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Abstract—We study the problem of load balancing in datacen-
ter networks, namely, assigning the end-to-end data flows among
the available paths in order to efficiently balance the load in
the network. The solutions used today rely typically on ECMP
(Equal Cost Multi Path) mechanism which essentially attempts
to balance the load in the network by hashing the flows to the
available shortest paths. However, it is well known that ECMP
performs poorly when there is asymmetry either in the network
topology or the flow sizes, and thus there has been much interest
recently in alternative mechanisms to address these shortcomings.
In this paper, we consider a general network topology where
each link has a cost which is a convex function of the link
utilization. Flows among the various source-destination pairs are
generated dynamically over time, each with a size (bandwidth
requirement) and a duration. Once a flow is assigned to a path
in the network, it consumes bandwidth equal to its size from
all the links along its path for its duration. We propose a low-
complexity congestion-aware algorithm that assigns the flows to
the available paths in an online fashion and without splitting,
and prove that it asymptotically minimizes the total network
cost. Extensive simulation results are presented to verify the
performance of our algorithm under a wide range of traffic
conditions and under different datacenter architectures.

I. INTRODUCTION

There has been a dramatic shift over the recent decades
with search, storage, and computing moving into large-scale
datacenters. Today’s datacenters can contain thousands of
servers and typically use a multi-tier switch network to provide
connectivity among the servers. To maintain efficiency and
quality of service, it is essential that the data flows among
the servers are mapped to the available paths in the network
properly in order to balance the load and minimize the cost
(e.g., delay, congestion, etc.). For example when a large flow
is routed poorly, collision with the other flows can cause some
links to become congested, while other less utilized paths are
available.

The datacenter networks rely on path multiplicity to provide
scalability, flexibility, and cost efficiency. Consequently, there
has been much research on flow scheduling algorithms that
make better use of the path multiplicity (e.g., [1]–[5]) or
designing new networks with better topological features (e.g.,
FatTree [1], VL2 [6], hypercube [7], hypergrid [8], random
graphs such as JellyFish [9], etc.).

In this paper, we consider a general network topology
where each link is associated with a cost which is a convex
function of the link utilization (e.g., this could be a latency
function). The network cost is defined as the sum of the link
costs. Flows among the various source-destination pairs are
generated dynamically over time where each flow is associated
with a size and a duration. Once a flow is assigned to a path

in the network, it consumes resource (bandwidth) equal to its
size from all the links along its path for its duration. The
main question that we ask is the following. Is it possible to
design a low-complexity algorithm, that assigns the flows to
the available paths in an online fashion and without splitting,
so as to minimize the average network cost?

In general, multi flow routing in networks has been exten-
sively studied from both networking systems and theoretical
perspective, however the problem considered here has two key
distinguishing objectives. First, it does not allow flow splitting
because splitting the flow is undesirable due to TCP reordering
effect [10]. Without splitting, many versions of multi flow
routing in networks become hard combinatorial problems [11],
[12]. Second, it allows dynamic routing because it considers
the current utilization of links in the network when making the
routing decisions unlike static solutions where the mapping of
flows to the paths is fixed and requires the knowledge of the
traffic matrix.

A. Related Work

Seminal solutions for flow scheduling (e.g. [6], [13]) rely on
Equal Cost Multi Path (ECMP) load balancing which statically
splits the traffic among available shortest paths (via flow hash-
ing). However, it is well known [2]–[5], [14] that ECMP can
balance load poorly since it may map large long-lived flows
to the same path, thus causing significant load imbalance.
Further, ECMP is suited for symmetric architectures such as
FatTree and performs poorly in presence of asymmetry either
due to link failures [15] or in recently proposed datacenter
architectures [9].

There have been recent efforts to address the shortcomings
of ECMP however they are mostly heuristics with no perfor-
mance guarantees. The proposed algorithms range from cen-
tralized solutions (e.g., [2], [3]), where a centralized scheduler
makes routing decisions based on global view of the network,
to distributed solutions (e.g., [5], [16]) where routing decisions
are made in a distributed manner by the switches. There are
also host-based protocols based on Multi Path TCP (e.g., [4])
where the routing decisions are made by the end-host transport
protocol rather than by the network operator. [17] investigates
a more general problem based on a Gibbs sampling technique
and proposes a plausible heuristic that requires re-routing
and interruption of flows (which is operationally expensive).
There are also algorithms that allow flow splitting and try
to resolve the packet reordering effect in symmetric network
topologies [5], [16], [18].



Software Defined Networking (SDN) has enabled network
control with quicker and more flexible adaptation to changes
in the network topology or the traffic pattern and can be
leveraged to implement centralized or hybrid algorithms in
datacenters [1], [19], [20].

B. Contribution

We propose and analyze a simple flow scheduling algorithm
to minimize the average network cost (the sum of convex
functions of link utilizations). Our main contributions can be
summarized as below.
• We prove that our simple algorithm is asymptotically

optimal in any network topology, in the sense that the
performance ratio between our algorithm and the optimal
cost approaches 1 as the mean number of flows in the
system increases.

• Our algorithm does not rely on flow splitting, hence
packets of the same flow will travel along the same
path without reordering. Further, it does not require
migration/rerouting of the flows or the knowledge of the
traffic pattern.

• Our experimental results show that our algorithm in
fact performs very well under a wide range of traffic
conditions and datacenter network topologies.

For practical implementations, the weight construct in our
algorithm can provide an approach to optimally accommodate
dynamic variations in datacenter network traffic in centralized
control platforms such as OpenFlow [19].

C. Notations

Given a sequence of random variables {Xn}, Xn ⇒ X
indicates convergence in distribution, and Xn → X indicates
the almost sure convergence. Given a Markov process {X(t)},
X(∞) denotes a random variable whose distribution is the
same as the steady-state distribution of X(t) (when it exists).
‖ · ‖ is the Euclidian norm in Rn. d(x, S) = mins∈S ‖s− x‖
is the distance of x from the set S. ‘u.o.c.’ means uniformly
over compact sets.

D. Organization

The remainder of the paper is organized as follows. In
Section II, we introduce the datacenter network and traffic
model. Our algorithm is presented in Section III. Section IV
is devoted to the main results and performance analysis using
fluid limits. Section V contains our simulation results to verify
the performance of our algorithm under a wide range of traffic
conditions and various datacenter architectures. The rigorous
proofs of some of the results are provided in Section VI.
Section VII contains our concluding remarks.

II. MODEL AND PROBLEM STATEMENT

A. Datacenter Network Model

We consider a datacenter (DC) consisting of a set of servers
(host machines) connected by a collection of switches and
links. Depending on the DC network topology, all or a subset
of the switches are directly connected to servers; for example,
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Fig. 1: Two datacenter networks connecting 16 servers (rect-
angles) using 4-port switches (circles).

in FatTree (Figure 1a) only the edge (top-of-the-rack) switches
are connected to servers, while in JellyFish (Figure 1b) all the
switches have some ports connected to servers. Nevertheless,
we can model any general DC network topology (FatTree,
JellyFish, etc.) by a graph G(V,E) where V is the set of
switches and E is the set of communication links. A path
between two switches is defined as a set of links that connects
the switches and does not intersect itself. The paths between
the same pair of source-destination switches may intersect with
each other or with other paths in DC.

B. Traffic Model

Each server can generate a flow destined to some other
server. We assume that each flow belongs to a set of flow
types J . A flow of type j ∈ J is a triple (aj , dj , sj) where
aj ∈ V is its source switch (i.e., the switch connected to
the source server), dj ∈ V is its destination switch (i.e., the
switch connected to its destination server), and sj is its size
(bandwidth requirement). Note that based on this definition,
we only need to find the routing of flows in the switch network
G(V,E) since the routing from the source server to the source
switch or from the destination switch to the destination server
is trivial (follows the direct link from the server to the switch).
Further, two switches can have more than one flow type with
different sizes. We assume that type-j flows are generated
according to a Poisson process with rate λj , and each flow
remains in the system for an exponentially distributed amount
of time with mean 1/µj (we will see in Sections V that
our algorithm actually performs very well under much more
general arrival and service time processes.).

For any j ∈ J , let Rj denote the set of all paths from aj
to dj , then each type-j flow must be accommodated by using
only one of the paths from Rj (i.e., the flow cannot be split
among multiple paths). Assume that Rj is nonempty for each
j ∈ J . Define Y (j)

i (t) to be the number of type-j flows routed
along the path i ∈ Rj at time t. The network state is defined
as

Y (t) =
(
Y

(j)
i (t); i ∈ Rj , j ∈ J

)
. (1)

Under any online (Markov) flow scheduling algorithm,
{Y (t)}t≥0 evolves as a Markov chain. We also define
X(j)(t) =

∑
i∈Rj

Y
(j)
i (t) which is the total number of type-j



flows in the network at time t. Let Zl(t) be the total amount
of traffic (congestion) over link l ∈ E. Based on our notations,

Zl(t) =
∑
j∈J

∑
i:i∈Rj ,l∈i

sjY
(j)
i (t), (2)

(here l ∈ i means that link l belongs to path i). We also define
ρj = λj/µj which is the mean offered load by type-j flows.

C. Problem Formulation

For the purpose of load balancing, the network can attempt
to optimize different objectives [21] such as minimizing the
maximum link utilization in the network or minimizing the
sum of link costs where each link cost is a convex function
of the link utilization (e.g. this could be a link latency
measure [22]). In this paper, we use the latter objective but by
choosing proper cost functions, an optimal solution to the later
objective can be used to also approximate the former objective
as we see below.

We define g(Zl/Cl) to be the cost of link l with capacity Cl
when its congestion is Zl. Our goal is to find a flow scheduling
algorithm that assigns each flow to a single path in the network
so as to minimize the mean network cost in the long run,
specifically,

minimize lim
t→∞

E [F (Y (t))]

subject to: serving each flow using one path,
(3)

where,
F (Y (t)) =

∑
l∈E

g(Zl(t)/Cl). (4)

We consider polynomial cost functions of the form

g(x) =
x1+α

1 + α
, α > 0, (5)

where α > 0 is a constant. Thus g is increasing and strictly
convex in x. As α → ∞, the optimal solution to (3)
approaches the optimal solution of the optimization problem
whose objective is to minimize the maximum link utilization
in the network.

III. ALGORITHM DESCRIPTION

In this section, we describe our algorithm for flow assign-
ment where each flow is assigned to one path in the network
(no splitting) without interrupting/migrating the ongoing flows
in the network. Recall that Y (t) = (Y

(j)
i (t)) is the network

state, Y (j)
i (t) is the number of type-j flows on path i ∈ Rj ,

and Zl(t) is the total traffic on link l given by (2)
First, we define two forms of link marginal cost that

measure the increase in the link cost if an arriving type-j flow
at time t is routed using a path that uses link l.

Definition 1. (Link marginal cost) For each link l and flow-
type j, the link marginal cost is defined in either of the forms
below.
• Integral form:

∆
(j)
l (Y (t)) = g

(Zl(t) + sj
Cl

)
− g
(Zl(t)
Cl

)
. (6)

• Differential form:

δ
(j)
l (Y (t)) =

sj
Cl
g′
(Zl(t)
Cl

)
. (7)

Based on the link marginal costs, we can characterize the
increase in the network cost if an arriving type-j flow at time t
is routed using path i ∈ Rj . Specifically, let Y (t+) = Y (t) +

e
(j)
i , where e(j)

i denotes a vector whose corresponding entity
to path i and flow type j is one, and its other entities are
zero. Then F (Y (t)) is the network cost before the type-j flow
arrival, and F (Y (t+)) is the network cost after assigning the
type-j flow to path i. Then, it is easy to see that

F (Y (t+))− F (Y (t)) =
∑
l∈i

[
g
(Zl(t) + sj

Cl

)
− g
(Zl(t)
Cl

)]
=

∑
l∈i

∆
(j)
l (Y (t)). (8)

Similarly, based on the differential marginal costs, we have

∂F (Y (t))

∂Y
(j)
i (t)

=
∑
l∈i

sj
Cl
g′
(Zl(t)
Cl

)
=

∑
l∈i

δ
(j)
l (Y (t)). (9)

Algorithm 1 describes our flow assignment algorithm that
essentially places the newly generated flow on a path that
minimizes the increase in the network cost based on either
forms (8) or (9).

Algorithm 1 Flow Scheduling Algorithm
Suppose a type-j flow arrives at time t when the system is in
state Y(t). Then,

1: Compute the path marginal costs w(j)
i (Y (t)), i ∈ Rj , in

either of the forms below:
• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

∆
(j)
l (Y (t)), (10)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (11)

2: Place the flow on a path i such that

i = arg min
k∈Rj

w
(j)
k (Y (t)). (12)

Break ties in (12) uniformly at random.

Upon arrival of a flow, Algorithm 1 takes the corresponding
feasible paths and their link congestions into the account for
computing the path marginal costs w

(j)
i (t) but it does not

require to know any information about the other links in the
network. The two forms (10) and (11) are essentially identical
in our asymptotic performance analysis in the next section,
however the differential form (11) seems slightly easier to
work with. Algorithm 1 can be implemented either centrally



or in a distributed manner using a distributed shortest path
algorithm that uses the link marginal costs, ∆

(j)
l (t) or δ(j)

l (t),
as link weights.

IV. PERFORMANCE ANALYSIS VIA FLUID LIMITS

The system state {Y (t)}t≥0 is a stochastic process which
is not easy to analyze, therefore we analyze the fluid limits
of the system instead. Fluid limits can be interpreted as the
first order approximation to the original process {Y (t)}t≥0

and provide valuable qualitative insight into the operation of
the algorithm. In this section, we introduce the fluid limits of
the process {Y (t)}t≥0 and present our main result regarding
the convergence of our algorithm to the optimal cost. We
deliberately defer the rigorous claims and proofs about the
fluid limits to Section VI and for now mainly focus on the
convergence analysis to the optimal cost which is the main
contribution of this paper.

A. Informal Description of Fluid Limit Process

In order to obtain the fluid limits, we scale the process in
rate and space. Specifically, consider a sequence of systems
{Y r(t)}t≥0 indexed by a sequence of positive numbers r, each
governed by the same statistical laws as the original system
with the flow arrival rates rλj , j ∈ J , and initial state Y r(0)
such that Y r(0)/r → y(0) as r → ∞ for some fixed y(0).
The fluid-scale process is defined as yr(t) = Y r(t)/r, t ≥ 0.
We also define yr(∞) = Y r(∞)/r, the random state of the
fluid-scale process in steady state. If the sequence of processes
{yr(t)}t≥0 converges to a process {y(t)}t≥0 (uniformly over
compact time intervals, with probability 1 as r → ∞), the
process {y(t)}t≥0 is called the fluid limit. Then, y(j)

i (t) is
the fluid limit number of type-j flows routed through path
i. Accordingly, we define zrl (t) = Zrl (t)/r and x(j)r(t) =
X(j)r(t)/r and their corresponding limits as zl(t) and x(j)(t)
as r →∞.

The fluid limits under Algorithm 1 follow possibly random
trajectories but they satisfy the following set of differential
equations. We state the result as the following lemma whose
proof can be found in Section VI.

Lemma 1. (Fluid equations) Any fluid limit y(t) satisfies the
following equations. For any j ∈ J , and i ∈ Rj ,

d

dt
y

(j)
i (t) = λjp

(j)
i (y(t))− µjy(j)

i (t) (13a)

p
(j)
i (y(t)) = 0 if i /∈ arg min

k∈Rj

w
(j)
k (y(t)) (13b)

p
(j)
i (y(t)) ≥ 0,

∑
i∈Rj

p
(j)
i (y(t)) = 1 (13c)

w
(j)
i (y(t)) =

∑
l∈i

sj
Cl
g′(zl(t)/Cl). (13d)

Equation (13a) is simply an accounting identity for y(j)
i (t)

stating that, on the fluid-scale, the number of type-j flows
over path i ∈ Rj increases at rate λjp

(j)
i (y(t)), and decreases

at rate y
(j)
i µj due to departures of type-j flows on path i.

p
(j)
i (y(t)) is the fraction of type-j flow arrivals placed on

path i. w(j)
i (y(t)) is the fluid-limit marginal cost of routing

type-j flows in path i when the system is in state y(t).
Equation (13b) follows from (12) and states that the flows
can only be placed on the paths which have the minimum
marginal cost mink∈Rj w

(j)
k (y(t)).

It follows from (13a) and (13c) that the total number of type-
j flows in the system, i.e., x(j)(t) =

∑
i∈Rj

y
(j)
i (t), follows a

deterministic trajectory described by the following equation,

d

dt
x(j)(t) = λj − µjx(j)(t), ∀j ∈ J , (14)

which clearly implies that

x(j)(t) = ρj + (x(j)(0)− ρj)e−µjt ∀j ∈ J . (15)

Consequently at steady state,

x(j)(∞) = ρj , ∀j ∈ J , (16)

which means that, in steady state, there is a total of ρj type-j
flows on the fluid scale.

B. Main Result and Asymptotic Optimality

In this section, we state our main result regarding the
asymptotic optimality of our algorithm. First note that by (16),
the values of y(∞) are confined to a convex compact set Υ
defined below

Υ ≡ {y = (y
(j)
i ) : y

(j)
i ≥ 0,

∑
i∈Rj

y
(j)
i = ρj , ∀j ∈ J }. (17)

Consider the problem of minimizing the network cost in steady
state on the fluid scale (the counterpart of the optimization (3)),

min F (y) (18a)
s.t. y ∈ Υ. (18b)

Denote by Υ? ⊆ Υ the set of optimal solutions to the
optimization (18). The following proposition states that the
fluid limits of our algorithm indeed converge to an optimal
solution of the optimization (18).

Proposition 1. Consider the fluid limits of the system under
Algorithm 1 with initial condition y(0), then as t→∞

d(y(t),Υ?)→ 0. (19)

Convergence is uniform over initial conditions chosen from a
compact set.

The theorem below makes the connection between the fluid
limits and the original optimization problem (3). It states the
main result of this paper which is the asymptotic optimality
of Algorithm 1.

Theorem 1. Let Y r(t) and Y ropt(t) be respectively the system
trajectories under Algorithm 1 and any optimal algorithm for
the optimization (3). Then in steady state,

lim
r→∞

E
[
F (Y r(∞))

]
E
[
F (Y ropt(∞))

] = 1. (20)



For example, one optimal algorithm that solves (3) is the
one that every time a flow arrives or departs, it re-routes the
existing flows in the network in order to minimize the network
cost at all times. Of course this requires solving a complex
combinatorial problem every time a flow arrives/departs and
further it interrupts/migrates the existing flows. Under any
algorithm (including our algorithm and the optimal one),
the mean number of flows in the system in steady state is
O(r). Thus by Theorem 1, Algorithm 1 has roughly the same
cost as the optimal cost when the number of flows in the
system is large, but at much lower complexity and with no
migrations/interruptions.

The rest of this section is devoted to the proof of Proposi-
tion 1. The proof of Theorem 1 relies on Proposition 1 and is
provided in Section VI.

C. Proof of Proposition 1

We first characterize the set of optimal solutions Υ? using
KKT conditions in the lemma below.

Lemma 2. Let Γj = {i ∈ Rj : y
(j)
i > 0} ⊆ Rj , j ∈ J . A

vector y ∈ Υ? iff y ∈ Υ and there exists a vector η ≥ 0 such
that

w
(j)
i (y) = ηj , ∀i ∈ Γj , (21a)

w
(j)
i (y) ≥ ηj , ∀i ∈ Rj \ Γj , (21b)

where w(j)
i (·) defined in (13d).

Proof of Lemma 2. Consider the following optimization prob-
lem,

min F (y) (22a)

s.t.
∑
i∈Rj

y
(j)
i ≥ ρj , ∀j ∈ J (22b)

y
(j)
i ≥ 0, ∀j ∈ J , ∀i ∈ Rj . (22c)

Since F (y) is an strictly increasing function with respect to
y

(j)
i , for all j ∈ J , i ∈ Rj , it is easy to check that the

optimization (18) has the same set of optimal solutions as the
optimization (22). Moreover, both optimizations have the same
optimal value. Hence we can use the Lagrange multipliers
ηj ≥ 0 and ν(j)

i ≥ 0 to characterize the Lagrangian as follows.

L(η, ν, y) =F (y) +
∑
j∈J

ηj(ρj −
∑
i;i∈Rj

y
(j)
i )

−
∑
j∈J

∑
i;i∈Rj

ν
(j)
i y

(j)
i

=
∑
l

gl
(∑
j∈J

sj
∑

i∈Rj ,l∈i

y
(j)
i

)
+
∑
j∈J

[
ηjρj −

∑
i;i∈Rj

(ηj + ν
(j)
i )y

(j)
i

]
.

(23)

From KKT conditions [23], y ∈ Υ?, if and only if there exist
vectors η and ν such that the following holds.

Feasibility:

y ∈ Υ, (24a)
ηj ≥ 0, ∀j ∈ J , (24b)

ν
(j)
i ≥ 0, ∀j ∈ J , i ∈ Rj , (24c)

Complementary slackness:

ηj(ρj −
∑
i;i∈Rj

y
(j)
i ) = 0, ∀j ∈ J , (25a)

ν
(j)
i y

(j)
i = 0, ∀j ∈ J , i ∈ Rj , (25b)

Stationarity:

∂L(η, ν, y)

∂y
(i)
j

= 0. ∀j ∈ J , i ∈ Rj . (26a)

Note that (24a) implies (25a). It follows from (26a) that

∂F (y)

∂y
(i)
j

= ηj + ν
(j)
i , ∀j ∈ J , i ∈ Rj . (27)

Define Γj as in the statement of the lemma. Note that Γj is
nonempty for all j ∈ J by (24a). Then combining (25b) and
(27), ∀j ∈ J , and noting that ∂F (y)

∂y
(j)
i

= w
(j)
i (y) by definition,

yields (21a)-(21b).

Next, we show that the set of optimal solutions Υ? is
an invariant set of the fluid limits, using the fluid limit
equations (13a)-(13d), and Lemma 2.

Lemma 3. Υ? is an invariant set for the fluid limits, i.e.,
starting from any initial condition y(0) ∈ Υ?, y(t) ∈ Υ? for
all t ≥ 0.

Proof of Lemma 3. Consider a type-j flow and let

I(j)(t) = arg min
i∈Rj

w
(j)
i (y(t))

be the set of paths with the minimum path marginal cost. Note
that

∑
i∈I(j)(t) p

(j)
i (t) = 1, t ≥ 0, by (13b), therefore

d

dt

( ∑
i∈I(j)i (t)

y
(j)
i (t)

)
= λj −

( ∑
i∈I(j)(t)

y
(j)
i (t)

)
µj . (28)

Since y(0) ∈ Υ?, it follows from Lemma 2 that∑
i∈I(j)(0) y

(j)
i (0) = ρj . Hence, Equation (28) has a unique

solution for
∑
i∈I(j)(t) y

(j)
i (t) which is∑

i∈I(j)(t)

y
(j)
i (t) = ρj , t ≥ 0. (29)

On the other hand, since x(j)(0) = ρj , by (15),

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj , t ≥ 0. (30)

Equations (29) and 30 imply that, at any time t ≥ 0, y(j)
i (t) =

0 for i /∈ I(j)(t), and y
(j)
i (t) ≥ 0 for i ∈ I(j)(t) such that



∑
i∈I(j)(t) y

(j)
i (t) = ρj . Hence, y(t) =

(
y

(j)
i (t)

)
∈ Υ? by

using ηj(t) = mink∈Rj
w

(j)
k (y(t)) in Lemma 2.

Next, we show that the fluid limits indeed converge to the
invariant set Υ? starting from an initial condition in Υ.

Lemma 4. (Convergence to the invariant set) Consider the
fluid limits of the system under Algorithm 1 with initial
condition y(0) ∈ Υ, then

d(y(t),Υ?)→ 0. (31)

Also convergence is uniform over the set of initial conditions
Υ.

Proof of Lemma 4. Starting from y(0) ∈ Υ, (15) implies that

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj ∀j ∈ J , (32)

at any time t ≥ 0. To show convergence of y(t) to the set Υ?,
we use a Lyapunov argument. Specifically, we choose F (.) as
the Lyapunov function and show that (d/dt)F (y(t)) < 0 if
y(t) /∈ Υ?. Let ηj(y(t)) = mink∈Rj

w
(j)
k (y(t)). Then

(d/dt)F (y(t)) =
∑
j∈J

∑
i∈Rj

∂F (y)

∂y
(j)
i

dy
(j)
i (t)

dt

=
∑
j∈J

∑
i∈Rj

w
(j)
i (y(t))

[
λjp

(j)
i (t)− µjy(j)(t)

i

]
=
∑
j∈J

µj
[
ρj
∑
i∈Rj

w
(j)
i (y(t))p

(j)
i (t)−

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(a)
=
∑
j∈J

µj
[
ρjηj(y(t))−

∑
i∈Rj

w
(j)
i (y(t))y

(j)
i (t)

]
(33)

(b)
<
∑
j∈J

µj
[
ρjηj(y(t))− ηj(y(t))

∑
i∈Rj

y
(j)
i (t)

]
(c)
= 0.

Equality (a) follows from the fact that p(j)
i (t) = 0 if w(j)

i (t) >
ηj(t) by (13b). Inequality (b) follows from the fact that y(t) /∈
Υ?, so by Lemma 2, there exists an i ∈ Rj such that y(j)

i (t) >

0 but w(j)
i (y(t)) > ηj(y(t)). Equality (c) holds because of

(32).

Now we are ready to complete the proof of Proposition 1,
i.e., to show that starting from any initial condition in a
compact set, uniform convergence to the invariant set Υ?

holds.

Proof of Proposition 1. First note that (d/dt)F (y(t)) (as
given by (33)) is a continuous function with respect to
y(t) = (y

(j)
i (t) ≥ 0). This is because the path marginal costs

w
(j)
i (y(t)) are continuous functions of y(t) and so is their

minimum ηj(y(t)) = mini∈Rj
w

(j)
i (y(t))).

Next, note that by Lemma 4, for any ε1 > 0, and a ∈ Υ,
there exists an ε2 > 0 such that if F (a) − F (Υ?) ≥ ε1
then (d/dt)F (y(t))

∣∣
y(t)=a

≤ −ε2. By the continuity of

(d/dt)F (y(t)) in y(t), there exists a δ > 0 such that
‖y(t)−a‖ ≤ δ implies |(d/dt)F (y(t))−(d/dt)F (a)| ≤ ε2/2.
Therefore, for all y(t) such that ‖y(t)− a‖ ≤ δ,

(d/dt)F (y(t)) ≤ −ε2/2.

By (15), for any δ > 0, we can find tδ large enough such
that for all t > tδ , ‖y(t) − a‖ ≤ δ for some a ∈ Υ. Putting
everything together, for any ε1 > 0, there exists ε2 > 0 such
that if F (y(t)) − F (Υ?) ≥ ε1 then (d/dt)F (y(t)) ≤ −ε2/2.
This completes the proof of Proposition 1.

V. SIMULATION RESULTS

In this section, we provide simulation results and evaluate
the performance of our algorithm under a wide range of traffic
conditions in the following datacenter architectures:
• FatTree which consists of a collection of edge, aggre-

gation, and core switches and offers equal length path
between the edge switches. Figure 1a shows a FatTree
with 16 servers and 8 4-port edge switches. For simu-
lations, we consider a FatTree with 128 servers and 32
8-port edge switches.

• JellyFish which is a random graph in which each switch i
has ki ports out of which ri ports are used for connection
to other switches and the remaining ki−ri ports are used
for connection to servers. Figure 1b shows a JellyFish
with 4-port switches, and ki = 4, ri = 2 for all
the switches. For simulations, we consider a JellyFish
constructed using 20 8-port switches and 100 servers.
Each 8-port switch is connected to 5 servers and 3
remaining links are randomly connected to other switches
(this corresponds to ki = 8, ri = 3 for all the switches).

Our rationale for selecting these architectures stems from the
fact that they are on two opposing sides of the spectrum
of topologies: while FatTree is a highly structured topology,
JellyFish is a random topology; hence they should provide a
good estimate for the robustness of our algorithm to different
network topologies and possible link failures.

We generate the flows under two different traffic models to
which we refer to as exponential model and empirical model:
• Exponential model: Flows are generated per Poisson

processes and exponentially distributed durations. The
parameters of duration distribution is chosen uniformly
at random from 0.5 to 1.5 for different flows. The flow
sizes are chosen according to a log-normal distribution.

• Empirical model: Flows are generated based on recent
empirical studies on characterization of datacenter traf-
fic. As suggested by these studies, we consider log-
normal inter-arrival times [24], service times based on
the empirical result in [10], and log-normal flow sizes
[24]. Particularly, the most periods of congestion tend
to be short lived, namely, more than 90% of the flows
that are more than 1 second long, are no longer than 2
seconds [10].

In both models, the flow sizes are log-normal with mean 0.1
and standard deviation 1. This generates flow sizes ranging
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(a) Convergence in FatTree.
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(b) Convergence in JellyFish.

Fig. 2: Convergence of the network cost under Algorithm 1,
normalized with the the lower-bound on the optimal solution
(CVX), to 1. The scaling parameter r is 100 here.

from 0.1% to 40% of link capacity which captures the nature
of flow sizes in terms of “mice” and “elephant” flows. Fur-
thermore, we consider a random traffic pattern, i.e., source and
destination of flows are chosen uniformly at random. The link
cost parameter α is chosen to be 1 in this simulations.

Under both models, to change the traffic intensity, we keep
the other parameters fixed and scale the arrival rates (with
parameter r).

We report the simulation results in terms of the perfor-
mance ratio between our algorithm and a benchmark algorithm
(similar to (20)). Since the optimal algorithm is hard to
implement, instead we use a convex relaxation method to find
a lower-bound on the optimal cost at each time. Specifically,
every time a flow arrives or departs, we use CVX [25], to
minimize F (Y (t)), by relaxing the combinatorial constraints,
i.e., allowing splitting of flows among multiple paths and re-
routing the existing flows. We compare the network cost under
our algorithm (Algorithm 1) and traditional ECMP, normalized
by the lower-bound on the optimal solution (to which we refer
to as CVX in the plots).

A. Experimental Results for FatTree

Figure 2a shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution (normalized cost
ratio goes to 1) which verifies Theorem 1. Figures 3a and
3b show the cost performance under Algorithm1 and ECMP,
normalized by the CVX lower-bound, under the exponential
and the empirical traffic models respectively. The traffic in-
tensity is measured in terms of the ratio between the steady
state offered load and the bisection bandwidth. For FatTree, the
bisection bandwidth depends on the number of core switches
and their number of ports. As we can see, our algorithm is
very close to the lower-bound on the optimal value (CVX) for
light, medium, and high traffic intensities. They also suggest
that Theorem 1 indeed holds under more general arrival and
service time processes. In this simulations, our algorithm gave
a performance improvement ranging form 50% to more than
100%, compared to ECMP, depending on the traffic intensity,
under the empirical traffic model.
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Fig. 3: Performance ratio of Algorithm 1 and ECMP in
FatTree, normalized with the lower-bound (CVX).
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Fig. 4: Performance ratio of Algorithm 1 and ECMP in
JellyFish, normalized with the lower-bound (CVX).

B. Experimental Results for JellyFish

Figure 2b shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution which again verifies
Theorem 1. Figures 4a and 4b compare the performance of
Algorithm 1 and ECMP, normalized with the lower-boud
on the optimal solution (CVX), under both the exponential
and empirical traffic models. As before, the traffic intensity
is measured by the ratio between the steady state offered
load and the bisection bandwidth. To determine the bisection
bandwidth, we have used the bounds reported in [26], [27]
for regular random graphs. Again we see that our algorithm
performs very well in all light, medium, and high traffics.
In JellyFish, our algorithm yields performance gains ranging
from 60% to 70%, compared to ECMP, under the empirical
traffic model.

VI. FORMAL PROOFS OF FLUID LIMITS AND THEOREM 1
A. Proof of Fluid Limits

We prove the existence of fluid limits under our algorithm
and derive the corresponding fluid equations (13a)-(13d).
Arguments in this section are quite standard [28], [29], [30].
Recall that Y r(t) is the system state with the flow arrival rate
rλj , j ∈ J , and initial state Y r(0). The fluid-scale process is
yr(t) = Y r(t)/r, t ∈ [0,∞). Similarly, zrl (t) = Zrl (t)/r
and x(j)r(t) = X(j)r(t)/r are defined. We assume that
yr(0)→ y(0) as r →∞ for some fixed y(0).



We first show that, under Algorithm 1, the limit of the
process {yr(t)}t≥0 exists along a subsequence of r as we
show next. The process Y r(t) can be constructed as follows

Y
(j)
i

r
(t) =Y

(j)
i

r
(0) + Πa

i,j(

∫ t

0

P
(j)
i (Y r(s))rλjds)

−Πd
i,j(

∫ t

0

µjY
(j)
i

r
(s)ds) ∀j ∈ J , i ∈ Rj

(34)
where Πa

i,j(.) and Πd
i,j(.) are independent unit-rate Poisson

processes, and P
(j)
i (Y r(t)) is the probability of assigning a

type-j flow to path i when the system state is Y r(t). Note
that by the Functional Strong Law of Large Numbers [31],
almost surely,

1

r
Πa
i,j(rt)→ t, u.o.c.;

1

r
Πd
i,j(rt)→ t, u.o.c. (35)

where u.o.c. means uniformly over compact time intervals.
Define the fluid-scale arrival and departure processes as

ari,j(t) =
1

r
Πa
i,j(

∫ t

0

P
(j)
i (Y r(s))rλjds),

dri,j(t) =
1

r
Πd
i,j(

∫ t

0

µjY
(j)
i

r
(s)ds).

(36)

Lemma 5. (Convergence to fluid limit sample paths) If
yr(0) → y(0), then almost surely, every subsequence
(yrn , arn , drn) has a further subsequence (yrnk , arnk , drnk )
such that (yrnk , arnk , drnk )→ (y, a, d). The sample paths y,
a, d are Lipschitz continuous and the convergence is u.o.c.

Proof Sketch of Lemma 5. The proof is standard and follows
from the fact that ari,j(.) and dri,j(.) are asymptotically Lip-
schitz continuous (see e.g., [28], [29], [32] for similar argu-
ments), namely, there exists a constant C > 0 such that for
0 ≤ t1 ≤ t2 <∞,

lim sup
r

(ari,j(t2)− ari,j(t1)) ≤ C(t2 − t1),

and similarly for dri,j(.). The above inequality follows from
(35) and noting that (yr(.)) is uniformly bounded over any
finite time interval for large r. So the limit (y, a, d) exists
along the subsequence.

Proof of Lemma 1. It follows from (34), (36), (35), and the
existence of the fluid limits (Lemma 5), that

y
(j)
i (t) = y

(j)
i (0) + a

(j)
i (t)− d(j)

i (t),

where

d
(j)
i (t) =

∫ t

0

y
(j)
i (s)µjds,

∑
i∈Rj

a
(j)
i (t) = λjt, a

(j)
i (t) is nondecreasing.

The fluid equations (13a) and (13c) are the diffrential form of
these equations (the fluid sample paths are Lipschitz continu-
ous so the derivatives exist almost everywhere), where

p
(j)
i (t) :=

1

λj

da
(j)
i (t)

dt
. (37)

For any type j, let w?j (y(t)) = mini∈Rj
w

(j)
i (y(t)), for

w
(j)
i (y(t)) defined in (13d). Consider any regular time t

and a path i /∈ arg mini∈Rj
w

(j)
i (y(t)). By the continuity

of w(j)
i (y(t)), there must exist a small time interval (t1, t2)

around t such that w(j)
i (y(τ)) > w?j (τ) for all τ ∈ (t1, t2).

Consequently, for all r large enough along the subsequence,
w

(j)
i (yr(τ)) > w?j (yr(τ)), τ ∈ (t1, t2). Multiplying both

sides by rα, it follows that w
(j)
i (Y r(τ)) > w?j (Y r(τ)),

τ ∈ (t1, t2). Hence P
(j)
i (Y r(τ)) = 0, τ ∈ (t1, t2), and

a
r(j)
i (t1, t2) = 0, for all r large enough along the subsequence.

Therefore a(j)
i (t1, t2) = 0 which shows that (d/dt)a

(j)
i (t) = 0

at t ∈ (t1, t2). This establishes (13b).

B. Proof of Theorem 1
We first show that

F (yr(∞)) =⇒ F ?, (38)

where F ? = F (Υ?) is the optimal cost. By Proposition 1
and the continuity of F (·), for any fluid sample path y(t)
with initial condition y(0), we can choose tε1 large enough
such that given any small ε1 > 0, |F (y(tε1)) − F ?| ≤ ε1.
With probability 1, yr(t) → y(t) u.o.c. (see Lemma 5),
hence, by the continuous mapping theorem [31], we also have
F (yr(t)) → F (y(t)), u.o.c. For any ε2 > 0, for r large
enough, we can choose an ε3 > 0 such that, uniformly over
all initial states yr(0) such that ‖yr(0)− y(0)‖ ≤ ε3,

P{|F (yr(tε1)− F (y(tε1))| < ε1} > 1− ε2 (39)

This claim is true, since otherwise for a sequence of initial
states yr(t)→ y(0) we have

P{|F (yr(tε1)− F (y(tε1))| < ε1} ≤ 1− ε2,

which is impossible because, almost surely, we can choose
a subsequence of r along which uniform convergence
F (yr(t))→ F (y(t)), with initial condition y(0) holds. Hence,

P{|F (yr(tε1))− F ?| < 2ε1}
≥ P{|F (yr(tε1)− F (y(tε1))|+ |F (y(tε1))− F ?| < 2ε1}
≥ P{|F (yr(tε1)− F (y(tε1))| < ε1} > 1− ε2

which in particular implies (38) because ε1 and ε2 can be made
arbitrarily small.

Next, we show (20). Under any algorithm (including
our algorithm and the optimal one),

∑
i∈Rj

Y
(j)
i

r
(∞)/r =

X(j)r(∞)/r, where X(j)r(∞) has Poisson distribution with
mean rρj , and X(j)r(∞), j ∈ J , are independent. Let
s̄ = maxj∈J sj < ∞. The traffic over each link l is clearly
bounded as Zrl /r < s̄

∑
j X

(j)r(∞)/r = s̄Xr(∞)/r where
Xr(∞) has Poisson distribution with mean r

∑
j ρj . Hence,

F (yr(∞)) is stochastically dominated by |E|g
(
s̄Xr(∞)/r

Cl

)
,

and g is polynomial. It then follows that the sequence of
random variables {F (yr(∞))} (and also {yr(∞)}) are uni-
formly integrable under any algorithm. Then, in view of (38),
by Theorem 3.5 of [31], under our algorithm.

E
[
F (Y r(∞)/r)

]
→ F ?. (40)



Now consider any optimal algorithm for the optimiza-
tion (3). It holds that F (E

[
yropt(∞)

]
) ≤ E

[
F (yropt(∞))

]
≤

E
[
F (yr(∞))

]
where the first inequality is by Jensen’s in-

equality. Taking the limit as r →∞, it follows by an squeeze
argument that

E
[
F (Y ropt(∞)/r)

]
→ F ?. (41)

(40) and (41) will imply (20) in view of the polynomial
structure of F .

VII. CONCLUDING REMARKS

This paper presents a simple algorithm that dynamically
adjusts the link weights as a function of the link utilizations
and places any newly generated flow on a least weight path
in the network, with no splitting/migration of existing flows.
We demonstrate both theoretically and experimentally that
this algorithm has a good load balancing performance. In
particular, we prove that the algorithm asymptotically mini-
mizes a network cost and establish the relationship between
the network cost and the corresponding weight construct.
Although our theoretical result is an asymptotic result, our
experimental results show that the algorithm in fact performs
very well under a wide range of traffic conditions and different
datacenter networks.

While the algorithm has low complexity, the real implemen-
tation depends on how fast the weight updates and least weight
paths can be computed in practical datacenters (e.g., based on
SDN). One possible way to improve the computation time-
scale is to perform the computation periodically or only for
long flows, while using the previously computed least weight
paths for short flows or between the periodic updates.
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