qj(t) + 1.
Clock Instances:
Suppose the clock of the type-j queue ticks at time t, then:

1: One of the servers is chosen uniformly at random.
2: If a type-j job can fit into this server:

• if Qj(t) > 0, place the head-of-the-line job in this
server,

• else, place a dummy type-j job in this server.
Else, do nothing.

Job Departure Instances:
Suppose a type-j job departs from server ` at time t, then:

1: With probability 1− exp(−wj(t)),
• if Qj(t) > 0, place the head-of-the-line job from Qj

in this server,
• else, place a dummy type-j job in this server.

Otherwise, do nothing.

when a type-j job arrives, it is added to queue Qj . Once a
job is scheduled for service in one of the servers, it is placed
in the server and leaves the queue.

The RMS algorithm is based on randomly exploring pos-
sible packings of jobs in servers and keeping good packings
with higher probability. The exploration of possible packings
is done through uniform sampling of servers at Poisson in-
stances in time and the decision to keep the packing is made
probabilistically at departure instances of jobs from servers.

Uniform sampling. Each queue Qj is assigned a dedicated
Poisson clock of rate rj , for some fixed rj > 0.1 At the
instance of a clock tick of type j, the algorithm samples one
of the servers uniformly at random and attempts to fit a type-j
job in that server.

Probabilistic replacement. At the instance of a type-j
job departure from a server, the algorithm probabilistically
replaces it with another job of the same type j, with probability
1 − exp (−wj(t)). We refer to wj(t) as the weight of type-j
jobs which depends on queues as follows:

wj(t) = max
{
f(Qj(t)),

ε

8M
f(Qmax(t))

}
. (4)

Here Qmax(t) = maxj∈J Qj(t), ε ∈ (0, 1) is a parameter of
the algorithm, and f : R+ → R+ is an increasing concave
function to be specified. Also recall that M is a bound on the
maximum number of jobs of any types that can fit in a server.

The complete description of RMS is given in Algorithm 1.
Note that the algorithm is not work-conserving, namely, some
available resource might be left unused even though there are
jobs currently in the system which can fit in the resource.
The complexity of the algorithm basically depends on the
clock rates rj , j ∈ J , which is the average number of servers
sampled by each job type per time unit.

1This means at each time t, the time duration until the next tick of the
clock is exponentially distributed with mean 1/rj .

Remark 2: In Algorithm 1, dummy jobs are treated as
real jobs, i.e., dummy jobs of type j occupy resources until
departure for an exponentially distributed time duration with
mean 1/µj . A slightly less wasteful version of Algorithm 1 is
the one in which if a real job is waiting in the queue and a
dummy job is present in a server, the dummy job is replaced by
the real job. Specifically, the operation at Job Arrival Instances
in Algorithm 1 is modified as follows. Suppose a type-j job
arrives at time t, then
• if a dummy type-j job is present in one of the servers, it

is replaced with the newly arrived job,
• else, the newly arrived job is added to Qj .

The operation at Clock Instances and Job Departure Instances
will remain exactly the same as in Algorithm 1. When service
times are exponentially distributed, our results easily hold
for this less wasteful version of the algorithm. The version
presented in Algorithm 1 is simpler to analyze in the case
of general service times when service time distribution is not
necessarily exponential (see Section IX).

The following theorem states the main result regarding the
throughput-optimality of Algorithm 1.

Theorem 1: Consider Algorithm 1 with f = log1−b(1 +x),
for any b ∈ (0, 1), and ε ∈ (0, 1). Then any workload vector
ρ ∈ (1− ε)Co is supportable by Algorithm 1.

Note that the long-term throughput achieved by Algorithm 1
is independent of clock rates. Tuning the clock rates provides
a trade-off between complexity and queueing delay (see Sec-
tion VII for more discussion).

B. Randomized Algorithm with Distributed Queues

Algorithm 1 can be modified for the system with distributed
queues. In this case, each server ` ∈ L has a set of local
queues Q`j , j ∈ J . When a type-j job arrives to the system,
it is routed to a proper server where it is queued. The routing
of type-j jobs to servers can be done through JSQ (Join the
Shortest Queue) among the type-j local queues at the servers.
Each server then selects a set of jobs from its own set of local
queues to serve. The selection of jobs is randomized similar
to RMS. Each queue Q`j is assigned an independent Poisson
clock of fixed rate r`j > 0, and a weight

w`j(t) = max
{
f(Q`j(t)),

ε

8M
f(Q`max(t))

}
, (5)

where for each server `, Q`max(t) = maxj Q
`
j , and f is an

increasing concave function to be specified later. The complete
description of the algorithm is given in Algorithm 2.

Remark 3: In Algorithm 2, dummy jobs are treated as real
jobs, i.e., dummy jobs of type j depart after an exponentially
distributed time duration with mean 1/µj . Alternatively, we
can consider a less wasteful version of the algorithm by
replacing dummy jobs with real jobs whenever there are real
jobs waiting in the queue (see Remark 2).

Remark 4: The JSQ routing can be replaced by simpler
alternatives such as the power-of-two-choices routing [27].
Namely, when a job arrives, two servers are selected at
random, and the job is routed to the server which has the
smaller queue for that job type (ties are broken at random).
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Algorithm 2 RMS + JSQ

Job Arrival Instances:
Suppose a type-j job arrives at time t. The job is routed based
on JSQ (Join the Shortest Queue), i.e., it is assigned to the
server with the shortest queue for type-j jobs. Formally, let
`?j (t) = arg min`Q

`
j(t) (break ties arbitrarily). Then

Q`j(t
+) =

{
Q`j(t) + 1, if ` = `?j (t)

Q`j(t), otherwise.
(6)

Clock Instances:
Suppose the clock of queue Q`j makes a tick at time t, then:
If a type-j job can fit into server `:
• if Q`j(t) > 0, place the head-of-the-line job in this server,
• else, place a dummy type-j job is this server.

Else, do nothing.
Job Departure Instances:
Suppose a type-j job departs from server ` at time t, then:
With probability 1− exp(−w`j(t)),
• if Q`j(t) > 0, place its head-of-the-line job in server `,
• else, place a dummy type-j job in server `.

Otherwise, do nothing.

The following theorem states the main result regarding the
throughput-optimality of Algorithm 2.

Theorem 2: Consider Algorithm 2 with f(x) = log1−b(1 +
x), for some b ∈ (0, 1), and ε ∈ (0, 1). Any workload vector
ρ ∈ (1− ε)Co is supportable by Algorithm 2.

V. MAIN IDEA BEHIND RMS

The main idea behind our algorithms is that the generation
of configurations is essentially governed by an imaginary
reversible system whose job arrivals are the dedicated Poisson
clocks in Algorithms 1 and 2. We first define the reversible
system formally and then mention a few of its properties which
will constitute the basis for the analysis of algorithms.

Definition 2 (RMS(L, r,w)): We use RMS to denote the
configuration dynamics under RMS (Algorithm 1) when the
weights are fixed at w = (wj > 0; j ∈ J ) and there are
no queues. Specifically, RMS(L, r,w) consists of a set of
servers L, and a Poisson clock of rate rj for each job type
j ∈ J . Every time the j-th Poisson clock makes a tick, one of
the servers is sampled uniformly at random, then if a type-j
job can fit in the server, it is placed in that server, otherwise
the configuration does not change. The jobs of type j leave
the system after an exponentially distributed time duration
with mean 1/µj . Whenever a type-j job leaves a server, it
is immediately replaced with a job of the same type j with
probability 1− e−wj . Hence, the larger the weight, the more
likely is for a job departure to be replaced immediately with
a job of the same type.

The evolution of configurations in RMS(L, r,w) can be
described by a reversible continuous-time Markov chain over
the space of configurations K with the following transition

rates:

k→ k + e`j at rate
rj
L
1(k + e`j ∈ K), (7)

k→ k− e`j at rate k`jµj exp(−wj)1(k`j > 0). (8)

The following lemma characterizes the steady-state behavior
of configurations in RMS.

Lemma 1: The steady-state probability of configuration k ∈
K in RMS(L, r,w) is given by

φw(k) =
1

Zw
exp

(∑
j∈J

∑
`∈L

wjk
`
j

)∏
`∈L

∏
j∈J

1

k`j !

(
rj
Lµj

)k`j
(9)

where Zw is the normalizing constant.
Proof: The Markov chain of RMS is reversible: For any

pair k and k+ e`j ∈ K, the detailed balance equation is given
by

φ(k)rj
1

L
= φ(k + e`j)(k

`
j + 1)µj exp(−wj),

where the left-hand side corresponds to transition from k
to k + e`j (based on uniform sampling) and the right-hand
side corresponds to transition from k + e`j to k (based on
probabilistic replacement) in RMS, with rates respecting (7)
and (8). It is not hard to check that the set of detailed balance
equations indeed has a solution given by (9).

Lemma 2: Let ΞK denote the set of probability distributions
over the configuration space K, and F : ΞK → R be the
function

F (p) = Ep

[∑
j∈J

∑
`∈L

wjk
`
j

]
−DKL(p ‖ φ0), (10)

where DKL(· ‖ ·) is the KL divergence distance, and

φ0(k) =
1

Z0

∏
`∈L

∏
j∈J

1

k`j !

(
rj
Lµj

)k`j
, k ∈ K. (11)

Then the probability distribution φw (defined in (9)) is the
optimal solution to the maximization problem

max
p∈ΞK

F (p). (12)

Proof of Lemma 2: Observe that the objective function
F (p) is strictly concave in p. The lagrangian for optimization
(12) is then given by

L(p, η) = F (p) + η
( ∑

k∈K
p(k)− 1

)
, p ≥ 0,

where η ∈ R is the Lagrange multiplier associated with the
constraint p ∈ ΞK (i.e., p ≥ 0 such that

∑
k∈K p(k) = 1).

Solving ∇L = [∂L/∂p(k)] = 0 yields

p(k) = exp(−1 + η)φ0(k) exp
(∑

j

∑
` k

`
jwj

)
, (13)

which is automatically nonnegative for any η. Hence, by
KKT conditions, (p?, η?) is the optimal primal-dual pair if it
satisfies (13) and

∑
K p

?(k) = 1. Thus the optimal distribution
p? is given by φw as defined in (9).

Lemma 2 indicates that given a fixed weight vector w, RMS
in steady state can generate configurations that roughly have
the maximum weight maxk∈K

∑
j

∑
` wjk

`
j (off by a constant
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factor independent of w). The following corollary formalizes
this statement.

Corollary 1: The probability distribution φw satisfies

Eφw

[∑
j∈J

∑
`∈L

k`jwj

]
≥ max

k∈K

∑
j∈J

∑
`∈L

k`jwj + min
k∈K

log φ0(k),

for φ0 defined in (11) independently of w.
Proof: Consider k? ∈ arg maxk∈K

∑
j

∑
` k

`
jwj , and let

δk?(k) = 1(k = k?). As a direct consequence of Lemma 2,
F (φw) ≥ F (δk?), which implies

Eφw

[∑
j

∑̀
k`jwj

]
−DKL(φw ‖ φ0) ≥∑

j

∑̀
k?`jwj −DKL(δk? ‖ φ0).

But DKL(υ ‖ φ0) ≥ 0, for any distribution υ, so

Eφw

[∑
j

∑̀
k`jwj

]
≥

∑
j

∑̀
k?`jwj −DKL(δk? ‖ φ0)

=
∑
j

∑̀
k?`jwj + log φ0(k?)

≥
∑
j

∑̀
k?`jwj + min

k∈K
log φ0(k).

Connection to Algorithm 1. Let RMS(L, r,w(t)) denote
the configuration dynamics under Algorithm 1 whose job
weights w(t) depend on the queues through (4). Recall that
RMS(L, r,w(t)) denote the configuration dynamics under
Algorithm 1 when the weight is fixed at w(t) for all times
s ≥ 0. If the dynamics of RMS converges to the steady state at
a much faster time-scale compared to the time-scale of changes
in w(t), the distribution of configurations in RMS(L, r,w(t))
at any time t will roughly follow the stationary distribution of
configurations in RMS(L, r,w(t)), which is given by φw(t)

in (9). Then by Corollary 1, Algorithm 1 on average generates
configurations which are close to the max weight configuration
(off by a constant factor mink∈K log φ0(k) independent of
queue sizes) which suffices for throughput-optimality. Such
time-scale separation property indeed holds in our setting
under functions f(x) that grow as o(log(x)) when x → ∞,
e.g., f(x) = log1−b(1 + x), b ∈ (0, 1), as in Theorem 1. The
detailed proof of Theorem 1 is provided in Section VIII.

Connection to Algorithm 2. Suppose the weights w` =
(w`j , j ∈ J ), ` ∈ L, are fixed. From the perspective of server
`, the configuration k` evolves according to RMS({`}, r`,w`),
independently of the evolution of other severs. Let φw

`

` (k`)
denote the steady state probability of configuration k` in server
`, then by applying Lemma 1 to RMS({`}, r`,w`),

φw
`

` (k`) =
1

Zw`
`

exp
( ∑
j∈J

w`jk
`
j

) ∏
j∈J

1

k`j !

( r`j
µj

)k`j
, (14)

where Zw`

` is the normalizing constant. Then in steady-
state, the probability distribution of system configuration
k = (k`, ` ∈ L) follows the product form ψw(k) :=∏
`∈L φ

w`

` (k`), which is almost identical to φw in (9), with the
minor difference in the 1

L term inside the product in (9). The
rest of the argument is more or less similar to Algorithm 1.

We emphasize that here, the job arrival process to the queues
and the queue process are coupled through the dynamics of
JSQ (6), nevertheless, the mean number of arrivals/departures
that can happen over any time interval (and thus the change
in the queue size), is still bounded, and hence it follows that
by choosing functions of the form f(x) = log1−b(1 + x),
b ∈ (0, 1), RMS({`}, r`,w`(t)) can still converge to its steady
state at a much faster time-scale than the time-scale of changes
in w`(t), i.e., the time-scale separation property still holds.

In Section VIII, we present the details regarding the proofs.

VI. EXTENSIONS AND RMS VARIANTS

The proposed randomized algorithm (RMS) achieves opti-
mal throughput with low complexity (each job type and server
performs constant number of operations per unit time) and
is scalable to large-scale server systems with centralized or
distributed queues. RMS does not require any information
about the resource availability of servers in the cluster. In
practice, the resource manager might actively monitor the
resource consumption of servers in the cluster. In this case,
RMS can be modified to incorporate such information. We
briefly describe a few possible modifications below.

RMS–RF: At the ticks of Poisson clocks, instead of naive
uniform sampling over all servers as in RMS, the algorithm
selects one of the servers according to Random-Fit (RF), i.e.,
it randomly samples one of the servers that have sufficient
available resource (residual capacity) to accommodate the job.
This can improve the queueing delay as it takes less clock
ticks to schedule a job when there is available resource.

RMS–BF: Another variant could be that at the ticks of
Poisson clocks, instead of uniform sampling of all servers,
the server is selected according to BF, i.e., Best-Fit among the
servers that have sufficient available resource for the job. In the
multi-resource setting, the Best-Fit score for a server can be
computed as a linear combination of per-resource occupancies,
e.g. as the inner product of the vector of the job’s resource
requirement and the vector of server’s occupied resource [4].

RMS–AD: A last variant is that, instead of fixed clock rates
rj , the clock rates are changed adaptively, while keeping the
total clock rate fixed. A common Poisson clock with fixed
rate r is considered, and at each tick of this common clock, a
type-j queue is chosen with probability pj(t) proportional to
exp (wj(t)). Hence effectively the type-j queue ticks at rate
rj(t) = rpj(t), while the total clock rate is still

∑J
j=1 rj(t) =

r
∑J
j=1 pj(t) = r which is fixed. Here, AD stands for adaptive

clock rates, which can be also added to the previous variants,
i.e., RMS–RF–AD or RMS–BF–AD. In Section VII, we
investigate the queueing delay of such variants.

VII. SIMULATION RESULTS

In this section, we present our simulation results to eval-
uate throughput, delay, and complexity trade-offs of various
algorithms, using both synthetic and real traffic traces.

A. Evaluation using synthetic traffic

We consider the same job (VM) types considered in [16]–
[19], which are three representative instances available in
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Job Type Memory CPU Storage
Standard Extra Large 15 GB 8 units 1690 GB

High-Memory Extra Large 17.1 GB 6.5 units 420 GB
High-CPU Extra Large 7 GB 20 units 1690 GB

TABLE I: Three representative instances in Amazon EC2

20 40 60 80 100
Clock Rates

25

50

75

100

To
ta

l Q
ue

ue
 S

ize

10 servers
20 servers
50 servers

(a) Fixed traffic intensity (0.9).
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(b) Fixed number of servers (20).

Fig. 2: The effect of increasing the clock rate on the total
queue size.

Amazon EC2 (see Table I). We also use the same server
types considered in [19] with 90 GB memory, 90 CPU Units
and 5000 GB storage. We consider arrival rates of the form
λ = ζ × V , where V =

∑L
`=1 V

` and V ` is obtained by
averaging the maximal configurations of server `. Thus V is a
point on the boundary of the supportable workload region Co
and ζ ∈ (0, 1) is the traffic intensity. The mean service times
are normalized to one for simplicity.

All the experiments were repeated three times and reported
results are the average of these runs where the simulation time
is long enough so that the queues show steady state behavior.
In RMS, we use f(x) = log(1 + x) for simplicity.

Effect of clock rates. We start by investigating the effect
of clock rate on the performance of RMS. Figure 2a depicts
the time-average of the total queue size in the system, with
different number of servers and a fixed traffic intensity (0.9).
Figure 2b shows a similar experiment with a fixed number
of servers (20 servers) and different traffic intensities. In each
run, the clock rates are chosen the same for of all queues and
are the ones reported in the plots. In both plots, we notice that
increasing the clock rate reduces the queue size (and thus the
delay), however there is a saturation beyond which increasing
the clock rate only marginally improves the queue size. This is
expected since as the clock rate increases and becomes faster
than the rate of job departures from the system, the servers
become full with real or dummy jobs, and thus majority of
clock ticks will be wasted. Further, to get the best complexity-
delay trade-off, the clock rate has to scale up with the number
of servers or the traffic intensity, as depicted in the plots.

RMS variants. Next we examine the queueing delay gains
due to different variants of RMS, as described in Section VI.
Here, we consider 20 servers, traffic intensity varies from 0.8
to 0.95, and the sum of the clock rates is fixed at 30 ticks per
sec. All queues have the same clock rate unless the algorithm
uses the AD option (adaptive clocks), in which the clock rates
depend on queue sizes. The results are depicted in Figure 3.
The relative performance is rather consistent for all traffic in-
tensities. As it is seen, incorporating RF or BF options, in the

case that the resource consumption information is available,
improves the queueing delay. Further, combining each variant
with the AD option, offers an additional advantage.

Using the same setting, we also compared the queue per-
formance of RMS under distributed queueing (RMS+JSQ)
and centralized queueing (RMS). For a fair comparison, the
sum of the clock rates of all the queues is 30 ticks per sec in
both schemes and all queues have equal clock rates in each
scheme. As Figure 4 shows, the distributed queueing scheme
has a worse performance, as expected by Remark 1.

Comparison with prior algorithms. We compare the
performance of RMS and its variant RMS-RF-AD with the
algorithms in [18] and [19] discussed in the related work
(Section I-A). We refer to them as MWR (MaxWeight Re-
fresh) [18] and MWS (MaxWeight Stop) [19], respectively.
We also include Best-Fit (BF) as discussed in Section III.

Figure 5 shows the comparison when the number of servers
is fixed at 20, the sum of the clock rates is fixed at 30 ticks
per sec, and traffic intensity ranges from 0.8 to 0.95. As we
proved, BF in general can cause instability, nevertheless the
setting here is simple for work-conserving algorithms like BF,
and they are stable here. We also include a variant RMS-
RF-AD+ in plots, which is the same as RMS-RF-AD, but
replaces dummy jobs with real ones and its clock rate is 5
times higher. By scaling the clock rate faster, our algorithm
better approximates a work-conserving one like BF, while still
being throughput optimal. As we can see, the variant RMS-
RF-AD+ outperforms the other algorithms, while the basic
RMS algorithm behaves similarly to MWS, but of course at
much lower complexity. MWR, although good at lower traffic
intensity, becomes unstable at higher traffic intensities (queue
size becomes infinity), as also explained in Section I-A.

Figure 6 shows the comparison when the traffic intensity is
fixed at 0.9, and the number of servers are varied from 20 to
50. Note that to have the same traffic intensity for different
number of servers, the arrival rate has to increase proportional
to the number of servers. In view of Figure 2, to get the best
queue-complexity tradeoff, the clock rates should be scaled
up proportional to the number of servers (and consequently
proportional to the arrival rates). For simplicity, we choose
the clock rate for each queue to be equal to the number of
servers. As we can see in Figure 6, the total queue size remains
approximately constant for the whole range of the number
of servers, while for the other algorithms, the queue size is
decreasing. Although the latter behavior is preferable, we need
to keep in mind that RMS and its variants have a much lower
complexity and still provide a decent performance, especially
if the variant RMS-RF-AD+ is used. Also we reemphasize
that MWR is unstable for high traffic intensities as we saw in
Figure 5, while our algorithm is stable.

B. Evaluation using real traffic trace

We complete our evaluation by testing the algorithms using
a real traffic trace from a Google cluster dataset [28]. The
trace has the following characteristics:
1) Tasks have a complicated lifecycle with each one being

submitted, scheduled, possibly stopping and resuming, and
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Fig. 3: The queue size comparison of
various RMS variants, as traffic intensity
changes.
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Fig. 8: Comparison of different algorithms
using the Google trace, as traffic intensity
(scaling) changes.

eventually completing successfully or failing. We filtered
all the tasks considering only non-production priority jobs
that were completed successfully without stopping. The
resulting filtered dataset has about 18 million tasks that
were completed in a period of 29 days, but for the purpose
of this simulation we used only the first 1 million arrivals.
Figure 7 depicts the arrivals over time for the filtered trace.

2) Tasks in the original dataset have two resource types, CPU
and memory, and are normalized in range [0, 1], without
having any notion of discrete types. We therefore round
up the resources to the closest power 1/2p with p taking
values from 0 to 9 and then take the maximum out of the
two. In this way, we map the tasks to 10 different types,
with each type having a respective queue.

3) In the original dataset, servers are added, removed, failed,
etc., over time, while on average an order of thousands of
servers are present in the cluster at any point in time. For
simplicity, we consider a fixed number of 1000 servers of
size 1. This number of servers was found to be appropriate
for hosting the jobs in the filtered trace.

We compare some of the variants of RMS with MWR and
MWS. Since arrivals are not Poisson in the Google trace, we
do not have a notion of traffic intensity as earlier defined,
nevertheless we can scale the traffic by multiplying the arrival
times from the trace with a constant α. When α is greater than
1, arrivals occur less often, while for α less than that, arrivals
occur more frequently. Hence we will refer to the inverse of
α as traffic scaling. As Figure 8 shows, adaptive variants of

RMS perform very well and are better than other algorithms,
especially when the traffic is high, which is also consistent
with the results from the synthetic simulations.

VIII. PROOFS

A. Proof of Theorem 1
The proof of Theorem 1 has two steps: (i) approximating

the configuration distribution in RMS(L, r,w(t)) at time t
by the steady-state distribution of RMS (L, r,w(t)) (which
uses fixed weight w(t) for all time s ≥ 0), and (ii) standard
Lyapunov arguments to establish stability.

The system state at any time is given by

S(t) =
(
k(t),Q(t)

)
, t ≥ 0,

which evolves as a continuous-time Markov chain. Equiva-
lently, we can work with the jump chain of S(t) as follows.
We first uniformize S(t) [29], [30], by using a Poisson process
Nξ(t) of rate

ξ = 2
( ∑
j∈J

λj +
∑
j∈J

rj + LM
∑
j∈J

µj

)
. (15)

Let index τ ∈ Z+ denote the τ -th event of Nξ(t). We use
S[τ ] = (k[τ ],Q[τ ]) to denote the state of jump chain at index
τ . At each index τ , one of the following events happens:
• A type-j job arrives with probability λj

ξ ,

• A type-j job leaves a server ` with probability
k`j [τ ]µj

ξ . Then
the job is replaced with another type-j job with probability
1− exp(−wj [τ ]).
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• Server ` is sampled with probability rj
Lξ and a type-j job is

placed in the server, if it can fit there.
• Otherwise, S[τ ] = S[τ − 1].
Note that by the construction of Algorithm 1, we do not
distinguish between real and dummy jobs (see Remark 2).
The jump chain S[τ ], τ = 0, 1, 2, · · · , evolves as a discrete-
time and irreducible Markov chain. Note that S[τ ] has two
interacting components. On one hand the evolution of the
queue process Q[τ ] depends on k[τ ], and on the other hand,
the evolution of the configuration process k[τ ] depends on
Q[τ ] through the weight function.

1) Approximating RMS by RMS: For compactness, let
RMS(w[τ ]) and RMS(w[τ ]) denote the configuration dynam-
ics k[τ ] of the associated jump chain of RMS(L, r,w(t))
and RMS(L, r,w(t)), respectively. RMS(w[τ ]) is a time-
inhomogeneous Markov chain over the space of configurations
K (since the weights w(t), and thus transition probabilities
are time-varying because of the queue dynamics). Under
proper choices of function f , RMS(w[τ ]) can still provide
an adequately accurate approximation to the distribution of
configuration in RMS(w[τ ]). Roughly speaking, for the proper
choices of f , f(Q[τ ]) (and thus the weight w[τ ]) will change
adequately slowly from time index τ to τ + 1 such the
probability distribution of configurations under RMS(w[τ ])
will remain “close” to the steady state distribution of config-
urations under RMS(w[τ ]) (i.e., φw[τ ] in (9)). The following
proposition states this time-scale decomposition property with
respect to the associated jump chain (which can be also
naturally mapped to the original Markov chain).

Proposition 2: Let ντ denote the (conditional) probability
distribution of configuration at index τ given the queues Q[τ ]
under RMS(w[τ ]). Let φτ be the steady-state distribution of
configurations under RMS(w[τ ]). Suppose f(x) = log1−b(1+
x), b ∈ (0, 1). Given any ε ∈ (0, 1), and any initial state, there
exists a constant B := B(ε) such that whenever ‖Q[τ ]‖ ≥ B,
‖φτ − ντ‖TV ≤ ε/16.

Proof: The proof follows from standard arguments in,
e.g., [31]–[33]. See Appendix for the details.

Corollary 2: Given any ε ∈ (0, 1), whenever ‖Q[τ ]‖ ≥ B,

Eντ
[ ∑
j∈J

∑
l∈L

k`jf(Qj [τ ])
]
≥
(

1− ε

4

)
max
k∈K

∑
j∈J

∑
l∈L

k`jf(Qj [τ ])

+ min
k∈K

log φ0(k).

Proof: Let W ?[τ ] := maxk

∑
j

∑
` k

`
jwj [τ ]. By Corol-

lary 1, Proposition 2, and definition of ‖·‖TV , if ‖Q[τ ]‖ ≥ B,

Eντ
[∑
j

∑̀
k`jwj [τ ]

]
= Eφτ

[∑
j

∑̀
k`jwj [τ ]

]
+
∑
k∈K

[
(φτ (k)− ντ (k))

∑
j

∑̀
k`jwj [τ ]

]
≥W ?[τ ] + min

k∈K
log φ0(k)− 2

( ε

16

)
W ?[τ ]

=
(

1− ε

8

)
W ?[τ ] + log φ0

min. (16)

Next, note that by the definition (4), for any j ∈ J ,

f(Qj [τ ]) ≤ wj [τ ] ≤ f(Qj [τ ]) +
ε

8M
f(Qmax[τ ]),

hence for any configuration k ∈ K,

0 ≤
∑
j

∑̀
k`j(wj [τ ]− f(Qj [τ ])) ≤ εL

8
f(Qmax[τ ]))

≤ ε

8
max
k

∑
j

∑̀
k`jf(Qj [τ ]) (17)

where the last inequality is due to our model that all servers
can fit at least any single job type. Using (16) and (17),

Eντ
[∑
j

∑̀
k`jf(Qj [τ ])

]
≥ Eντ

[∑
j

∑̀
k`jwj [τ ]

]
− ε

8
max
k

∑
j

∑̀
k`jf(Qj [τ ])

≥
(

1− ε

8

)
W ?[τ ] + log φ0

min −
ε

8
max
k

∑
j

∑̀
k`jf(Qj [τ ])

≥
(

1− ε

4

)
max
k

∑
j

∑̀
k`jf(Qj [τ ]) + log φ0

min.

2) Lyapunov Analysis: Consider the Markov chain S[τ ] =
(Q[τ ],k[τ ]). Let Q̄j [τ ] = Qj [τ ] +

∑
`∈L k

`
j [τ ]. Consider the

Lyapunov function

V (τ) =
∑
j∈J

ξ

µj
F (Q̄j [τ ]), (18)

where F (x) =
∫ x

0
f(s)ds. Recall that f(x) is a concave in-

creasing function; thus F is convex. It follows from convexity
of F that for any time step τ ≥ 0,

∆V (τ) := V (τ + 1)− V (τ) ≤∑
j∈J

ξ

µj
f(Q̄j [τ + 1])(Q̄j [τ + 1]− Q̄j [τ ]) =

∑
j∈J

ξ

µj
f(Q̄j [τ ])(Q̄j [τ + 1]− Q̄j [τ ])+

∑
j∈J

ξ

µj
(f(Q̄j [τ + 1])− f(Q̄j [τ ]))(Q̄j [τ + 1]− Q̄j [τ ]).

Note that |f(Q̄j [τ+1])−f(Q̄j [τ ])| ≤ f ′(0)|Q̄j [τ+1]−Q̄j [τ ]|,
by the mean value theorem, and the fact that f is a concave
increasing function. By definition

Q̄j [τ + 1]− Q̄j [τ ] = Aj [τ ]− D̄j [τ ], (19)

where Aj [τ ] is the indicator of a type-j job arrival at index τ ,
and D̄j [τ ] is the indicator of departure of a (real or dummy)
type-j job from the system at index τ . By the construction of
the jump chain, Aj [τ ] = 1 with probability λj/ξ, and D̄j [τ ] =
1 with probability

∑
` k

`
j [τ ]µj/ξ. Also, Q̄j [τ ] can change by

at most one at any τ . Recall that the maximum number of
jobs of any type that can fit in a server is less than M <∞,
so
∑
j

∑
` k

`
j < LM . It then follows that

ES[τ ] [∆V (τ)] ≤
∑
j

ξ

µj
ES[τ ]

[
f(Q̄j [τ ])(Aj [τ ]− D̄j [τ ])

]
+
∑
j

ξf ′(0)

µj
ES[τ ]

[
|Aj [τ ]− D̄j [τ ]|2

]
≤

∑
j

1

µj
f(Q̄j [τ ])(λj −

∑̀
k`j [τ ]µj)

+
∑
j

f ′(0)

µj

(
λj +

∑̀
k`j [τ ]µj

)
. (20)
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Let C2 = f ′(0)(
∑
j ρj +ML). Note that

0 ≤ f(Q̄j [τ ])− f(Qj [τ ]) ≤ f ′(0)|Q̄j [τ ]−Qj [τ ]|
= f ′(0)

∑̀
k`j [τ ], (21)

again by the mean value theorem, and the fact that f is a
concave increasing function. Hence, using (21) in (20),

ES[τ ] [∆V (τ)] ≤
∑
j∈J

f(Qj [τ ])
(
ρj −

∑
`∈L

k`j [τ ]
)

+ C2 + C3,

where C3 = f ′(0)
∑
j ρj

∑
` k

`
j [τ ] ≤ f ′(0)ML

∑
j ρj . Taking

the expectation of both sides of the above inequality with
respect to ντ (distribution of configurations given Q[τ ]), yields

EQ[τ ]

[
∆V (τ)

]
≤
∑
j

f(Qj [τ ])ρj

− EQ[τ ]

[∑
j

∑̀
f(Qj [τ ])k`j [τ ]

]
+ C2 + C3. (22)

Let k?[τ ] ∈ arg maxk∈K
∑
j

∑
l k
`
jwj [τ ] be the max weight

configuration at time index τ . Then using Corollary 2, it
follows that if ‖Q[τ ]‖ ≥ B,

EQ[τ ]

[
∆V (τ)

]
≤
∑
j

f(Qj [τ ])
(
ρj −

(
1− ε

4

)∑̀
k?`j [τ ]

)
+ C1.

where C1 = C2 + C3 − log φ0min. Since ρ ∈ (1 − ε)Co by
assumption, ρ

1−ε ∈ C
o, and hence ρj

1−ε <
∑
` x

`
j for some

x` ∈ Conv(K`). Hence, by definition of k?[τ ],∑
j∈J

f(Qj [τ ])
ρj

1− ε
≤

∑
j∈J

f(Qj [τ ])
∑
`∈L

x`j [τ ]

≤
∑
j∈J

f(Qj [τ ])
∑
`∈L

k?`j [τ ],

and subsequently,∑
j∈J

f(Qj [τ ])
(

1 +
ε

2

)
ρj ≤

(
1− ε

4

) ∑
j∈J

f(Qj [τ ])
∑
`∈L

k?`j [τ ].

Therefore, the Lyapunov drift is bounded as

EQ[τ ]

[
∆V (τ)

]
≤ − ε

2

∑
j∈J

f(Qj [τ ])ρj + C1.

Hence the drift is negative for any Q[τ ] large enough (outside
of a finite set). Hence the Markov chain is positive recurrent
by the Foster-Lyapunov theorem and further the stability in the
sense lim supt E

[∑
j f(Qj [τ ])

]
< ∞ follows [34] (note that

the component k[τ ] lives in a finite state space). The stability
in the mean sense (1) then follows by an extra step as in [18]
(see Theorem 1 and Lemma 4 in [18]).

B. Proof of Theorem 2

The proof is similar to the proof of Theorem 1 with minor
differences. The system state is given by S(t) = (Q(t),k(t))
where now Q is the queue-size matrix whose `-th row is the
vector of queue sizes at server `. Again we work with the
jump chain S[τ ] = (Q[τ ],k[τ ]) of the uniformized chain,
uniformized by Poisson process Nξ with rate

ξ = 2
( ∑
j∈J

λj +
∑
j∈J

∑
`∈L

r`j + LM
∑
j∈J

µj

)
.

Then the transition probabilities are as follows. At any τ :
• A type-j job arrives with probability λj/ξ and is added to
Q
`?j
j [τ ] according to JSQ.

• A type-j job leaves a server ` with probability
k`j [τ ]µj

ξ . Then
the job is replaced with another type-j job with probability
1− exp(−w`j [τ ]).

• Server ` is sampled with probability
r`j
ξ and a type-j job is

placed in the server, if it can fit there.
• Otherwise, S[τ ] = S[τ − 1],

Consider the Lyapunov function

V (τ) =
∑
j∈J

∑
`∈L

ξ

µj
F (Q̄`j [τ ]), (23)

where Q̄`j [τ ] = Q`j [τ ] + k`j [τ ]. For each server ` and job type
j, Q̄`j [τ + 1] − Q̄`j [τ ] = A`j [τ ] − D̄`

j [τ ], where A`j [τ ] is the
indicator of arrival of a type-j job to queue Q`j and D̄`

j [τ ]
is the indicator of departure of a (real and dummy) type-j
job from server `, at time step τ . Similar to the the proof of
Theorem 1, the Lyapunov drift can be bounded as

ES[τ ] [∆V (τ)] ≤ C2+∑
j

∑̀ ξ

µj
ES[τ ]

[
f(Q̄`j [τ ])(A`j [τ ]− D̄`

j [τ ])
]
, (24)

for the same constant C2 as in the proof of Theorem 1. The
term involving f(Q̄`j [τ ])D̄`

j [τ ] is bounded as∑
j

∑̀ ξ

µj
ES[τ ]

[
D`
j [τ ]f(Q̄`j [τ ])

]
=∑

j

∑̀
k`j [τ ]f(Q̄`j [τ ]) ≥

∑
j

∑̀
k`j [τ ]f(Q`j [τ ]). (25)

The term involving f(Q̄`j [τ ])A`j [τ ] must be treated more
carefully because, unlike Algorithm 1, the arrival process and
the queue process are now dependent through the dynamics
of JSQ. This step can be done as follows:∑

j

∑̀ ξ

µj
ES[τ ]

[
A`j [τ ]f(Q̄`j [τ ])

]
≤
∑
j

∑̀ ξ

µj
ES[τ ]

[
A`j [τ ]f(Q`j [τ ])

]
+ C3

a
=
∑
j

ξ

µj
ES[τ ]

[
Aj [τ ]f(Q

`?j
j [τ ])

]
+ C3

=
∑
j

ρjf(Q
`?j
j [τ ]) + C3, (26)

where C3 is the same constant as in the proof of Theorem 1,
and Equality (a) is due to the JSQ property. Without loss
of generality, we can assume that ej ∈ K` for all ` and
j (otherwise if there exists an ` and j such that ej /∈ K`,
we can simply do not consider any queue for type-j jobs at
server `). Note that ρ

1−ε ∈ C
o by assumption, so ρ ∈ Co and

ρ(1 + ε) ∈ Co. This subsequently implies that there exists an
x such that ρ <

∑
` x

`, and 0 < (1+ ε)x` ∈ Conv(K`). Then
it follows from the definition of `?j in (6) that∑

j

f(Q
`?j
j [τ ])ρj ≤

∑
j

∑̀
f(Q`j [τ ])x`j . (27)
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Hence, plugging (25), (26), and (27) in (24),

ES[τ ] [∆V (τ)] ≤ C2 + C3

+
∑
j

∑̀
f(Q`j [τ ])x`j −

∑
j

∑̀
f(Q`j [τ ])k`j [τ ]. (28)

Although A`j [τ ] is coupled with Q`j [τ ], ` ∈ L, through the
dynamics of JSQ, A`j [τ ] and D̄`

j [τ ] are at most one at any
time step τ . Hence, for each `, Q`j [τ ] changes by at most one
at any τ . Hence the proof of Proposition 2 (see Appendix)
can still be applied to RMS({`}, r`,w`[τ ]) and we can get a
result similar to Corollary 2, i.e., given ε ∈ (0, 1), there exits
a B`(ε) such that whenever ‖Q`[τ ]‖ ≥ B`,

Eν`τ
[∑
j

k`j [τ ]f(Q`j [τ ])
]
≥ min
k∈K`

log φ0
`(k)

+
(

1− ε

4

)
max
k∈K`

∑
j

∑̀
k`jf(Q`j [τ ]).

Let B = max`∈LB`(ε), and L?[τ ] be the set of all servers `
such that ‖Q`[τ ]‖ ≥ B. Then following similar arguments as
in the proof of Theorem 1,

EQ[τ ]

[
∆V (τ)

]
≤ Ĉ1 +

∑
`∈L?[τ ]

∑
j∈J

f(Q`j [τ ])x`j

−
(

1− ε

4

) ∑
`∈L?[τ ]

∑
j∈J

f(Q`j [τ ])k?`j [τ ]. (29)

where Ĉ1 = C2 + C3 −
∑
` mink∈K` log φ0` (k) + LMf(B).

By the definition of k?`[τ ], for any server `,∑
j

f(Q`j [τ ])x`j(1 + ε) ≤
∑
j

f(Q`j [τ ])k?`j [τ ],

hence the Lyapunov drift is bounded as

EQ[τ ]

[
∆V (τ)

]
≤ − ε

2

∑
j

∑
`∈L?[τ ]

f(Q`j [τ ])x`j + Ĉ1,

and therefore the Markov chain is positive recurrent by the
Foster-Lyapunov theorem [34]. The rest of the argument is
similar to the proof of Algorithm 1.

IX. DISCUSSION AND CONCLUDING REMARKS

We proposed a randomized algorithm (RMS) that can
achieve maximum throughput with low complexity. RMS is
naturally distributed and each server and job type perform only
a constant number of operations per unit time. We further
proposed variants of RMS which can be combined with Best-
Fit or Random-Fit, if the complete information about the
resource consumption of servers is available.

General traffic models. An important feature of RMS is
that its performance is not restricted to the traffic model
assumptions made in the paper. For example, the proofs
(Lyapunov analysis and time-scale decomposition property,
Section VIII) can be extended to non-Poisson job arrival
processes, e.g., batch arrival processes, where inter-arrival
times between batch arrivals are i.i.d, and each batch consists
of a bounded number of jobs (tasks) chosen according to
a distribution over the job (task) types. Note that the proof
of time-scale decomposition property only requires that the
average change in queue sizes to be bounded over bounded

time intervals. RMS is also robust to the service time dis-
tributions and exponential distribution is not necessary. This
is because the Markov chain RMS(L, r,w) is reversible and
by the insensitivity property [35], its steady-state distribution
depends only on the mean service times. The Poisson clocks
are crucial in establishing our results however the clocks are
part of the algorithm and are not related to traffic statistics.

Practical considerations. In practice, there might be con-
straints on which types of tasks (containers or virtual ma-
chines) can be hosted on each server, e.g., due to data-
locality in task assignment or due to containers that share a
specific operating system [2]. These constraints can be easily
incorporated into RMS as, at the ticks of Poisson clocks,
each job (task) type can only sample servers that satisfy its
assignment constraints. Further, the algorithm relies on accu-
rate estimation of resource consumption of jobs. Incorporating
noisy estimations, as well as dependency between tasks, in our
randomized algorithms, can be an interesting future research.
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APPENDIX

A. Proof of Proposition 2

Proof follows from standard arguments in, e.g., [31]–[33].
We mention a sketch of the proof for completeness.

Let Pw
ξ denote the corresponding transition probability ma-

trix of the jump chain (k[n])n∈Z+ under RMS(L, r,w), where
w = w(Q) for some queue vector Q. Pw

ξ (k,k′) denotes the
transition probability from configuration k to configuration
k′. The Markov chain (k[n]) is irreducible, aperiodic, and
reversible, with the unique steady-state distribution φw in (9).
In this case, it is well known that the convergence to the
steady-state distribution is geometric with a rate equal to the

Second Largest Eigenvalue Modulus (SLEM) of Pw
ξ [36].

Further, using the choice of ξ in (15), (k[n]) is a lazy Markov
chain because at each jump index n, the chain will remain in
the same state with probability greater than 1/2. In this case,
for any initial probability distribution ν0 and for all n ≥ 0,

‖ν0(Pw
ξ )n − φw‖TV ≤ (θw)n

1

2
√
φwmin

, (30)

where θw is the second largest eigenvalue of Pw
ξ , and φwmin =

mink φ
w(k). Correspondingly, the mixing time of the chain,

defined as inf{n > 0 : ‖ν0(Pw
ξ )n−φw‖TV ≤ δ}, is less than

− log(2δ
√
φw
min)

(1−θw) . Lemma 3 below provides a bound on θw and
hence on the convergence rate.

Lemma 3: Consider the Markov chain Pw
ξ , with w = w(Q),

as in (4). There is a constant K0 independent of Q such that

1

1− θw
≤ 2ξ2

K2
0

exp
[
2(ML+ 1)f(Qmax)

]
. (31)

Proof of Lemma 3: It follows from Cheeger’s inequal-
ity [36] that 1

1−θ ≤
2

Ψ2(Pξ)
where Ψ(Pξ) is the conductance

of the Markov chain Pw
ξ . The conductance is further bounded

from below as

Ψ(Pw
ξ ) ≥ 2φwmin min

k 6=k′
Pw
ξ (k,k′). (32)

Under RMS(L, r,w), with w = w(Q),

mink6=k P
w
ξ (k,k′) = 1

ξ (minj,` k
`
jµje

−wj ) ∧ (minj
rj
L )

≥ ∧j(µj∧rj)ξL e−wmax =
∧j(µj∧rj)

ξL exp(−f(Qmax)).

Recall that the maximum number of jobs of any type that can
fit in a server is less than M <∞, so

∑
j

∑
` k

`
j < LM . Let

κmax := maxj
rj
Lµj

, and κmin := minj
rj
Lµj

. Then by (9),

Zw ≤ exp(
∑
j

∑̀
k`jwmax)(κmax ∨ 1)LM

∑
k∈K

∏̀∏
j

1

k`j !

≤ exp(LMf(Qmax))(κmax ∨ 1)LM
∑
k∈K

∏̀∏
j

1

k`j !
.

Hence it follows that

φwmin ≥ K1 exp(−MLf(Qmax)), (33)

where K1 =
(
κmin∧1
κmax∨1

)LM
(1/M !)L∑

k∈K
∏
`

∏
j 1/(k`j !)

. Hence

Ψ(Pw
ξ ) ≥ K0

ξ exp(−(ML+ 1)f(Qmax)).

where K0 = 2K1
∧j(µj∧rj)

L .
Henceforth, we use φn to denote the stationary distribution

of Markov chain Pw(Q[n])
ξ and θn to denote its second largest

eigenvalue. We also use νn to denote the distribution of
configurations in RMS(L, r,w[n]) at time step n.

Lemma 4: For any configuration k ∈ K, e−σn ≤ φn+1(k)
φn(k) ≤

eσn , where

σn = 2MLf ′
(
f−1

( ε

8M
f(Qmax[n+ 1])

)
− 1
)
. (34)

Proof of Lemma 4: Note that by (9)

φn+1(k)

φn(k)
=

Zn
Zn+1

e
∑
j

∑
` k
`
j(wj [n+1]−wj [n]).
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It is easy to show that

Zn
Zn+1

≤ max
k∈K

e
∑
j

∑
` k
`
j(wj [n+1]−wj [n]).

Let Q?[n] := f−1
(

ε
8M f(Qmax[n])

)
, and define Q̃j [n] :=

max{Q?[n], Qj [n]}. Then,

wj [n+ 1]− wj [n] = f(Q̃j [n+ 1])− f(Q̃j [n])

≤ f ′(Q̃j [n+ 1]− 1)|Q̃j [n+ 1]− Q̃j [n]|

≤ f ′(Q?[n+ 1]− 1) = f ′
(
f−1

( ε

8M
f (Qmax[n+ 1])

)
− 1
)

where we have used the mean value theorem and the facts that
f is a concave increasing function and at each index n, one
queue can change at most by one. Therefore,

φn+1(k)

φn(k)
≤ e2LMf ′(f−1( ε

8M f(Qmax[n+1]))−1) = eσn .

A similar calculation shows that also φn(k)
φn+1(k) ≤ e

σn .

Next, we use the following version of Adiabatic Theorem
from [31] to prove the time-scale decomposition property of
our algorithm.

Proposition 3: (Adapted from [31]) Suppose

σn
1− θn+1

≤ δ′/4 for all n ≥ 0, (35)

for some δ′ > 0. Then ‖φn − νn‖TV ≤ δ′, for all n ≥
n?(δ′, wmax[0]), where n? is the smallest n such that

1√
φ
w[0]
min

exp
(
−

n∑
τ=0

(1− θτ )2
)
≤ δ′. (36)

Proposition 3 states that if (35) holds at any index n, after
n? steps, the distribution of the configurations will be close to
the desired steady-state distribution. To get some intuition, σn
has the interpretation of the rate at which weights change,
and 1/(1 − θn+1) has the interpretation of the time taken
for the system to reach steady-state after the weights change.
Thus, condition (35) ensures a time-scale decomposition: the
weights change slowly compared to the time-scale that the
system takes in order to respond and settle down with these
changed weights.

However our system does not satisfy Condition (35) for
all n; it only satisfies it when Qmax[n] > qth, for some
large constant qth. This would imply a weaker version of
Proposition 3 as follows.

Corollary 3: Suppose there is a constant qth such that (35)
holds for Qmax[n] ≥ qth. Then ‖φn − νn‖TV ≤ δ′ holds
whenever Qmax[n] > B for a constant B := qth+n?(δ′, qth).

Proof: Consider a time n0 such that Qmax[n0] ≥ qth. By
proposition 3, if Qmax[n] ≥ qth for all n ∈ [n0, n1], and n1 >
n0 +n?(δ′, qth), then ‖φn1

− νn1
‖TV ≤ δ′. Equivalently, if at

a time n, Qmax[n] > qth + n?(δ′, qth), then Qmax[n] > qth
over at least n?(δ′, qth) time steps before, since at any time
step, Qmax[n] can change by at most one.

Thus to show Proposition 2, it is sufficient to show that
conditions of Corollary 3 indeed hold, for δ′ = ε

16 . Sup-
pose f(x) = log1−b(1 + x), for some b ∈ (0, 1). Let

y = f(Qmax[n + 1]). Obviously f ′(x) ≤ 1/(x + 1). So in
view of equations (31), (34), (35), it suffices to have

1
f−1( ε

8M y) exp(4MLy) ≤ K2
0ε

256ξ2ML .

Note that f−1(x) = exp(x
1

1−b ) − 1. A simple calculation
shows that it suffices to jointly have

y ≥ ( 1
ε )1/b(8ML)

2−b
b , exp(−4MLy) ≤ K2

0ε
512ξ2ML .

In summary, it is sufficient for Condition (35) to hold if

f(qth) = y ≥
(

1
ε

) 1
b

C0, (37)

for C0 = (8ML)(2−b)/b + | log 512ξ2

K2
0
|. Next, we find n?. Let

n0 be the first time that Qmax[n0] = qth. Then n? must satisfy

n0+n?−1∑
τ=n0

(1− θτ )2 ≥ − log( ε
16 )− 1

2
log(φ

w[n0]
min ). (38)

Note that from (33), − log(φ
w[n0]
min ) ≤ − logK1 +MLf(qth).

Also using Lemma 3, it follows that

n0+n?−1∑
τ=n0

(1− θτ )2 ≥ K4
0

4ξ4

n0+n?−1∑
τ=n0

e−8MLf(Qmax[τ ])

≥ K4
0

4ξ4

n?−1∑
τ=0

e−8MLf(Qmax[n0]+n?) ≥ K4
0

4ξ4
n?(qth + n?)

−8ML

logb(qth)

Hence, for the choice of qth as in (37), it suffices that

K4
0

4ξ2
n?(qth + n?)−1/2 ≥ log

(
16

ε

)
− 1

2
logK1 +

ML

2
f(qth),

which is clearly satisfied by choosing n? := n?(ε, qth) large
enough. This concludes the proof.
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