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Abstract—The paper studies throughput-optimal scheduling in
wireless networks when there are file arrivals and departures.
In the case of single-hop traffic, the well-studied Max Weight
algorithm provides soft priorities to links with larger queue
lengths. If packets arrive in bursts during file arrival instants,
then large variances in file sizes would imply that some links will
have very large queue lengths while others will have small queue
lengths. Thus, links with small queue lengths may be starved for
long periods of time. An alternative is to use only MAC-layer
queue lengths in making scheduling decisions; in fact, typically
only this information is available since scheduling is performed
at the MAC layer. Therefore the questions we ask in this paper
are the following: (i) is scheduling using only MAC-layer queue
length information throughput-optimal? and (ii) does it improve
delay performance compared to the case where scheduling is
performed using the total number of packets waiting at a link?
We affirmatively answer both questions in the paper (the first
theoretically and the second using simulations), making minimal
assumptions on the transport-layer window control mechanism.

I. INTRODUCTION

In order to operate wireless systems efficiently, scheduling
algorithms are needed to facilitate simultaneous transmissions
of different users. Scheduling algorithms for wireless networks
have been widely studied since Tassiulas and Ephremides
[1] proposed the Max Weight algorithm. The Max Weight
Scheduling (MWS) algorithm is throughput optimal in the
sense that it can stabilize the queues of the network for
the largest set of arrival rates possible without knowing the
actual arrival rates. Max Weight works under very general
conditions but it does not consider connection-level dynamics.
It considers packet-level dynamics assuming that there is a
fixed set of users and packets are generated by each user
according to some stochastic process. Moreover, there is no
notion of congestion control while most modern communi-
cation networks use some congestion control mechanism for
fairness purposes or to avoid excessive congestion inside the
network [2]. There is a rich body of literature on the packet-
level stability of scheduling algorithms. Stability of wireless
networks under connection-level dynamics has been studied in,
e.g., [3], [4], [5], [6]. The implicit assumption in these works
is that algorithm can fully observe the dynamics of queues
for different connections while, in practice, the scheduler is
implemented as part of the MAC layer and can thus, use only
the MAC-layer queue lengths.
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In this paper, we are interested in the scenario where
files/connections arrive into and depart from an ad hoc wireless
network. Upon arrival of a file, a TCP connection is established
which regulates the injection of packets to MAC layer. The
scheduling algorithm must determine which links can transmit
packets at each time instant. When the transmission of a file
ends, its corresponding TCP connection is closed and the file
departs the system. If the scheduler has access to the total
queue length at Transport and MAC layers, then it can use Max
Weight algorithm to achieve throughput optimality. However,
this would lead to a poor delay performance because files with
large sizes might get priority over many small size files for
long periods of time. An alternative is to implement a weight-
based MAC algorithm as in [1], but use the MAC-layer queue,
then large files will not dominate the service because files are
stored at the transport layer and only a few packets are released
at a time to the MAC layer. However, it is not obvious that
such a system will be throughput-optimal.

For the connection-level model, we show that by appropri-
ately choosing weights which are functions of the MAC-layer
queue and using the Max-Weight-type scheduling algorithms,
throughput optimality is achieved. The only assumption about
protocols that we make is that each TCP window size is at least
one and that there is a maximum window size, both of which
are true for all implementations of TCP. We make no other
assumptions on the dynamics of the TCP window flow control
mechanism. On the other hand, the fact that our scheduler uses
only the MAC-layer information is consistent with the actual
implementation, because in reality, the scheduler is part of
the MAC layer and might not have access to the transport
layer. We will present simulations that verify the fact that our
scheduling algorithm improves the delay performance.

Next, we consider the issue of distributed implementation
of our scheduling algorithm. CSMA (Carrier-Sense-Multiple-
Access) scheduling algorithms have attracted attention recently
because they can be implemented in a decentralized way.
Initially, to prove the throughput optimality of the CSMA
scheduling algorithms, most of the papers make the time-scale
separation assumption, i.e., convergence of CSMA Markov
Chain to its stationary distribution happens at a much faster
time-scale than queue changes in the network. Recently, it has
been shown that CSMA indeed achieve throughput optimality
without the time-scale separation assumption [12], [15], [10],
[16]. The key element of such efficient CSMA algorithms is
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using an appropriate queue-based weight in CSMA parame-
ters. In this paper, we show that CSMA algorithms achieve
throughput optimality even when we use only MAC-layer
queue length information.

At this point, we comment on the differences between
our paper and a related model considered in [7]. In [7],
throughput-optimal scheduling algorithms have been derived
for a connection-level model of a wireless network assuming
that each link has access to the number of files waiting at the
link. Here, we make no such assumption and use only MAC-
layer queue information which is readily available. Further,
[7] assumes a time-scale separation between CSMA and the
file arrival-departure process. Such an assumption is not made
in this paper.

In a nutshell, the main contributions of this paper are the
following:
• Using the total queue length as the weight in MWS

algorithms causes short files to experience high latencies.
Instead, we use the MAC-layer queues in our algorithm
and show that such an algorithm is still throughput
optimal and its overall delay performance is better than
traditional MWS in simulations.

• In reality, wireless scheduling is performed at the MAC-
layer and the scheduler does not have access to the total
queue length information. Hence, our algorithm design is
based on a more practical assumption.

• A distributed CSMA implementation of the algorithm is
proposed such that each user only needs to know its
own MAC-layer queue and carrier sensing information.
The throughput optimality of the distributed algorithm is
established without time-scale separation assumption.

Due to page limits, we have only presented the main ideas
behind the proofs and refer the interested reader to [17] for the
complete proofs. The rest of the paper is organized as follows.
In Section II, we describe our models for the wireless network,
file arrivals, and Transport and MAC layers. We propose
our scheduling algorithm in Section III and also prove its
throughput optimality. Some simulation results are also given
to investigate throughput optimality and delay performance
of our algorithm. Section IV is devoted to the distributed
implementation of the optimal algorithm. It also contains the
proof of throughput optimality of the distributed algorithm.
Finally, we will end the paper with conclusions.

II. SYSTEM MODEL

A. Model of Wireless Network

Consider a wireless network consisting of a set of nodes
where each node could be a source and/or a destination for
another node. We assume single-hop communications. Time is
slotted. In [8] which was a three-page extended abstract, we
considered the case where the file sizes are bounded. Here, we
consider a more practical case. File arrivals occur according
to an i.i.d process with mixture of geometric distributions as
described next. Let λl denote the file arrival rate at link l.
For simplicity, we can assume that files arrive according to an
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Fig. 1. Transport/MAC layers: the packets at the MAC layer need not be in
separate queues as shown above, they can be in a single queue.

i.i.d Bernoulli process with rate λl. There are K possible file
types where the files of type i are geometrically distributed
with mean 1/ηi packets. The file arrived at link l can belong
to type i with probability pli, i = 1, 2, ..,K. Our motivation
for selecting such a model is due to the heavy-tail distribution
of file sizes in the Internet. It is believed that, see e.g., [9],
that most of bytes are generated by long files while most of
the flows are short flows. By controlling the probabilities pli,
for the same average file size, we can obtain distributions with
such properties. See [17] for some examples.

Furthermore, we assume that each link has a unit service
rate, i.e., in each time slot, one packet could be successfully
transmitted over a link. We use the notion of the conflict graph
to capture the interference constraints. Let G(V, E) denote the
conflict graph of the wireless network, where each vertex in
V is a communication link in the wireless network. There is
an edge (l1, l2) ∈ E between vertices l1 and l2 if simultaneous
transmissions over communication links l1 and l2 are not
successful. Therefore, at each time slot, the active links should
form an independent set of G, i.e., no two scheduled vertices
can share an edge in G. Let N = |V| denote the number of
communication links in the wireless network.

Formally, a schedule can be represented by a vector X =
[xl : l = 1, ..., N ] such that xl ∈ {0, 1} and xi + xj ≤ 1 for
all (i, j) ∈ E . A schedule can also be represented by a set s
of links such that l ∈ s if xl = 1 (and l 6∈ s if xl = 0). LetM
denote the set of all feasible schedules. At each time slot, a
feasible schedule is chosen by the scheduling algorithm based
on the current network information. Let ml =

∑K
i=1 pli/ηi

denote the mean file size at link l, and define the work load at
link l by ρl = λlml. Then, the capacity region of the network
is the set of all load vectors ρ = (ρ1, · · · , ρN ) that make the
network queues stable. It is well known, e.g., see [1], that,
under our model, the capacity region is given by

C =
{
ρ : ∃µ ∈ Co(M) s.t. ρ < µ

}
where Co(·) is the convex hull operator. When dealing with
vectors, inequalities should be interpreted component-wise.
A scheduling algorithm is called throughput-optimal if it
stabilizes the queues in the network for any load vector inside
the capacity region C.
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B. Models of Transport and MAC Layers
Upon arrival of a file at a source, a TCP-connection is

established that regulates the injection of packets into the
MAC layer. The transmission of MAC-layer packets is itself
controlled by the scheduling algorithm. Once transmission of
a file ends, file departs and the corresponding TCP-connection
will be closed.

At each link, we index the files according to their arriving
order such that the index 1 is given to the earliest file. This
means that once transmission of a file ends, the indices of the
remaining files are updated such that indices again start from
1 and are consecutive. Note that the indexing rule is not part
of the algorithm implementation and it is used here only for
the purpose of analysis.

Let Wli[t] denote the congestion window size of file i at link
l at time t. Wli is a time-varying sequence which changes as
a result of TCP congestion control. If the congestion window
of file i is not full, TCP will continue injecting packets from
the remainder of file i to the congestion window until file i
has no packets remaining at the Transport layer (See Figure
1). It is important to note that the MAC layer does not know
the number of remaining packets at the Transport layer, so any
scheduling decision has to be made based on the MAC-layer
information only. It is reasonable to assume that 1 ≤Wli[t] ≤
Wmax, i.e., all congestion window sizes are upper-bounded by
a constant Wmax.

Let qli[t] and qmacli [t] denote the number of remaining
packets and the number of MAC-layer packets of file i at
link l at time t respectively. Let nl[t] denote the number of
files at link l at time t. Therefore, the total number of packets
at link l is ql[t] =

∑nl[t]
i=1 qli[t], and the total number of MAC-

layer packets at link l is qmacl [t] =
∑nl[t]
i=1 q

mac
li [t]. Based on

our model so far, we have nl[t] ≤ qmacl [t] ≤ ql[t], where the
lower bound follows from the fact that each window size is
at least one.

C. The State of the Network
We aim to find a scheduling algorithm which only uses the

MAC-layer information to stabilize the system when the traffic
loads are within the capacity region. We not only allow the
scheduling algorithm to choose the set of active links but also
allow the algorithm to determine which MAC-layer packets to
serve at each time instant. For example, our analysis is general
enough to allow even service disciplines that are not FIFO
(First-in, First-Out) at each MAC-layer queue. However, we
assume that the scheduling algorithm is such that the network
state can be described by a Markov chain as we will specify
now. Let Il denote additional MAC-layer information, other
than MAC-layer queues and congestion window sizes, that
might be needed for a scheduling algorithm to update the
state of the network. Obviously, such additional MAC-layer
information depends on specific service discipline utilized
by the scheduling algorithm to serve the MAC-layer packets
of the active links. For example, if a scheduling algorithm
serves MAC-layer packets on a FIFO basis at each link, then
Il includes the ordering of MAC-layer packets and the rule

according which the congestion window sizes change. On
the other hand, if a scheduling algorithm servers MAC-layer
packets in a totally random manner, then Il does not need to
maintain the ordering information of MAC-layer packets.

Let ξli[t] be the indicator that whether there are packets of
file i at the Transport layer or not, i.e., if ξli[t] = 1, the last
packet of file i has not been injected to the MAC layer; if
ξli[t] = 0, then there is no remaining packets of file i at the
Transport layer. Let τi[t] ∈ {1, ...,K} denote the type of file
with index i at time t. It is worth mentioning that the number
of remaining packets of file i at the Transport layer follows a
geometric distribution with mean σli[t] = 1/ητi[t], as long as
ξli[t] = 1, due to the memoryless property of the geometric
distribution. Note that σli[t] is a function of time only because
of re-indexing since a file might change its index from slot to
slot. We define the state of link l to be

Sl[t] = {ξl[t], qmacl [t],W l[t],σl[t], Il[t]},

where ξl[t] = {ξli[t]}i, qmacl [t] = {qmacli [t]}i, W l[t] =
{Wli[t]}i, σl[t] = {σli[t]}i. The network state S[t] is the
set of all link states, i.e., S[t] = {Sl[t]}l. Suppose that the
change of congestion window sizes is determined by S[t].
Therefore, under a specific scheduling algorithm which only
uses the MAC-layer information, the network Markov chain
is well defined.

III. A MAX WEIGHT-TYPE SCHEDULING ALGORITHM

A. Algorithm Description

Define a function f(x) as

f(x) :=
log(1 + x)
g(x)

, (1)

where g(x) is an arbitrary increasing function which makes
f(x) an increasing concave function. Assume that g(0) > 0
and f(x) is a continuously differentiable function on [0,∞).
Our scheduling algorithm is as follows:
• We assign a weight of f(qmacl [t]) to each link l. At each

time instant t, the algorithm picks a schedule s̃[t] such
that

s̃[t] ∈ arg max
s∈M

∑
l∈s

f(qmacl [t]). (2)

• If link l is scheduled, we choose a MAC-layer packet at
link l to transmit. The scheduling decision within link
l can be based on some arbitrary service discipline, for
example, FIFO or random selection.

Recall that qmacl [t] is the total number of packets at the MAC-
layer of link l at time t. Therefore, the scheduling decision is
only based on MAC-layer information.

Theorem 1. For any ε > 0, the Max Weight-type algorithm
can stabilize the network for all ρ ∈ C/(1 + ε), independent
of transport layer algorithm (as long as the minimum window
size is one and the window sizes are bounded) and the (non-
idling) service discipline used to transmit packets from active
links.
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In particular, one can implement service disciplines that
give priority to packets from short files if such information
can be made available to the MAC layer. Such algorithms are
often used in practice to reduce file transfer delays of short
files. Notice that the purpose of choosing weight functions
as in (1) is to achieve the throughput optimality by only
using the MAC-layer information. Furthermore, such weight
functions enable us to implement a fully-distributed version of
the algorithm using CSMA as we will see later.

B. Proof of Throughput-Optimality
Since we use a discrete-time model, we have to specify the

order in which files/packets arrive and depart, which we do
below:

1) At the beginning of each time slot, a scheduling decision
is made by the scheduling algorithm. Packets depart
from the MAC layer of scheduled links.

2) File arrivals occur next. Once a file arrives, a new TCP
connection is set up for that file with an initial pre-
determined congestion window size.

3) For each TCP connection, if the congestion window is
not full, packets are injected into the MAC layer from
the Transport layer until the window size is fully used
or there is no more packets at the Transport layer.

We re-index the files at the beginning of each time slot
because some files might have been departed during the last
time slot.

Define q̄l[t] := E[ql[t]|Sl[t]] to be the expected queue length
at link l given the state Sl[t]. Then,

q̄l[t] =
nl[t]∑
i=1

[
σli[t]ξli[t] + qmacli [t]

]
(3)

where nl[t] is the number of files at link l at the beginning of
time slot t, which is known if the network state S[t] is given.
Define ∆nl[t] as the number of new files arriving at link l at
time slot t. The dynamics of q̄l[t] involves the dynamics of
qmacl [t], ξl[t] and nl[t], and, thus, it consists of: (i) departure
of MAC-layer packets, (ii) new file arrivals, (iii) injection of
packets into the MAC layer, and (iv) departure of files from
the Transport layer:

q̄l[t+ 1] = q̄l[t]− dmacl [t] + al[t] + amacl [t]− dtcpl [t]. (4)

where dmacl [t] is the number of packets that depart from
the MAC layer, al[t] =

∑nl[t]+∆nl[t]
i=nl[t]+1 σli[t] is the expected

number of packet arrivals of new files, amacl [t] is the total
number of packets injected into the MAC layer to fill up the
congestion window after scheduling and new file arrival, and
dtcpl [t] =

∑nl[t]+∆nl[t]
i=1 σli[t]Ili[t] is the Transport-layer “ex-

pected packet departure” because of the MAC-layer injection.
Here, Ili[t] = 1 indicates the last packet of file i leaves the
Transport layer during time slot t; otherwise, Ili[t] = 0. Recall
that E

[
al[t]

]
= ρl is the mean packet arrival rate at link l.

Let bl[t] := amacl [t]− dtcpl [t], then we rewrite (4) as

q̄l[t+ 1] = q̄l[t]− dmacl [t] + bl[t] + al[t], (5)
= q̄l[t]− xl[t] + bl[t] + al[t] + ul[t].

where ul[t] = max{xl[t] − qmacl [t], 0} is the wasted service,
i.e., when l is included in the schedule but it does not
have packets to transmit. Define ES [·] = E[·|S[t]]. Lemma 1
characterizes the first and the second moments of bl[t].

Lemma 1. For the process {bl[t]},

(i) ES
[
bl[t]

]
= 0.

(ii) ES
[
bl[t]2

]
≤
(
λl + 1

)
max

{
W 2
max, 1/η

2
min

}
.

where ηmin = min1≤i≤K ηi.

The weight of a link based on its MAC queue or the total
expected queue length differs by a constant when weight is
chosen carefully as stated by the following Lemma.

Lemma 2. Let f(x) = log(1+x)
g(x) , then

0 ≤ f(q̄l[t])− f(qmacl [t]) ≤ c1, (6)

where c1 = log(1+1/ηmin)
g(0) .

Proof of Lemma 2: Because qmacl [t] ≤ q̄l[t] and f(x) is
an increasing function, the first inequality is straight-forward.
From the definition of q̄l[t] in (3),

q̄l[t] =
nl[t]∑
i=1

[
σli[t]ηli[t] + qmacli [t]

]
≤ 1/ηminnl[t] + qmacl [t] ≤ (1 + 1/ηmin)qmacl [t]

Therefore,

f(q̄l[t]) ≤ f
(

(1 + 1/ηmin)qmacl [t]
)

=
log
(

1 + (1 + 1/ηmin)qmacl [t]
)

g
(

(1 + 1/ηmin)qmacl [t]
)

≤
log
(

(1 + 1/ηmin)(1 + qmacl [t])
)

g
(
qmacl [t]

)
≤ f(qmacl [t]) +

log(1 + 1/ηmin)
g(0)

.

Letting c1 = log(1 + 1/ηmin)/g(0) concludes the proof.

Let F (q) =
∫ q

0
f(x)dx. We define the Lyapunov function

V (S) as follows:

V (S) =
L∑
l=1

F (q̄l). (7)
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Next, we calculate the Lyapunov drift

ES
[
V (S[t+ 1])− V (S[t])

]
(8)

=
N∑
l=1

(
ES
[
F (q̄l[t+ 1])

]
− F (q̄l[t])

)
=

N∑
l=1

ES
[
f(yl[t])(ãl[t]− xl[t] + ul[t])

]
=

N∑
l=1

ES
[(
f(yl[t])− f(q̄l[t])

)
(ãl[t]− xl[t])

]
+

N∑
l=1

ES
[
f(q̄l[t])(ãl[t]− xl[t])

]
+

N∑
l=1

ES
[
f(yl[t])ul[t]

]
, (9)

where, by Mean Value Theorem, yl[t] is some value between
q̄l[t] and q̄l[t+ 1] and ãl[t] := al[t] + bl[t].

The first term and the third term of (8) are bounded as stated
by the following Lemmas.

Lemma 3. There exists a positive constant c2 such that, for
all S[t],

∑N
l=1 ES

[
f(yl[t])ul[t]

]
≤ c2.

Lemma 4. Assume E
[
al[t]2

]
<∞, then there exists a positive

constant c3 such that

N∑
l=1

ES
[(
f(yl[t])− f(q̄l[t])

)
(ãl[t]− xl[t])

]
≤ c3,∀t,S[t].

Hence, letting c23 = c2 + c3, the Lyapunov drift can be
bounded by

ES
[
∆V (S[t])

]
≤

N∑
l=1

ES
[
f(q̄l[t])(ãl[t]− xl[t])

]
+ c23

=
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s̃[t]

f(q̄l[t]) + c23. (10)

Let s∗[t] be the optimal scheduling algorithm which maxi-
mizes the following objective

s∗[t] ∈ arg max
s∈M

∑
l∈s

f(q̄l[t]). (11)

Then, based on definitions (2), (11), and Lemma 2, it can be
shown that

0 ≤
∑
l∈s∗[t]

f(q̄l[t])−
∑
l∈s̃[t]

f(q̄l[t]) ≤ Nc1. (12)

To complete the proof of Theorem 1, assume that the traffic
load is strictly within the capacity region, i.e., there exists
ε > 0 such that ρ ∈ C/(1 + ε). The capacity region is a N -
dimensional polyhedron which is a convex hull of all possible
schedules. In linear programming, one of the corner points of

a linear optimization over the linear constraints is one of the
optimal solutions. Hence, letting

µ∗[t] = arg max
µ∈C

N∑
l=1

f
(
q̄l[t]

)
µl, (13)

the following holds:∑
l∈s∗[t]

f
(
q̄l[t]

)
=

N∑
l=1

f
(
q̄l[t]

)
µ∗l [t] ≥

N∑
l=1

f
(
q̄l[t]

)
ρl(1 + ε).

Consider the largest sphere centered at the origin and
tangent to the boundary of the capacity region C. Let r∗ be
the radius of such a sphere. The radius r∗ is determined by
the capacity region uniquely and r∗ > 0. Define

µr[t] =
(

f(q̄1[t])
||f(q̄[t])||2

r∗, · · · , f(q̄N [t])
||f(q̄[t])||2

r∗
)
, (14)

where ||.||2 is the Euclidian norm in RN . Note that µr[t] ∈ C
by construction. From (12), the Lyapunov drift can be bounded
as follows

ES [∆V (S[t])] ≤
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s̃[t]

f(q̄l[t]) + c23

≤
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s∗[t]

f(q̄l[t]) + c4

≤
N∑
l=1

f(q̄l[t])ρl −
N∑
l=1

f(q̄l[t])
µ∗l [t]
1 + ε

− ε

1 + ε

N∑
l=1

f(q̄l[t])µ∗l [t] + c4

≤ − ε

1 + ε

N∑
l=1

f(q̄l[t])µrl [t] + c4

= − ε

1 + ε
r∗||f(q̄[t])||2 + c4,

where c4 = c23 +Nc1. Therefore, the Lyapunov drift will be
negative when ‖q̄‖1 is sufficiently large, or it is sufficient that
the number of files is sufficiently large. Specifically, consider
any constant δ > 0 and let

B =
{
S : ‖n‖ ≥ f−1

(
1 + ε

εr∗
(c4 + δ)

)}
.

Then, for any S ∈ B, the Lyapunov drift is less than −δ.
Also it is easy to check that Bc contains only a finite set of
states with finite drift. Therefore, the system is stable by the
Foster-Lyapunov stability theorem [14].

C. Some Performance Results

Consider the simple wireless network of Figure 2 under
the 1-hop interference model, which implies links sharing a
node can not be active simultaneously. There are 22 distinct
maximal schedules for this network. Each link has a unit link
capacity. The distribution of files is a mixture of geometric

1When there is no subscript, ‖z‖ = ‖z‖∞ = maxi zi = zmax.
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Fig. 2. A wireless network containing 12 communication links.

distributions as described next. Once a file is generated, the file
size is geometrically distributed with mean 2 with probability
5/6 and is geometrically distributed with mean 100 with
probability 1/6. All file arrivals are generated by Bernoulli
processes. We say a file is short if its file size is less than
half of the mean file size; otherwise, it is a long file. While
this definition is somewhat arbitrary, our conclusions continue
to hold if this assumption is removed. For simplicity, we
divide the links into the following two sets: {4, 6, 7, 9} and
{1, 2, 3, 5, 8, 10, 11, 12}, where the links in each set have an
equal arrival rate but the arrival rate of links in the second
set is half of the arrival rate of links in the first set. We
do simulations for different traffic intensities where the traffic
intensity is a number such that the load vector divided by the
traffic intensity lies on the boundary of the capacity region.

We consider a very naive window flow control algorithm
under which the window size is always 1 for links {1, 4, 7, 10},
2 for links {2, 5, 8, 11} and 3 for links {3, 6, 9, 12}. We assume
that MAC-layer packets are removed in a FIFO order. Once
a packet is removed, a packet from the same file is injected
from Transport layer to the tail of the MAC-layer FIFO queue
as long as there are packets at the Transport layer. In addition
to FIFO, we also do simulations for the case that MAC-layer
receives one-bit information notifying whether the file is short
or long. In this case, we give higher priority to short files.
Each class (short or long) of files is served in a FIFO order.
In the simulation, our scheduling algorithm chooses the weight
of link l to be f(qmacl [t]) where f(x) = log(1 + x) by letting
g(x) = 1. We compare our algorithm with the scheduling
algorithm which uses f(ql[t]) as the weight of link l.

Figure 3 shows the average delays of short files for different
traffic intensities. For both FIFO and the short-file-first service
disciplines for the MAC-layer packet transmission, the short-
file delay performance of the scheduling algorithm which only
uses the MAC-layer queue information is much better than
the performance of the regular maximum weight scheduling
that uses the total number of packets as the weight of a link.
This is because a large total queue length at a link does not
necessarily imply a large number of files at that link. It is
possible that the scheduling algorithm chooses a link with
large queue length but containing only a few files. Therefore,
a link which contains many short files, but has only a small
number of packets, will be scheduled infrequently and short
files at such links suffer high latency. Also, as we expect, if
the MAC layer knows 1-bit additional information to identify
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short files and uses short-file-first in-link scheduling, the delay
performance will be even better.

Figure 4 shows the average delay performance of long
files at various traffic intensities. As it is observed, the delay
performance of long files is almost the same under both
algorithms. However, for the same weight function, using 1-
bit extra information can still yield a slightly better delay
performance compared to the FIFO performance.

IV. DISTRIBUTED IMPLEMENTATION OF THE SCHEDULING
ALGORITHM

Recall that the optimal scheduling algorithm requires to find
a maximum weight-type schedule at each time, i.e., needs to
solve (2) at each time t. This is a formidable task, hence, in
this section, we design a distributed algorithm version of the
algorithm based on Glauber Dynamics.

A. Basic CSMA Algorithm

For our algorithm, based on the MAC layer information, we
choose the weight of link l to be

w̃l[t] = max (wl[t], wmin[t]) (15)

where

wl[t] := f(qmacl [t]), (16)

wmin[t] :=
ε

2N
f(qmacmax[t]), (17)
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and qmacmax[t] is the length of the largest MAC queue in the
network at time t and assumed to be known. The function
f(x) is the same as defined for the centralized algorithm by
(1).

Consider the conflict graph G(V, E) of the network as
defined earlier. Denote the neighbors of i by a set N (i) =
{k ∈ V : (i, k) ∈ E}. At each time slot t, a node i is chosen
uniformly at random, with probability 1

N , then
(i) If xj [t − 1] = 0 for all nodes j ∈ N (i), then xi[t] = 1

with probability exp(w̃i[t])
1+exp(w̃i[t])

, and xi[t] = 0 with proba-
bility 1

1+exp(w̃i[t])
.

Otherwise, xi[t]=0.
(ii) xj [t] = xj [t− 1] for all j 6= i.
The following Theorem states the main result regarding the
throughput optimality of the basic CSMA algorithm.

Theorem 2. Consider any ε > 0. The basic CSMA algorithm
can stabilize the network for any ρ ∈ C/(1+2ε), if the weight
function is chosen to be in the form of f(x) = log(1+x)

g(x) . The
function g(x) is a strictly increasing function chosen such that
f is a strictly concave increasing function. In particular, the
algorithm with the following weight functions is throughput-
optimal: f(x) = log(1+x)

log(e+log(1+x)) or f(x) = (log(1 + x))1−θ

for any 0 < θ < 1.

B. Distributed Implementation

The basic algorithm is based on Glauber-Dynamics with
one site update at each time. For distributed implementation,
we need a randomized mechanism to select a link uniformly
at each time slot. We use the Q-CSMA idea [11] to perform
the link selection as follows. Each time slot is divided into a
control slot and a data slot. The control slot, which is much
smaller than the data slot, is used to generate a transmission
schedule for the data slot. First, the network selects a set
of links m[t] that do not conflict with each other. Then,
it performs the Glauber-Dynamics updates, in parallel, over
links m[t] to produce a transmission schedule s[t] for data
transmission. m[t] is called the decision schedule at time t.
For example, a simple randomized mechanism to generate
m[t] is as follows. In control slot t, each link l sends an
INTENT message with probability 1/2. If l does not hear
any INTENT messages from its neighboring links N (l), it
will be included in m[t], otherwise it will not be included in
m[t]. Therefore, by the end of the control slot, any feasible
decision schedule m[t] ⊆M could be selected with a positive
probability α(m[t]). Once a link knows whether it is included
in the decision schedule, it can determine its state in the data
slot based on its carrier sensing information (i.e., whether its
conflicting links were active in the previous data slot) and the
activation probability for the current slot (based on its queue
length).

To determine the weight at each link l, qmacmax[t] is needed.
Instead, each link l can maintain an estimate of qmacmax[t]. We
can use the procedure suggested in [12] to estimate qmacmax[t],
and use Lemma 2 of [12] to complete the stability proof. So we
do not pursue this issue here. In practical networks ε

2N log(1+

qmacmax) is small and we can use the weight function f directly,
and thus, there may not be any need to know qmacmax[t].

Corollary 1. Under the weight function f specified in Theo-
rem 2, the distributed algorithm can stabilize the network for
any ρ ∈ C/(1 + 2ε).

C. Proof of Throughput Optimality

Consider the basic CSMA algorithm over a graph G(V, E).
Assume that the weights are constants, i.e., the basic algorithm
uses a weight vector W̃ = [w̃1, w̃2, ..., w̃N ] at all times. Then,
the basic algorithm is essentially an irreducible, aperiodic,
and reversible Markov chain (called Glauber Dynamics) to
generate the independent sets of G. So, the state space M
consists of all independent sets of G. Let |V| = N . The
stationary distribution of the chain is given by

π(s) =
1
Z

exp(
∑
i∈s

w̃i); s ∈M, (18)

where Z is the normalizing constant.
The basic algorithm uses a time-varying version of the

Glauber dynamics, where the weights change with time. This
yields a time-inhomogeneous Markov chain but we will see
that, for the choice of weights (15), it behaves similarly to the
Glauber dynamics.

1) Mixing time of Glauber dynamics: For simplicity, we
index the elements of M by 1, 2, ..., r, where r = |M|.
Then, the eigenvalues of the corresponding transition matrix
are ordered in such a way that

λ1 = 1 > λ2 ≥ ... ≥ λr > −1.

The convergence to steady state distribution is geometric with
a rate equal to the second largest eigenvalue modulus (SLEM)
of the transition matrix [13]. In fact, for any initial probability
distribution µ0 on M, and for all n ≥ 1,

‖µ0Pn − π‖ 1
π
≤ (λ∗)n‖µ0 − π‖ 1

π
, (19)

where λ∗ = max{λ2, |λr|} is the SLEM. Note that, by

definition, ‖z‖1/π =
(∑r

i=1 z(i)
2 1
π(i)

)1/2

.

The following Lemma gives an upper bound on the SLEM
λ∗ of Glauber dynamics.

Lemma 5. For the Glauber Dynamics with the weight vector
W̃ on a graph G(V, E) with |V| = N ,

λ∗ ≤ 1− 1
16N exp(4Nw̃max)

,

where w̃max = maxi∈V w̃i.

See the appendix of [17] for the proof. We define the mixing
time as T = 1

1−λ∗ , so

T ≤ 16N exp(4Nw̃max) (20)

Simple calculation, based on (19), reveals that the amount
of time needed to get close to the stationary distribution is
proportional to T .
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2) A key lemma: At any time slot t, given the weight vector
W̃ [t] = [w̃1[t], ..., w̃N [t]], the Max Weight-type algorithm
should solve

max
s∈M

∑
l∈s

w̃l[t],

instead, our algorithm tries to simulate a distribution

πt(s) =
1
Z

exp(
∑
l∈s

w̃l[t]); s ∈M, (21)

i.e., the stationary distribution of Glauber dynamics with the
weight vector W̃ [t] at time t.

Let Pt denote the transition probability matrix of Glauber
dynamics with the weight vector W̃ [t]. Also let µt be the
true probability distribution of the inhomogeneous-time chain,
over the set of schedules M, at time t. Therefore, we have
µt = µt−1Pt. Let πt denote the stationary distribution of the
time-homogenous Markov chain with P = Pt as in (21). By
choosing proper wmin and f(·), we aim to ensure that µt and
πt are close enough, i.e., ‖πt−µt‖TV ≤ δ for some δ arbitrary
small. Let wmax[t] = f(qmacmax[t]). The following lemma gives
a sufficient condition under which the probability distribution
of the inhomogeneous Markov chain is close to the stationary
distribution of the homogenous chain.

Lemma 6. Given any δ > 0, ‖πt−µt‖TV ≤ δ/4 holds when
‖qmac[t]‖ ≥ qth + t∗, if there exists a qth such that

αtTt+1 ≤ δ/16 whenever ‖qmac[t]‖ > qth, (22)

where
(i) αt = 2Nf ′(f−1(wmin[t+ 1])− 1)

(ii) Tt ≤ 16N exp(4Nwmax[t])
(ii) t∗ is the smallest t such that

t1+t∗∑
k=t1:‖q[t1]‖=qth

1
T 2
k

≥ log(4/δ) +N(f(qth) + log 2)/2.

(23)

In the above Lemma, condition (ii) is based on the upper
bound of (20) and the fact that w̃max[t] = wmax[t]. See the
appendix of [17] for the proof of the above Lemma. In other
words, Lemma 6 states that when queue lengths are large, the
observed distribution of the schedules is close to the desired
stationary distribution. The key idea is that the weights change
at the rate αt while the system responds to these changes at
the rate 1/Tt+1. Condition (i) is to make the weight dynamics
slow enough compared to response time of the chain such that
it remains close to its equilibrium (stationary distribution).

3) Throughput optimality: It turns out that weight functions
of the form f(x) = log(1+x)

g(x) where g(x) is a strictly increasing
function, chosen such that f is an increasing concave function,
satisfy the requirements of Lemma 6, and hence yield a
maximum throughput algorithm. See [17] for more details.

Roughly speaking, since the mixing time T is exponential
in wmax, f ′(f−1(wmin)) must be in the form of e−wmin ;
otherwise it will be impossible to satisfy αtTt+1 < δ/16 for
any arbitrarily small δ as ‖qmac[t]‖ → ∞. The only function

with such a property is the log(·) function. In fact, it turns out
that f must grow slightly slower than log(·), as was shown in
[17], to satisfy (22), and to ensure the existence of a finite t∗

in Lemma 6. For example, by choosing functions that grow
much slower than log(1+x), like g(x) = log(e+log(1+x)),
we can make f(x) behave approximately like log(1 + x) for
large ranges of x.

Next, the following Lemma states that, with high probabil-
ity, the basic CSMA algorithm chooses schedules that their
weights are close to the Max Wight schedule.

Lemma 7. The basic CSMA algorithm has the following
property: Given any 0 < ε < 1 and 0 < δ < 1, there exists
a B(δ, ε) > 0 such that whenever ‖qmac[t]‖ > B(δ, ε), with
probability larger than 1− δ, it chooses a schedule s[t] ∈M
that satisfies ∑

l∈s[t]

wl[t] ≥ (1− ε) max
s∈M

∑
l∈s

wl[t].

Proof: Let w∗[t] = maxs∈M
∑
l∈s wl[t] and define

χt := {s ∈M :
∑
l∈s

wl[t] < (1− ε)w∗[t]}

Therefore, we need to show that µt(χt) ≤ δ, for ‖qmac[t]‖
large enough. For our choice of f(·) and wmin, it follows
from Lemma 6 that, whenever ‖qmac[t]‖ > qth + t∗, 2‖µt −
πt‖TV ≤ δ/2, and consequently,∑

s∈χt

µt(s) ≤
∑
s∈χt

πt(s) + δ/2.

Therefore, to ensure that
∑
s∈χt µt(s) ≤ δ, it suffices to have∑

s∈χt πt(s) ≤ δ/2. But w̃i[t] ≤ wi[t] + wmin[t], So,∑
s∈χt

πt(s) ≤
∑
s∈χt

1
Zt

exp(
∑
i∈s

wi[t]) exp(|s|wmin[t])

≤
∑
s∈χt

1
Zt

exp((1− ε)w∗[t]) exp(Nwmin[t])

and

Zt =
∑
s∈M

exp(
∑
i∈s

w̃i[t]) >
∑
s∈M

exp(
∑
i∈s

wi[t]) > ew
∗[t].

Therefore,∑
s∈χt

πt(s) ≤ 2N exp(Nwmin[t]− εw∗[t])

and w∗[t] ≥ wmax[t]. So, it suffices to have

2N exp(Nwmin[t]− εwmax[t]) ≤ δ/2

when ‖qmac[t]‖ > qth + t∗. The choice of wmin[t] =
ε

2Nwmax[t], satisfies the above condition for ‖qmac[t]‖ >
B(δ, ε), where

B(δ, ε) = max
{
qth + t∗, f−1

(
N log 2 + log 2

δ

ε/2

)}
. (24)
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Now we are ready to prove the throughput optimality
for the basic CSMA algorithm. The proof is parallel to the
argument for the throughput optimality of the Max Weight-
type algorithm. Especially, the inequality (10) still holds, i.e.,

ES [∆V (S[t])]

≤
N∑
l=1

f(q̄l[t])ρl − ES [
∑
l∈s[t]

f(q̄l[t])] + c23

≤
N∑
l=1

f(q̄l[t])ρl − (1− δ)(1− ε)
∑
l∈s̃[t]

f(q̄l[t]) + c23

≤
N∑
l=1

f(q̄l[t])ρl − (1− δ)(1− ε)
∑
l∈s∗[t]

f(q̄l[t]) + c4

whenever ‖qmac[t]‖ > B(δ, ε). The second inequality is by
Lemma 7 and the last inequality is due to (12). Recall that
c4 = c23 +Nc1 as defined before. Since ρ is strictly inside the
capacity region, there exists ε > 0 such that ρ ∈ C/(1 + 2ε).
Since, for any fixed but arbitrary small ε, δ (in Lemma 7) can
be made arbitrary small, we choose δ sufficiently small such
that

(1− δ)(1− ε)− 1
1 + 2ε

= ε′ > 0.

Therefore, based on definitions (13) and (14), we have

ES [∆V (S[t])] ≤
N∑
l=1

f(q̄l[t])ρl −
N∑
i=1

f(q̄l[t])
µ∗l [t]

1 + 2ε

−ε′
N∑
i=1

f(q̄l[t])µ∗l [t] + c4

≤ −ε′r∗‖f(q̄[t])‖2 + c4

for a positive constant r∗ determined uniquely by the ca-
pacity region C (see the corresponding proof for the MWS-
type algorithm). So the drift will be negative for sufficiently
large ‖f(q̄[t])‖2. In particular, to get negative drift, −δ1,
for some positive constant δ1, it suffices that ‖n[t]‖ >
max{f−1( c4+δ1

ε′r∗ ), B(δ, ε)} because ‖f(q̄[t])‖2 ≥ ‖f(q̄[t])‖,
‖q̄[t]‖ ≥ ‖qmac[t]‖ ≥ ‖n[t]‖, and f is an increasing function.
This concludes the proof of the main theorem.

4) Extension of the proof to the distributed implementation:
The distributed algorithm is based on multiple site-update (or
parallel operating) Glauber dynamics as defined next. Consider
the graph G(V, E) as before and a constant weight vector
W̃ = [w̃1, w̃2, ..., w̃N ]. At each time t, a decision schedule
m[t] ⊆ M is selected at random with positive probability
α(m[t]). Then, for all i ∈ m[t], we perform the regular
Glauber dynamics. Then, it can be shown that the Markov
chain is reversible, it has the same stationary distribution as
the regular Glauber dynamics in (21), and its mixing time is
almost the same as (20). The rest of the analysis is the same
as the argument for the basic algorithm. See [17] for more
details. Let D and W denote the lengths of the data slot and
the control slot. Thus, the distributed algorithm can achieve
a fraction D

D+W of the capacity region. In particular, recall

the simple randomized machanism, in section IV-B, where
each node joins the decison schedule by sending an INTENT
message with probability 1/2. Note that it sufficies to allocate
a short mini-slot at the begining of the slot for the purpose of
control. By choosing the data slot to be much larger than the
control slot, the algorithm can approach the full capacity.

V. CONCLUSIONS

Since the scheduling algorithm is part of MAC, it is
desirable to design an algorithm that uses only the MAC
information. We showed that it is possible to design such
algorithms that are still throughput optimal. Another advantage
of such algorithms is that the long files do not block the
transmission of short files and hence, the overall delay per-
formance can be improved. The key element of the algorithm
is an appropriate choice of a weight function. Interestingly,
by using such weight functions, we can design a distributed
version of the algorithm with proven throughput optimality.
In the distributed algorithm, each node only needs to know its
own MAC information and its carrier sensing information.
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