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Abstract—In data-parallel computing frameworks, interme-
diate parallel data is often produced at various stages which
needs to be transferred among servers in the datacenter network
(e.g. the shuffle phase in MapReduce). A stage often cannot
start or be completed unless all the required data pieces from
the preceding stage are received. Coflow is a recently proposed
networking abstraction to capture such communication patterns.
We consider the problem of efficiently scheduling coflows with
release dates in a shared datacenter network so as to minimize
the total weighted completion time of coflows. Several heuristics
have been proposed recently to address this problem, as well as
a few polynomial-time approximation algorithms with provable
performance guarantees. Our main result in this paper is a
polynomial-time deterministic algorithm that improves the prior
known results. Specifically, we propose a deterministic algorithm
with approximation ratio of 5, which improves the prior best
known ratio of 12. For the special case when all coflows
are released at time zero, our deterministic algorithm obtains
approximation ratio of 4 which improves the prior best known
ratio of 8. The key ingredient of our approach is an improved
linear program formulation for sorting the coflows followed by a
simple list scheduling policy. Extensive simulation results, using
both synthetic and real traffic traces, are presented that verify
the performance of our algorithm and show improvement over
the prior approaches.

Index Terms—Scheduling Algorithms, Approximation Algo-
rithms, Coflow, Datacenter Network

I. INTRODUCTION

Many data-parallel computing applications (e.g. MapRe-
duce [2], Hadoop [3], [4], Dryad [5], etc.) consist of multiple
computation and communication stages or have machines
grouped by functionality. While computation involves local
operations in servers, communication takes place at the level
of machine groups and involves transfer of many pieces of
intermediate data (flows) across groups of machines for further
processing. In such applications, the collective effect of all
the flows between the two machine groups is more important
than that of any of the individual flows. A computation stage
often cannot start unless all the required data pieces from
the preceding stage are received, or the application latency
is determined by the transfer of the last flow between the
groups [6], [7].

As an example, consider a MapReduce application. Each
mapper performs local computations and writes intermediate
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data to the disk, then each reducer pulls intermediate data
from different mappers, merges them, and computes its output.
The job will not finish until its last reducer is completed.
Consequently, the job completion time depends on the time
that the last flow of the communication phase (called shuffle)
is finished. Such intermediate communication stages in a
data-parallel application can account on average for about
56% of the job’s runtime (see Appendix A in [8] for more
detail), and hence can have a significant impact on application
performance. Optimizing flow-level performance metrics (e.g.
the average flow completion time) have been extensively
studied before from both networking systems and theoretical
perspective (see, e.g., [9]–[11] and references there.), however,
these metrics ignore the dependence among the flows of an ap-
plication which is critical for the application-level performance
in data-parallel computing applications.

Recently Chowdhury and Stoica [12] have introduced the
coflow abstraction to capture these communication patters.
A coflow is defined as a collection of parallel flows whose
completion time is determined by the completion time of the
last flow in the collection. Coflows can represent most com-
munication patterns between successive computation stages
of data-parallel applications [6]. Clearly the traditional flow
communication is still a coflow with a single flow. Jobs from
one or more data-parallel applications create multiple coflows
in a shared datacenter network. These coflows could vary
widely in terms of the total size of the parallel flows, the
number of the parallel flows, and the size of the individual
flows in the coflows (e.g., see the analysis of production traces
in [6]). Classical flow/job scheduling algorithms do not per-
form well in this environment [6] because each coflow consists
of multiple flows– whose completion time is dominated by its
slowest flow– and further, the progress of each flow depends
on its assigned rate at both its source and its destination. This
coupling of rate assignments between the flows in a coflow
and across the source-destination pairs in the network is what
makes the coflow scheduling problem considerably harder than
the classical flow/job scheduling problems.

In this paper, we study the coflow scheduling problem,
namely, the algorithmic task of determining when to start
serving each flow and at what rate, in order to minimize the
weighted sum of completion times of coflows in the system.
In the case of equal weights, this is equivalent to minimizing
the average completion time of coflows.
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A. Related Work

Several scheduling heuristics have been already proposed in
the literature for scheduling coflows, e.g. [6], [7], [13], [14].
A FIFO-based solution was proposed in [7] which also uses
multiplexing of coflows to avoid starvation of small flows
which are blocked by large head-of-line flows. A Smallest-
Effective-Bottleneck-First heuristic was ierriorntroduced in
Varys [6]: it sorts the coflows in an ascending order in a
list based on their maximum loads on the servers, and then
assigns rates to the flows of the first coflow in the list such that
all its flows finish at the same time. The remaining capacity
is distributed among the rest of the coflows in the list in
a similar fashion to avoid under-utilization of the network.
Similar heuristics without prior knowledge of coflows were
introduced in Aalo [14]. A joint scheduling and routing of
coflows in datacenter networks was introduced in [13] where
similar heuristics based on a Minimum-Remaining-Time-First
policy are developed.

Here, we would like to highlight three papers [15]–[17]
that are more relevant to our work. These papers consider the
problem of minimizing the total weighted completion time of
coflows with release dates (i.e., coflows arrive over time.) and
provide algorithms with provable guarantees. This problem is
shown to be NP-complete through its connection with the con-
current open shop problem [6], [15], and then approximation
algorithms are proposed which run in polynomial time and
return a solution whose value is guaranteed to be within a
constant fraction of the optimal (a.k.a., approximation ratio).
These papers rely on linear programming relaxation techniques
from combinatorial scheduling literature (see, e.g., [18]–[20]).
In [15], the authors utilize an interval-indexed linear program
formulation which helps partitioning the coflows into disjoint
groups. All coflows that fall into one partition are then viewed
as a single coflow, where a polynomial-time algorithm is used
to optimize its completion time. Authors in [16] have recently
constructed an instance of the concurrent open shop problem
(see [21] for the problem definition) from the original coflow
scheduling problem. Then applying the well-known approxi-
mation algorithms for the concurrent open shop problem to
the constructed instance, an ordering of coflows is obtained
which is then used in a similar fashion as in [15] to ob-
tain an approximation algorithm. The deterministic algorithm
in [16] has better a approximation ratio compared to [15],
for both cases of with and without release dates. In [17],
a linear program approach based on ordering variables is
utilized to develop two algorithms, one deterministic and the
other randomized. The deterministic algorithm gives the same
bounds as in [16], while the randomized algorithm has better
performance approximation ratios compared to [15], [16], for
both cases of with and without release dates.

B. Main Contributions

In this paper, we consider the problem of minimizing the
total weighted coflow completion time. Our main contributions
can be summarized as follows.
• Coflow Scheduling Algorithm. We use a Linear Pro-
gram (LP) approach based on ordering variables followed

TABLE I: Performance guarantees (Approximation ratios)

Case Best known This paper
deterministic randomized deterministic

Without release dates 8 [16], [17] 2e [17] 4
With release dates 12 [16], [17] 3e [17] 5

by a simple list scheduling policy to develop a deterministic
algorithm. Our approach improves the prior algorithms in
both cases of with and without release dates. Even if we
consider equal weights for all coflows (i.e., minimizing the
average completion time), our algorithm has the best known
performance guarantee. Table I summarizes our results in
comparison with the prior best-known performance bounds.
Performance of a deterministic (randomized) algorithm is
defined based on approximation ratio, i.e., the ratio between
the (expected) weighted sum of coflow completion times ob-
tained by the algorithm and the optimal value. When coflows
have release dates (which is often the case in practice as
coflows are generated at different times), our deterministic
algorithm improves the approximation ratio of 12 [16], [17]
to 5, which is also better than the best known randomized
algorithm proposed in [17] with approximation ratio of 3e
(≈ 8.16). When all coflows have release dates equal to zero,
our deterministic algorithm has approximation ratio of 4 while
the best prior known result is 8 [16], [17] for deterministic and
2e (≈ 5.436) [17] for randomized algorithms 1.
• Empirical Evaluations. We evaluate the performance of our
algorithm, compared to the prior approaches, using both syn-
tectic traffic as well as real traffic based on a Hive/MapReduce
trace from a large production cluster at Facebook. Both
synthetic and empirical evaluations show that our determin-
istic algorithm indeed outperforms the prior approaches. For
instance, for the Facebook trace with general release dates,
our algorithm outperforms Varys [6], the algorithm proposed
in [15], and the algorithm proposed in [17] by 24%, 40%, and
19%, respectively. Finally, we compare the fairness of various
algorithms and propose couple of ideas to improve the fairness.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Datecenter Network

Similar to [6], [15], we abstract out the datacenter network
as one giant N ×N non-blocking switch, with N input links
connected to N source servers and N output links connected
to N destination servers. Thus the network can be viewed
as a bipartite graph with source nodes denoted by set I on
one side and destination nodes denoted by set J on the other
side (therefore, I ∩ J = ∅.). Moreover, there are capacity
constraints on the input and output links. For simplicity, we
assume all links have equal capacity (as in [15]); nevertheless,
our method can be easily extended to the general case where

1We have been recently informed of the paper [22] which has appeared
after the original submission of our work and proposes an algorithm with
the same approximation guarantee as our algorithm. The paper [22] uses a
different linear programming, and our scheduling policy is much simpler than
the policy they proposed. Moreover, we also study the performance of our
algorithm through extensive simulations with synthetic and real traffic traces
and compare its performance with other coflow scheduling algorithms.
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Fig. 1: A coflow in a 3× 3 switch architecture.

the links have unequal capacities. Without loss of generality,
we assume that all the link capacities are normalized to one.

Scheduling Constraints

We allow a general class of scheduling algorithms where
the rate allocation can be performed continuously over time,
i.e., for each flow, fractional data units can be transferred from
its input link to its corresponding output link over time as long
as link capacity constraints are respected. In the special case
that the rate allocation is restricted to data units (packets),
each source node can send at most one packet in every time
unit (time slot) and each destination node can receive at most
one packet in every time slot, and the feasible schedule has to
form a matching of the switch’s bipartite graph. In this case,
our model reduces to the model in [15] and, as it is shown later,
our proposed algorithm will respect the matching constraints,
therefore, it is compatible with both models.

Coflow

A coflow is a collection of flows whose completion time is
determined by the completion time of the latest flow in the
collection. The coflow k can be denoted as an N×N demand
matrix D(k). Every flow is a triple (i, j, k), where i ∈ I is
its source node, j ∈ J is its destination node, and k is the
coflow to which it belongs. The size of flow (i, j, k) is denoted
by dkij , which is the (i, j)-th element of the matrix D(k). For
simplicity, we assume that all flows within a coflow arrive to
the system at the same time (as in [15]); however, our results
still hold for the case that flows of a coflow are released at
different times (which could indeed happen in practice [14]).
A 3×3 switch architecture is shown in Figure 1 as an example,
where a coflow is illustrated by means of input queues, e.g.,
the file in the j-th queue at the source link i indicates that the
coflow has a flow from source server i to destination server
j. For instance, in Figure 1, the illustrated coflow has 7 flows
in total, while two of its flows have source server 1, one goes
to destination server 1 and the other to destination server 3.

Total Weighted Coflow Complettion Time

We consider the coflow scheduling problem with release
dates. There is a set of K coflows denoted by K. Coflow
k ∈ K is released (arrives) at time rk which means it can only
be scheduled after time rk. We use fk to denote the finishing
(completion) time of coflow k, which, by definition of coflow,

is the time when all its flows have finished processing. In other
words, for every coflow k ∈ K,

fk = max
i∈I,j∈J

fkij , (1)

where fkij is the completion time of flow (i, j, k).
For given positive weights wk, k ∈ K, the goal is to

minimize the weighted sum of coflow completion times:∑K
k=1 wkfk. The weights can capture different priority for

different coflows. In the special case that all the weights are
equal, the problem is equivalent to minimizing the average
coflow completion time.

Define

T = max
k∈K

rk +
∑
k∈K

∑
i∈I

∑
j∈J

dkij . (2)

Note that T is clearly an upper bound on the minimum time
required for processing of all the coflows. We denote by xkij(t)
the transmission rate assigned to flow (i, j, k) at time t ∈
[0, T ]. Then the optimal rate control must solve the following
optimal control problem

minimize
K∑

k=1

wkfk (3a)

subject to: fk ≥ fkij , i ∈ I, j ∈ J , k ∈ K (3b)

dkij =

∫ fk
ij

0

xkij(t)dt, i ∈ I, j ∈ J , k ∈ K (3c)∑
j

∑
k

xkij(t) ≤ 1, i ∈ I, t ∈ [0, T ] (3d)∑
i

∑
k

xkij(t) ≤ 1, j ∈ J , t ∈ [0, T ] (3e)

xkij(t) = 0, ∀t < rk, i ∈ I, j ∈ J , k ∈ K (3f)

xkij(t) ≥ 0, i ∈ I, j ∈ J , k ∈ K, t ∈ [0, T ] (3g)

In the above, the constraint (3b) indicates that each coflow k
is completed when all its flows have been completed. Note
that since the optimization (3) is a minimization problem, a
coflow completion time is equal to the completion time of its
latest flow, in agreement with (1). The constraint (3c) ensures
that the demand (file size) of every flow, dkij , is transmitted
by its completion time, fkij . Constraints (3d) and (3e) state
the capacity constraints on source links and destination links,
respectively. The fact that a flow cannot be transmitted before
its release date (which is equal to release date of its corre-
sponding coflow) is captured by the constraint (3f). Finally, the
constraint (3g) simply states that the rates are non-negative.

Remark 1. An alternative formulation of (3) could be mini-
mizing the weighted sum of delays, where delay of coflow k
is defined as fk − rk. The two minimizations are equivalent
as only the objectives differ in a constant term

∑
k rkwk,

however in terms of approximation results they could be very
different. In the case of zero release dates, the two formulations
are trivially the same, and our algorithms yield the same
approximation results for both formulations. However, for the
general release dates, there is no constant ratio approximation
algorithm for minimizing the weighted sum of delays. This can
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be shown through its connection to the single machine schedul-
ing for which finding a constant approximation algorithm for
the delay-based formulation is NP-complete [23].

III. MOTIVATIONS AND CHALLENGES

The coflows can be widely different in terms of the number
of parallel flows, the size of individual flows, the groups
of servers involved, etc. Heuristics from traditional flow/task
scheduling, such as shortest- or smallest-first policies [24],
[25], do not have a clear equivalence in coflow scheduling.
One can define a shortest or smallest-first policy based on the
number of parallel flows in a coflow, or the aggregate flow
sizes in a coflow, however these policies perform poorly [6],
as they do not completely take all the characteristics of coflows
into consideration.

Recall that the completion time of a coflow is dominated
by its slowest flow (as described by (1) or (3b)). Hence,
it makes sense to slow down all the flows in a coflow to
match the completion time of the flow that will take the
longest to finish. The unused capacity then can be used to
allow other coexisting coflows to make progress and the total
(or average) coflow completion time decreases. Varys [6] is
the first heuristic that effectively implements this intuition by
combining Smallest-Effective-Bottleneck-First and Minimum-
Allocation-for-Desired-Duration policies. Before describing
Varys, we present a few definitions that are used in the rest of
this paper.

Definition 1 (Aggregate Size and Effective Size of a Coflow).
Let

dki =
∑
j∈J

dkij ; dkj =
∑
i∈I

dkij , (4)

be respectively the aggregate flow size that coflow k needs to
send from source node i and receive at destination node j.
The effective size of coflow k is defined as

W (k) = max{max
i∈I

dki ,max
j∈J

dkj }. (5)

Thus W (k) is the maximum amount of data that needs to
be sent or received by a node for coflow k. Note that, due
to normalized capacity constraints on links, when coflow k is
released, we need at least W (k) amount of time to process
all its flows.

Overview of Varys. Varys [6] orders coflows in a list based
on their effective size in an increasing order. Transmission
rates of individual flows of the first coflow in the list are set
such that all its flows complete at the same time. The remain-
ing capacity of links are updated and iteratively distributed
among other coflows in the list in a similar fashion. Formally,
the completion time of coflow k, k = 1, ...,K, is calculated
as follows

Γk = max{max
i∈I

dki
Rem(i)

,max
j∈J

dkj
Rem(j)

},

where Rem(i) (similarly, Rem(j)) is the remaining capacity
of input link i (output link j) after transmission rates of all
coflows k′ < k are set. Then for flow (i, j, k), Varys assigns
transmission rate xkij = dkij/Γ

k. In case that there is still idle
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(a) All coflows have equal effective size. Both orderings are possible
under Varys, with the total completion time of 1 + 2 + 2 = 5 and
1 + 1 + 2 = 4, for the left and right ordering respectively.
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(b) Varys schedules coflow 1 first, according to the ordering {1, 2, 3},
which gives a total completion time of 2+ 5+ 5 = 12. The optimal
schedule is the ordering {2, 3, 1} with a total completion time of
3 + 3 + 5 = 11.

Fig. 2: Inefficiency of Varys in a 2 × 2 switch network with
3 coflows.

capacity, for each input link i ∈ I, the remaining capacity is
allocated to the flows of coflows subject to capacity constraints
in corresponding output links. Once the first coflow completes,
all the flow sizes and the scheduling list are updated and the
iterative procedure is repeated to complete the second coflow
and distribute the unused capacity. The procedure is stopped
when all the coflows are processed.

While Varys performs better than traditional flow scheduling
algorithms, it could still be inefficient. The main reason is that
Varys is oblivious to the dependency among coflows that share
a (source or destination) node. To further expose this issue,
we present a simple example.

Example 1 (Inefficiency of Varys). Consider the 2×2 switch
network illustrated in Figure 2 where there are 3 coflows
in the system. In Figure 2a, the effective coflow sizes are
W (1) = W (2) = W (3) = 1, therefore, Varys cannot
differentiate among coflows. Scheduling coflows in the order
{1, 2, 3} or {2, 3, 1} are both possible under Varys but they
result in different total completion times, 1 + 2 + 2 = 5 and
1 + 1 + 2 = 4, respectively (assuming the weights are all one
for all the coflows). Next, consider a slight modification of
flow sizes, as shown in Figure 2b. In this example W (1) = 2
and W (2) = W (3) = 3. Based on Varys algorithm, coflow
1 is scheduled first during time interval (0, 2] at rate 1.
When coflow 1 completes, coflows 2 and 3 are scheduled in
time interval (2, 5]; hence, the total completion time will be
2 + 5 + 5 = 12. However, if we schedule coflows 2 and 3 first,
the total completion times will reduce to 3 + 3 + 5 = 11. Note
that in both examples, coflow 1 completely blocks coflows 2
and 3, which is not captured by Varys. In fact, the negative
impact of ignoring configuration of coflows and their shared
nodes is much more profound in large networks with a large
number of coflows (see simulations in Section VIII).

Overview of LP-based algorithms. The papers [15]
and [17] use Linear Programs (LPs) (based on interval-indexed
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variables or ordering variables) that capture more information
about coflows and provide a better ordering of coflows for
scheduling compared to Varys [6]. At the high level, the
technical approach in these papers is based on partitioning jobs
(coflows) into polynomial number of groups based on solution
to a polynomial-sized relaxed linear program, and minimizing
the completion time of each group by treating the group as
a single coflow. Grouping can have a significant impact on
decreasing the completion time of coflows. For instance, in
view of examples in Figure 2, grouping coflows 2 and 3, and
scheduling them first, decreases the total completion time as
explained.

NP-hardness and connection to the concurrent open
shop problem. The concurrent open shop problem [21] can be
essentially viewed as a special case of the coflow scheduling
problem when demand matrices are diagonal (in the jargon
of concurrent open shop problem, the coflows are jobs, the
flows in each coflow are tasks for that job, and the destination
nodes are machines with unit capacities). It is known that
it is NP-complete to approximate the concurrent open shop
problem, when jobs are released at time zero, within a factor
better than 2 − ε for any ε > 0 [26]. Although the model
we consider for coflow scheduling is different from the model
used in [15], similar reduction as proposed in [15] can be
leveraged to show NP-completness of the coflow scheduling
problem. More precisely, every instance of the concurrent
open shop problem can be reduced to an instance of coflow
scheduling problem (see Appendix A for the details), hence it
is NP-complete to approximate the coflow scheduling problem
(without release dates) within 2 − ε, for any ε > 0. There
are 2-approximation algorithms for the concurrent open shop
(e.g., [21]), however, these algorithms cannot be ported to the
coflow scheduling problem due to the coupling of source and
destination link capacity constraints in the coflow scheduling
problem (see Appendix A for a counter example that shows the
2-approximation algorithm from concurrent open shop cannot
be ported to the coflow scheduling problem).

Next, we describe our coflow scheduling algorithm. The
algorithm is based on a linear program formulation for sorting
the coflows followed by a simple list scheduling policy

IV. LINEAR PROGRAMING (LP) RELAXATION

In this section, we use linear ordering variables (see, e.g.,
[20], [21], [27], [28]) to present a relaxed integer program
of the original scheduling problem (3). We then relax these
variables to obtain a linear program (LP). In the next section,
we use the optimal solution to this LP as a subroutine in our
scheduling algorithm.

Ordering variables. For each pair of coflows, if both
coflows have some flows incident at some node (either orig-
inated from or destined at that node), we define a binary
variable which indicates which coflow finishes all its flows
before the other coflow does so in the schedule. Formally, for
any two coflows k, k′ with aggregate flow sizes dkm 6= 0 and
dk′m 6= 0 on some node m ∈ I ∪ J (recall definition (4)), we
introduce a binary variable δkk′ ∈ {0, 1} such that δkk′ = 1 if
coflow k finishes all its flows before coflow k′ finishes all its

flows, and it is 0 otherwise. If both coflows finish their flows
at the same time (which is possible in the case of continuous-
time rate control), we set either one of δkk′ or δk′k to 1 and
the other one to 0, arbitrarily.

Relaxed Integer Program (IP). We formulate the following
Integer Program (IP):

(IP) min

K∑
k=1

wkfk (6a)

fk ≥ dki +
∑
k′∈K

dk
′

i δk′k i ∈ I, k ∈ K (6b)

fk ≥ dkj +
∑
k′∈K

dk
′

j δk′k j ∈ J , k ∈ K (6c)

fk ≥W (k) + rk k ∈ K (6d)
δkk′ + δk′k = 1 k, k′ ∈ K (6e)
δkk′ ∈ {0, 1} k, k′ ∈ K (6f)

In the above, to simplify the formulation, we have defined
δkk′ , for all pairs of coflows, by defining dkm = 0 if coflow k
has no flow originated from or destined to node m.

The constraint (6b) (similarly (6c)) follows from the def-
inition of ordering variables and the fact that flows incident
to a source node i (a destination node j) are processed by a
single link of unit capacity. To better see this, note that the
total amount of traffic can be sent in the time period (0, fk]
over the i-th link is at most fk. This traffic is given by the
right-hand-side of (6b) (similarly (6c)) which basically sums
the aggregate size of coflows incident to node i that finish
their flows before coflow k finishes its corresponding flows,
plus the aggregate size of coflow k at node i itself, dki . This
implies constraint (6b) and (6c). The fact that each coflow
cannot be completed before its release date plus its effective
size is captured by constraint (6d). The next constraint (6e)
indicates that for each two incident coflows, one precedes the
other.

Note that this optimization problem is a relaxed integer
program for the problem (3), since the set of constraints are not
capturing all the requirements we need to meet for a feasible
schedule. For example, we cannot start scheduling flows of a
coflow when it is not released yet, while constraint (6d) does
not necessarily avoid this, thus leading to a smaller value of
finishing time compared to the optimal solution to (3). Further,
release dates and scheduling constraints in optimization (3)
might cause idle times in flow transmission of a node, therefore
yielding a larger value of finishing time for a coflow than what
is restricted by (6b), (6c), (6d). To further illustrate this issue,
we present a simple example.

Example 2. Consider a 2× 2 switch network as in Figure 3.
Assume there are 4 coflows, each has one flow. Flow (1, 1, 1)
is released at time 0 with size 1, and the other three flows
are released at time 1 with size 2. It is easy to check that
the following values for the ordering variables and flow
completion times satisfy all the constraints (6b)−(6f). For
brevity, we only report the ordering variables for coflows that
actually share a node. For example, it is redundant to consider
ordering variables corresponding to coflow 1 and coflow 4 as
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Fig. 3: 4 coflows in a 2× 2 switch architecture, flow (1, 1) is
released at time 0, and all the others are released at time 1.

they are not incident at any (source/destination) node and any
value for their associated pairwise ordering variables does not
have any impact on the optimal value for IP (6). Below, the
ordering variables and coflow completion times are presented,
and all the ordering variables which are not specified can be
taken as zero.

δ12 = 1, δ34 = 1,

δ13 = 1, δ24 = 1,

f1 = 1, f2 = 3,

f3 = 3, f4 = 4.

While these values satisfy (6b)−(6f), this is not a valid
schedule since it requires transmission of flow (2, 2, 4) starting
at time 0, while it is not released yet. To see this, note that
f1 = 1, so to finish processing of coflow 1 or equivalently
flow (1, 1, 1) by time 1, we need to start its transmission at
maximum rate at time 0. Then, due to the capacity constraints,
the first time flows (1, 2, 2) and (2, 1, 3) can start transmission
is at time 1, when flow (1, 1, 1) has been completed. Since we
require to complete both of these flows at time 3, they need
to be transmitted at maximum rate in the time interval (1, 3].
Therefore, the only way to finish flow (2, 2, 4) at time 4 is
to send one unit of its data in time interval (0, 1] and its
remaining unit of data in time interval (3, 4], but this flow has
not been released before time 1. So the proposed IP does not
address all the scheduling constraints.

Relaxed Linear Program (LP). In the linear program
relaxation, we allow the ordering variables to be fractional.
Specifically, we replace the constraints (6f) with the constraints
(7b) below. We refer to the obtained linear problem by (LP).

(LP) min

K∑
k=1

wkfk (7a)

subject to: (6b) – (6e),
δkk′ ∈ [0, 1] k, k′ ∈ K (7b)

We use f̃k to denote the optimal solution to this LP for the
completion time of coflow k. Also we use ÕPT =

∑
k wkf̃k

to denote the corresponding objective value. Similarly we
use f?k to denote the optimal completion time of coflow
k in the original coflow scheduling problem (3), and use
OPT =

∑
k wkf

?
k to denote its optimal objective value. The

following lemma establishes a relation between ÕPT and OPT.

Lemma 1. The optimal value of the LP, ÕPT, is a lower bound
on the optimal total weighted completion time OPT of coflow
scheduling problem.

Proof. Consider an optimal solution to the optimization prob-
lem (3). We set ordering variables so as δkk′ = 1 if coflow k
precedes coflow k′ in this solution, and δkk′ = 0, otherwise.
If both coflows finish their corresponding flows at the same
time, we set either one to 1 and the other one to 0. We note
that this set of ordering variables and coflow completion times
satisfies constraints (6b) and (6c) (by taking integral from
both side of constraint (3d) and (3e) from time 0 to fk) and
also constraint (6d) (by combining constraints (3c) and (3f)).
Furthermore, the rest of (LP) constraints are satisfied by the
construction of ordering variables. Therefore, optimal solution
of problem (3) can be converted to a feasible solution to (LP).
Hence, the optimal value of LP, ÕPT, is at most equal to
OPT.

V. COFLOW SCHEDULING ALGORITHM

In this section, we describe our polynomial-time coflow
scheduling algorithm and state the main results about its
performance guarantees.

The scheduling algorithm is presented in Algorithm 1. It
has three main steps:

1) solve the relaxed LP (7),
2) use the solution of the relaxed LP to order flows of

coflows,
3) apply a simple list scheduling algorithm based on the

ordering.
The relaxed LP (7) has O(K2) variables and O(K2+KN))

constraints and can be solved efficiently in polynomial time,
e.g. using interior point method [29] (see Section VIII-E for
more details about the complexity).

Then, the algorithm orders the coflows based on values
of f̃k (optimal solution to LP) in nondecreasing order. More
precisely, we re-index coflows such that,

f̃1 ≤ f̃2 ≤ ... ≤ f̃K . (8)

Ties are broken arbitrarily. We emphasize that we do not need
to round the values of the ordering variables in LP to obtain the
ordering of coflows, instead we use the values of f̃k (optimal
solution to LP) which do not need to be integer.

At any time, the algorithm maintains a list for the flows in
the system such that for every two flows (i, j, k) and (i′, j′, k′)
with k < k′ (based on ordering (8)), flow (i, j, k) is placed
before flow (i′, j′, k′) in the list. Flows of the same coflow
are listed in an arbitrary order. The algorithm scans the list
starting from the first flow and schedules a flow if both its
corresponding source and destination links are idle at that time.
Upon completion of a flow or arrival of a coflow, the algorithm
preempts the schedule, updates the list, and starts scheduling
the flows based on the updated list.

The main result regarding the performance of Algorithm 1
is stated in Theorem 1.

Theorem 1. Algorithm 1 is a polynomial-time 5-
approximation algorithm for the problem of minimizing
total weighted completion time of coflows with release dates.

When all coflows are released at time 0, we can improve
the algorithm’s performance ratio.
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Algorithm 1 Deterministic Coflow Scheduling Algorithm

Suppose coflows
[
dkij , 1 ≤ i, j ≤ N

]
, k ∈ K, with release

dates rk, k ∈ K, and weights wk, k ∈ K, are given.
1: Solve the linear program (LP) and denote its optimal

solution by {f̃k; k ∈ K}.
2: Order and re-index the coflows such that:

f̃1 ≤ f̃2 ≤ ... ≤ f̃K , (9)

where ties are broken arbitrarily.
3: Wait until the first coflow is released.
4: while There is some incomplete flow, do
5: List the released and incomplete flows respecting

the ordering in (9). Let L be the total number of flows
in the list.

6: for l = 1 to L do
7: Denote the l-th flow in the list by (il, jl, kl),
8: if Both the links il and jl are idle, then
9: Schedule flow (il, jl, kl).

10: end if
11: end for
12: while No new flow is completed or released do
13: Transmit the flows that get scheduled in line 9

at maximum rate 1.
14: end while
15: end while

Corollary 1. If all coflows are released at time 0, then
Algorithm 1 is a 4-approximation algorithm.

VI. PROOF SKETCH OF MAIN RESULTS

In this section, we present the sketch of proofs of the main
results for our polynomial-time coflow scheduling algorithm.
Before proceeding with the proofs, we make the following
definitions.

Definition 2 (Aggregate Size and Effective Size of a List of
Coflows). For a list of K coflows and for a node s ∈ I ∪ J ,
we define W (1, · · · , k; s) to be the amount of data needs to be
sent or received by node s in the network considering only the
first k coflows. We also denote by W (1, · · · , k) the effective
size of the aggregate coflow constructed by the first k coflows,
k ≤ K. Specifically,

W (1, · · · , k; s) =

k∑
l=1

dls (10)

W (1, · · · , k) = max
s∈I∪J

W (1, · · · , k; s) (11)

A. Bounded completion time for the collection of coflows

Consider the list of coflows according to the ordering in (8)
and define W (1, · · · , k) based on Definition 2. The following
lemma demonstrates a relationship between completion time
of coflow k obtained from (LP) and W (1, · · · , k) which is
used later in the proofs.

Lemma 2. f̃k ≥ W (1,··· ,k)
2 .

Proof. The proof uses similar ideas as in Gandhi, et al. [28]
and Kim [19]. Using constraint (6b), for any source node i ∈
I, we have

dlif̃l ≥ (dli)
2 +

∑
l′∈K

dlid
l′

i δl′l (12)

which implies that,

k∑
l=1

dlif̃l ≥
k∑

l=1

(dli)
2 +

k∑
l=1

k∑
l′=1

dl
′

i d
l
iδl′l

=
1

2

(
2×

k∑
l=1

(dli)
2

+

k∑
l=1

k∑
l′=1

(
dl

′

i d
l
iδl′l + dl

′

i d
l
iδll′

))
(13)

We simplify the right-hand side of (13), using constraint (6e),
combined with the following equality

k∑
l=1

(dli)
2 +

k∑
l=1

k∑
l′=1

dl
′

i d
l
i = (

k∑
l=1

dli)
2, (14)

and conclude that
k∑

l=1

dlif̃l ≥
1

2

k∑
l=1

(dli)
2 +

1

2
(

k∑
l=1

dli)
2

≥1

2
(

k∑
l=1

dli)
2 =

1

2
(W (1, · · · , k; i))2

(15)

Where the last equality follows from Definition 10. Similar
argument results in the following inequality for any destination
node j ∈ J , i.e.,

k∑
l=1

dlj f̃l ≥
1

2
(W (1, · · · , k; j))2.

Now consider the node s? which has the maximum load
induced by the first k coflows, namely, W (1, · · · , k) =
W (1, · · · , k; s?).

f̃kW (1, · · · , k; s?) = f̃k

k∑
l=1

dls?

≥
k∑

l=1

dls? f̃l

≥ 1

2
(W (1, · · · , k; s?))2

(16)

This implies that,

f̃k ≥
1

2
W (1, · · · , k; s?) =

1

2
W (1, · · · , k). (17)

This completes the proof.

Note that W (1, · · · , k) is a lower bound on the time that it
takes for all the first k coflows to be completed (as a result
of the capacity constraints in the optimization (3)). Hence,
Lemma 2 states that by allowing ordering variables to be
fractional, completion time of coflow k obtained from (LP)
is still lower bounded by half of W (1, · · · , k).
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B. Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. We use {f̂k}Kk=1 to denote the actual
coflow completion times under our deterministic algorithm.
Suppose flow (i, j, k) is the last flow of coflow k that is
completed. In general, Algorithm 1 may preempt a flow several
times during its execution. For now, suppose flow (i, j, k)
is not preempted and use tk to denote the time when its
transmission is started (the arguments can be easily extended
to the preemption case as we show at the end of the proof).
Therefore

f̂k = f̂kij = tk + dkij (18)

From the algorithm description, tk is the first time that both
links i and j are idle and there are no higher priority flows to
be scheduled (i.e., there is no flow (i, j, k′) from i to j with
k′ < k in the list). By definition of W (1, · · · , k; s), node s, s ∈
{i, j}, has W (1, · · · , k; s)− dkij data units to send or receive
by time tk. Since the capacity of all links are normalized to
1, it should hold that

tk ≤ rk +W (1, · · · , k; i)− dkij +W (1, · · · , k; j)− dkij
≤ rk + 2W (1, · · · , k)− 2dij ,

where the last inequality is by Definition 11. Combining this
inequality with equality (18) yields the following bound on
f̂k.

f̂k ≤ rk + 2W (1, · · · , k)

Using Lemma 2 and constraint (6d), we can conclude that

f̂k ≤ 5f̃k,

which implies that
K∑

k=1

wkf̂k ≤ 5

K∑
k=1

wkf̃k.

This shows an approximation ratio of 5 for Algorithm 1 using
Lemma 1. Finally, if flow (i, j, k) is preempted, the above
argument can still be used by letting tk to be the starting time
of its last piece and dkij to be the remaining size of its last
piece at time tk. This completes the proof.

Proof of Corollary 1. When all coflows are released at time
0, tk ≤ W (1, · · · , k)− dkij +W (1, · · · , k)− dkij . The rest of
the argument is similar to the proof of Theorem 1. Therefore,
the algorithm has approximation ratio of 4 when all coflows
are release at time 0.

VII. EXTENSION TO ONLINE ALGORITHM

Similar to previous work [15], [16], Algorithm 1 is an
offline algorithm, and requires the complete knowledge of the
flow sizes and release dates. While this knowledge can be
learned in long running services, developing online algorithms
that deal with the dynamic nature and unavailability of this
information is of practical importance. One natural extension
of our algorithm to an online setting, assuming that the coflow
information revealed at its release date, is as follows: Upon
each coflow arrival, we re-order the coflows by re-solving
the (LP) using the remaining coflow sizes and the newly
arrived coflow, and update the list. Given the updated list, the

scheduling is done as in Algorithm 1. To reduce complexity
of the online algorithm, we may re-solve the LP once in every
T seconds, for some T that can be tuned, and update the list
accordingly. We leave theoretical and experimental study of
this online algorithm as a future work.

VIII. EMPIRICAL EVALUATIONS

In this section, we present our simulation results and eval-
uate the performance of our algorithm for both cases of with
and without release dates, under both synthetic and real traffic
traces. We also simulate the deterministic algorithms proposed
in [15], [17] and Varys [6] and compare their performance with
the performance of our algorithm. Finally, we comment on the
fairness issues of the algorithm.

A. Workload

We evaluate algorithms under both synthetic and real traffic
traces.

Synthetic traffic: To generate synthetic traces we slightly
modify the model used in [30]. We consider the problem of
size K = 160 coflows in a switch network with N = 16 input
and output links. We denote by M the number of non-zero
flows in each coflow. We consider two cases:
• Dense instance: For each coflow, M is chosen uniformly

from the set {N,N + 1, ..., N2}. Therefore, coflows have
O(N2) non-zero flows on average.

• Combined instance: Each coflow is sparse or dense with
probability 1/2. For each sparse coflow, M is chosen uni-
formly from the set {1, 2, ..., N}, and for each dense coflow
M is chosen uniformly from the set {N,N + 1, ..., N2}.

Given the number M of flows in each coflow, M pairs of
input and output links are chosen randomly. For each pair
that is selected, an integer flow size (processing requirement)
dij is randomly selected from the uniform distribution on
{1, 2, ..., 100}. For the case of scheduling with release dates,
we generate the coflow inter-arrival times uniformly from
[1, 100]. We generate 100 instances for each case and report
the average algorithms’ performance.

Real traffic: This workload was also used in [6], [15],
[17]. The workload is based on a Hive/MapReduce trace at
Facebook that was collected from a 3000-machine cluster with
150 racks. In this trace, the following information is provided
for each coflow: arrival time of the coflow in millisecond,
locations of mappers (rack number to which they belong),
locations of reducers (rack number to which they belong), and
the amount of shuffle data in Megabytes for each reducer. We
assume that shuffle data of each reducer in a coflow is evenly
generated from all mappers specified for that coflow. The data
trace consists of 526 coflows in total from very sparse coflows
(the most sparse coflow has only 1 flow) to very dense coflows
(the most dense coflow has 21170 flows.). Similar to [15], we
filter the coflows based on the number of their non-zero flows,
M . Apart from considering all coflows (M ≥ 1), we consider
three coflow collections filtered by the conditions M ≥ 10,
M ≥ 30, and M ≥ 50. In other words, we use the following
4 collections:
• All coflows,
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• Coflows with M ≥ 10,
• Coflows with M ≥ 30,
• Coflows with M ≥ 50.
Furthermore, the original cluster had a 10:1 core-to-rack
oversubscription ratio with a total bisection bandwidth of
300 Gbps. Hence, each link has a capacity of 128 MBps.
To obtain the same traffic intensity offered to our network
(without oversubscription), for the case of scheduling coflows
with release dates, we need to scale down the arrival times
of coflows by 10. For the case of without release dates, we
assume that all coflows arrive at time 0.

B. Algorithms

We simulate four algorithms: the algorithm proposed in
this paper, Varys [6], the deterministic algorithm in [15], and
the deterministic algorithm in [17]. We briefly overview these
algorithms and also elaborate on the backfilling strategy that
has been combined with the deterministic algorithms in [15],
[17] to avoid under utilization of network resources.

1. Varys [6]: Scheduling and rate assignments under Varys
were explained in detail in Section III. There is a parameter
δ in the original design of Varys that controls the tradeoff
between fairness and completion time. Since we focus on
minimizing the total completion time of coflows, we set δ
to 0 which yields the best performance of Varys. In this case,
upon arrival or completion of a coflow, the coflow ordering is
updated and the rate assignment is done iteratively as described
in Section III.

2. Interval-Indexed-Grouping (LP-II-GB) [15]: The al-
gorithm requires discrete time (i.e., time slots) and is based
on an interval-indexed formulation of a polynomial-time linear
program (LP) as follows. The time is divided into geometri-
cally increasing intervals. The binary decision variables xlk
are introduced which indicate whether coflow k is scheduled
to complete within the l-th interval (tl, tl+1]. Using these
binary variables, a lower bound on the objective function is
formulated subject to link capacity constraints and the release
date constraints. The binary variables are then relaxed leading
to an LP whose solution is used for ordering coflows. More
precisely, the relaxed completion time of coflow k is defined
as fk =

∑
l tlxlk, where tl is the left point of the l-th

interval and xlk ∈ [0, 1] is the relaxed decision variable. Based
on the optimal solution to this LP, coflows are listed in an
increasing order of their relaxed completion time. For each
coflow k in the list, k = 1, ...,K, we compute effective size
of the cumulated first k coflows in the list, W (1, · · · , k). All
coflows that fall within the same time interval according to
value of W (1, · · · , k) are grouped together and treated as a
single coflow and scheduled so as to minimize its completion
time. Scheduling of coflows within a group makes use of the
Birkhoff-von Neumann decomposition. If two data units from
coflows k and k′ within the same group use the same pair of
input and output, and k is ordered before k′, then we always
process the data unit from coflow k first. For backfilling, when
we use a schedule that matches input i to output j, if there is
no more service requirement on the pair of input i and output
j for some coflow in the current partition, we backfill in order

from the flows on the same pair of ports in the subsequent
coflows. We would like to emphasize that this algorithm needs
to discretize time and is based on matching source nodes to
destination nodes. We select the time unit to be 1/128 second
as suggested in [15] so that each port has a capacity of 1 MB
per time unit. We refer to this algorithm as ‘LP-II-GB’, where
II stands for Interval-Indexed, and GB stands for Grouping
and Backfilling.

3. Ordering-Variable-Grouping (LP-OV-GB) [17]: We
implement the deterministic algorithm in [17]. Linear pro-
gramming formulation is the same as LP in (7). Coflows
are then grouped based on the optimal solution to the LP.
To schedule coflows of each group, we construct a single
aggregate coflow denote by D and schedule its flows to
optimize its completion time. We assign transmission rate
xij = dij/W (D) to the flow from source node i to destination
node j until its completion. Moreover, the continuous back-
filling is done as follows: After assigning rates to aggregate
coflow, we increase xij until either capacity of link i or link j
is fully utilized. We continue until for any node, either source
or destination node, the summation of rates sum to one. We
also transmit flows respecting coflow order inside of each
partition. When there is no more service requirement on the
pair of input i and output j for coflows of current partition, we
backfill (transmit) in order from the flows on the same pair of
ports from the subsequent coflows. We refer to this algorithm
as ‘LP-OV-GB’, where OV stands for ordering variables, and
GB stands for Grouping and Backfilling.

4. Algorithm 1 (LP-OV-LS): We implement our algorithm
as described in Algorithm 1, and refer to it as ‘LP-OV-LS’,
where OV stands for ordering variables, and LS stands for list
scheduling.

C. Evaluation Results

Performance of Our Algorithm. We report the ratios of
total weighted completion time obtained from Algorithm 1 and
the optimal value of relaxed linear program (7) (which is a
lower bound on the optimal value of the coflow scheduling
problem) to verify Theorem 1 and Corollary 1. We only
present results of the simulations using the real traffic trace,
with equal weights and random weights. For the case of ran-
dom weights, the weight of each coflow is chosen uniformly
at random from the interval [0, 1]. The results are more or less
similar for other collections and for synthetic traffic traces and
all are consistent with our theoretical results.

Table II shows the performance ratio of the deterministic
algorithm for the cases of with and without release dates. All
performances are within our theoretical results indicating the
approximation ratio of at most 4 when all coflows release at
time 0 and at most 5 when coflows have general release dates.
In fact, the approximation ratios for the real traffic trace are
much smaller than 4 and 5 and very close to 1.

Performance Comparison with Other Algorithms. Now,
we compare the performance of Algorithm 1 (LP-OV-LS) with
LP-II-GB, LP-OV-GB, and Varys. We set all the weights of
coflows to be equal to one.
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TABLE II: Performance Ratio of Algorithm 1

Case Equal weights Random weights
Without release dates 1.05 1.06

With release dates 1.034 1.038
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Fig. 4: Performance of Varys, LP-II-GB, LP-OV-GB, and LP-
OV-LS when all coflows release at time 0 for 100 random
dense and combined instances, normalized with the perfor-
mance of LP-OV-LS.

1. Performance evaluation under synthetic traffic: For each
of the two instances explained in Section VIII-A, we randomly
generate 100 different traffic traces and compute the average
performance of algorithms over the traffic traces.

Figure 4 and 5 depict the average result of our simulations
(over 100 dense and 100 combined instances) for the zero
release dates and general release dates, respectively. As we
see, Algorithm 1 (LP-OV-LS) outperforms Varys and LP-II-
GB by almost 30%, and LP-OV-GB by almost 11% in dense
instance for both general and zero release dates. In combined
instance, the improvements are 35%, 30%, and 17% when all
coflows are released at time 0, and 28%, 29%, and 17% for
the case of general release dates over Varys, LP-II-GB, and
LP-OV-GB, respectively.

This workload is more intensive in the number of non-zero
flows; however, more uniform in the flow sizes and source-
destination pairs in comparison to the real traffic trace. The
real traffic trace (described in Section VIII-A) contains a large
number of sparse coflows; namely, about 50% of coflows have
less than 10 flows. Also, it widely varies in terms of flow sizes
and source-destination pairs in the network. We now present
evaluation results under this traffic.

2. Performance evaluation under real traffic: We ran sim-
ulations for the four collections of coflows described in
Section VIII-A. We normalize the total completion time under
each algorithm by the total completion time under Algorithm 1
(LP-OV-LS).

Figure 6 shows the performance of different algorithms for
different collections of coflows when all coflows are released
at time 0. LP-OV-LS outperforms Varys by almost 112−117%
in different collections. It also constantly outperforms LP-
II-GB and LP-OV-GB by almost 74 − 78% and 63 − 68%,
respectively.

Figure 7 shows the performance of different algorithms for
different collections of coflows for the case of release dates.
LP-OV-LS outperforms Varys by almost 24%, 65%, 91%, and
99% for all coflows, M ≥ 10, M ≥ 30, M ≥ 50, respectively.
It also outperforms LP-II-GB for 40%, 62%, 71%, and 82%,
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Fig. 5: Performance of Varys, LP-II-GB, LP-OV-GB, and LP-
OV-LS in the case of release dates for 100 random dense and
combined instances, normalized with the performance of LP-
OV-LS.
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Fig. 6: Performance of Varys, LP-II-GB, LP-OV-GB, and LP-
OV-LS when all coflows release at time 0, normalized with
the performance of LP-OV-LS, under real traffic trace.

and LP-OV-GB by 19%, 54%, 64%, and 73%, respectively.
Figure 8 depicts the CDF plots of coflow completion time

for all four algorithms when all coflows are considered, for
both cases of with and without release dates. Based on the
plots, 95% of all coflows have completion time less than 100
seconds under our algorithm, while this is 220 seconds for
Varys, when all release dates are zero. Also the CDF plots
under our algorithm are quite sharp which means that the
variance of completion times under our algorithm is smaller
than the other algorithms.

D. Incorporating Fairness

So far, we focused on minimizing the total weighted
completion time of coflows, without considering any fairness
among the rates allocated to different coflows. In this section,
we propose a simple adjustment to our algorithm to provide
a trade-off between fairness and optimality, and provide sim-
ulation results to study the effect of the fairness adjustment.

We use a simple metric to quantify fairness (or equivalently
unfairness) among coflows. Define pt(k), the progress of
coflow k by time t, to be the amount of decrease in its effective
size by time t, formally,

pt(k) = W (k)−Wt(k), (19)

where W (k) is the original effective size of coflow k (its
effective size at its release date) and Wt(k) is its effective
size at time t after possibly partial transmission of some of its
flows (recall (5) for the definition of coflow’s effective size).
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Fig. 7: Performance of Varys, LP-II-GB, LP-OV-GB, and
LP-OV-LS in the case of release dates, normalized with the
performance of LP-OV-LS, under real traffic trace.
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Fig. 8: CDF of coflow completion time under Varys, LP-II-
GB, LP-OV-GB, and LP-OV-LS for real traffic trace a) when
all coflows release at time 0, b) in the case of release dates.

Ideally, for fairness issues, we might want to have an equal
progress among the coflows in the system.2

Hence, we use the standard deviation among progress of
coflows that are in the system as our unfairness metric in rate
allocation to the current coflows, i.e., the larger the standard
deviation of progresses is, the more unfair the algorithm is.
Formally, the unfairness at time t is defined as

SDt =

√∑
k∈Kt

(pt(k))2

Kt
−
(∑k∈Kt

pt(k)

Kt

)2
, (20)

where Kt is the set of coflows in the network at time t and
Kt denotes its cardinality.

To measure unfairness throughout the entire schedule, we
compute the progress of remaining coflows in the system
upon departure of a coflow at time t and calculate the
corresponding standard deviation according to (20). We then
take the average of all computed standard deviations as a
measure for unfairness. Based on this definition, note that
a coflow that is completed earlier contributes less in the
described unfairness metric because its progress is not counted
in future standard deviations. Such a coflow probably has
smaller effective size and its flows block less number of flows
of other coflows; therefore, scheduling this coflow does not
cause severe starvation for other coflows. Given this intuition,
the metric captures unfairness reasonably well.

2There are other notions of fairness such as max-min fair, proportional fair,
and alpha-utility fair, proposed in rate allocation for flow scheduling, e.g.,
see [31], [32]. The situation is more complicated in coflow scheduling, since
coflows have different number of flows with different overlapping structures.
Extending such notions of fairness to coflow scheduling could be an interesting
future research.

To incorporate fairness in our algorithm, we introduce two
tunable parameters τ and δ (τ ≥ δ) and alternate between
time intervals of length τ and δ as follows. The algorithm
maintains two lists, one is the original list in which coflows
are sorted respecting inequality (8) and is updated upon arrival
and departure of flows, and the other sorts the coflows in
non-decreasing order of their progresses, as defined in (19).
We refer to the latter list as the progress list. For a time
period of length τ , we use our algorithm to schedule flows
of coflows; namely, we list schedule flows according to the
original list (i.e., based on optimal solution to LP). At the
end of this time interval, we compute progress of coflows and
update the progress list. Denote by p̄t the average progress
over the progress list at time t and assume that coflow k is
the first coflow in the progress list. The goal of scheduling
over the period δ is to decrease the gap between the progress
of starved coflows and the average progress. Toward this
end, we schedule the flows for a time period of length
∆ = min{Wt(k), p̄t− pt(k)}, where Wt(k), current effective
size of coflow k, is the time needed to complete coflow k
ignoring other coflows in the system, and p̄t − pt(k) is the
gap between its progress and the average progress. Keeping
the scheduling policy simple, we use the list scheduling using
the progress list for ∆ amount of time. We then update the
progress list, compute the average progress, current effective
size of the first coflow in the progress list, and ∆, and continue
in the same manner until either the total amount of time
spent in this scheduling phase reaches δ or the progress of all
coflows becomes equal. Afterwards, we preempt the schedule,
update the original coflow list, and resume our list scheduling
for another τ amount of time, and so on. Setting the parameter
δ to 0 will produce our original scheduling algorithm. By
choosing δ > 0, we can avoid coflow starvations at the cost
of an increased total completion time. Varys [6] also uses a
two phase procedure, however the way that we compensate
for fairness, by list scheduling based on the progress list, is
different from Varys.

To examine the performance of the proposed scheme, we
consider all coflows of the real traffic trace when they release
at time zero and look at the total completion time of coflows
and the unfairness metric (average of standard deviations
measured upon departure of coflows) for different values of τ
and δ. For practical consideration, as suggested by Varys [6],
we set δ to be O(100) milliseconds and T to be O(1) second.
Figure 9 shows the total completion time for different values
of δ and τ , normalized with the performance of LP-OV-LS
(our original algorithm) which is when δ = 0 for any value of
τ . For a fixed δ, total completion time decreases as τ increases
because the algorithm schedules flows based on the list that
is formed to optimize total completion time for larger fraction
of time. Also, fixing τ , total completion time increases as
δ increases. Figure 10 depicts the corresponding unfairness
metric for different values of δ and τ . We can see that, as δ
increases, average of progress standard deviations decreases,
which means that the scheduling algorithm allocates rates in
a more fair manner. Moreover, fixing δ, unfairness increases
as we increase τ , as expected.
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Fig. 9: Total coflow completion time for different values of δ
and τ (both in second), normalized with the performance of
LP-OV-LS (δ = 0 for any τ ).
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Fig. 10: Average standard deviation for the progress of
coflows, for different values of δ and τ (both in second).

E. Discussion on Algorithm’s Complexity

In this section, we provide a discussion on complexity
of our algorithm which is mainly determined by the step
of finding appropriate ordering of coflows. The scheduling
step is the simple list scheduling policy where complexity of
computing the schedule– upon arrival or departure of a flow–
is at most the length of the list, which is equal to the number
of incomplete flows. The relaxed LP (7) that is used to obtain
ordering of coflows has O(K2) variables and O(K2 +KN))
constraints and can be solved in polynomial time, e.g. using
interior point method [29]. On a desktop PC, with 8 Intel CPU
core i7− 4790 processors @ 3.60 GHz and 32.00 GB RAM,
it took 101.93 seconds to solve the LP for the Facebook trace,
when all coflows are considered for the case of general release
dates. In this case, the maximum coflow completion time under
our algorithm is 3492 seconds and the average completion
time is 183.7 seconds. For the collection with M ≥ 50, it
took 24.40 seconds to solve the LP for the case of general
release dates. In this case, the maximum coflow completion
time under our algorithm is 3447 seconds and the average
completion time is 194.23 seconds. We note that solving the
LP can be done much faster using the powerful computing
resources in today’s datacenters. The computation overhead
as well as communication overhead (i.e., sending the rates to
servers) might still be an issue for smaller coflows– the same
issue as in other algorithms such as Varys [6].

IX. CONCLUDING REMARKS

In this paper, we studied the problem of scheduling of
coflows with release dates to minimize their total weighted
completion time, and proposed an algorithm with improved

approximation ratio. We also conducted extensive experiments
to evaluate the performance of our algorithm, compared with
three algorithms proposed before, using both real and synthetic
traffic traces. Our experimental results show that our algorithm
in fact performs very close to optimal.

As future work, other realistic constraints such as prece-
dence requirement or deadline constraints need to be con-
sidered. Also, theoretical and experimental evaluation of the
performance of the proposed online algorithm is left for future
work. While we modeled the datacenter network as a giant
non-blocking switch (thus focusing on rate allocation), the
routing of coflows in the datacenter network is also of great
importance for achieving the quality of service.
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APPENDIX
NP-COMPLETENESS AND COUNTER EXAMPLE

NP-Completeness of Optimization (3): We first show NP-
completeness of the coflow scheduling problem as formulated
in optimization (3). This is done through reduction from the
concurrent open shop problem, in which a set of K jobs and
a set of N machines are given. Each job consists of some
tasks where each task is associated with a size and a specific
machine in which it should be processed. We convert each job
to a coflow by constructing a diagonal demand matrix [15]. By
this construction, the constraints (3d) and (3e) are equivalent.
The optimal solution to optimization (3) consists of non-
negative transmission rates xkj,j

?
(t) that sum to at most one

on destination node j at each time t ∈ [0, T ]. However, in
the concurrent open shop problem each machine can work
on one task at a time which can be translated to zero and
one transmission rates in the jargon of the coflow scheduling
problem. Now, we show that given an optimal solution with
rates xkj,j

?
(t) to optimization (3) for the converted coflow

scheduling problem, we can always transform it to a feasible
solution for the original concurrent open shop problem. To do
so, we consider destination node j (machine j) and start from
the last flow (task) that completes on this node. If there are
multiple last flows, we choose one arbitrarily. We denote by
fkj,j

? its optimal finishing time and by dkj,j its size. We then set
all transmission (processing) rates of this flow (task) to zero
from time 0 to fkj,j

? − dkj,j , and to one from time fkj,j
? − dkj,j

to fkj,j
?. We adjust rates of other flows such that transmission

rates sum to at most one at every time while all the flows
are guaranteed to be processed before their completion time
(which is given by the optimal solution). This can be easily
done by increasing xk

′

j,j

?
(t) for t ∈ [0, fkj,j

?−dkj,j ] by ∆xk
′

j,j(t)
determined as follows

∆xk
′

j,j(t) =

∫ fk
j,j

?

fk
j,j

?−dk
j,j

xk
′

j,j

?
(τ)dτ

dkj,j
× xkj,j

?
(t)

By doing so, finishing time of the last flow does not change,
and finishing time of other flows may decrease. The itera-
tive procedure is repeated until processing rates of all flows
converted to zero or one on node j. Therefore, we end up
with possibly better solution in terms of total completion
times of flows for node j with zero-one rates. We apply
this mechanism to all nodes; hence, the total completion
time of the transformed solution is as good as the optimal
solution. Thus, if an algorithm can solve the coflow scheduling
problem in polynomial time, it can do so for concurrent open
shop problem which contradicts with its NP-completeness.
This completes the argument and NP-completeness of coflow
scheduling problem is concluded.

2-approximation algorithms from the concurrent open
shop cannot be directly applied to coflow scheduling: As
we discussed in Section III, the 2-approximation algorithms for
the concurrent open shop problem cannot be directly applied to
achieve 2-approximation algorithms for the coflow scheduling
problem. This is because given an ordering of K coflows,
there does not always exist a schedule in which the first
coflow completes at time W (1), the second coflow completes
at time W (1, 2), and so on, until the last coflow completes
at time W (1, · · · ,K) (recall Definition 2 for definition of
W (1, · · · , k)). We provide a counter example to show this.

Example 3 (Counter Example). Consider a 3×3 network with
2 coflows as shown in Figure 11. One can force the ordering
algorithm to output orange coflow as the first coflow and the
green coflow as the second one in the list (e.g., by means
of assigning appropriate weight to coflows). To finish the
first coflow (orange coflow) in W (1), transmission rates are
assigned as shown in Figure 12a. To avoid under-utilization
of network resources, the remaining capacities are dedicated
to flows of coflow 2 (green coflow). After W (1) = 2 units of
time, coflow 1 completes and the remaining flows of coflow 2
is as shown in Figure 12b, therefore, one needs 2 more units
of time to complete remaining flows of coflow 2. Hence, coflow
2 completes at time 4 > W (1, 2) = 3.

In fact, the 2-approximation algorithm in [33], for coflow
scheduling when all the release dates are zero, relies on the
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1

2

3

1

2

3

2

2

2

1

1

1

3

3

3

Coflows

1/2

1/2

1/2

1/2

(b) Remaining flows of green coflow at time 2 and rate assignment
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Fig. 12: Inaccuracy of proposed algorithm in [33] .

assumption that such a schedule exists which, as we showed
by the counter example, is not always true and hence the 4-
approximation algorithm proposed in this paper is the best
known approximation algorithm in this case.
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