
Effect of Access Probabilities on the Delay
Performance of Q-CSMA Algorithms

Javad Ghaderi and R. Srikant
Department of ECE, and Coordinated Science Lab.

University of Illinois at Urbana-Champaign
{jghaderi, rsrikant}@illinois.edu

Abstract—It has been recently shown that queue-based CSMA
algorithms can be throughput optimal. In these algorithms, each
link of the wireless network has two parameters: a transmission
probability and an access probability. The transmission probabil-
ity of each link is chosen as an appropriate function of its queue-
length, however, the access probabilities are simply regarded
as some random numbers since they do not play any role in
establishing the network stability. In this paper, we show that
the access probabilities control the mixing time of the CSMA
Markov chain and, as a result, affect the delay performance
of the CSMA. In particular, we derive formulas that relate the
mixing time to access probabilities and use these to develop the
following guideline for choosing access probabilities: each link i
should choose its access probability equal to 1/(di + 1), where
di is the number of links which interfere with link i. Simulation
results show that this choice of access probabilities results in
good delay performance.

I. INTRODUCTION

Scheduling in wireless networks is of fundamental impor-
tance due to the inherent broadcast property of the wireless
medium. Two radios might not be able to transmit simultane-
ously because they create too much interference for each other
causing the SINR (Signal-to-Noise-plus-Interference-Ratio) at
their corresponding receivers to go below the required thresh-
old for successful decoding of the packets. Therefore, at each
time, a scheduling algorithm (MAC protocol) is needed to
schedule a subset of users that can transmit successfully at
the same time.

The performance metrics used to evaluate a scheduling al-
gorithm are throughput and delay. Throughput is characterized
by the largest set of arrival rates under which the algorithm can
stabilize the queues in the network. The delay performance of a
scheduling algorithm can be characterized by the average delay
experienced by the packets transmitted in the network. The
design of efficient scheduling algorithms, to achieve maximum
throughput and low delay, is the main objective of this paper. It
is also essential for the scheduling algorithms to be distributed
and have low complexity/overhead, since in many wireless
networks there is no centralized entity and the resources at
the nodes are very limited.

The wireless network is often modeled by its conflict graph
(or interference model) to capture the interference constraints
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or technological ones (For example, a node cannot transmit
and receive at the same time.). In the conflict graph, two
communication links form two neighboring nodes of the graph
if they cannot transmit simultaneously. Therefore, at each time
slot, the active links should form an independent set of the
conflict graph, i.e., no two scheduled nodes can share an edge
in the conflict graph. The well-known result of Tassiulas and
Ephremides [1] states that the Maximum Weight Scheduling
(MWS) algorithm, where weights are functions of queue-
lengths, is throughput optimal in the sense that it can stabilize
the queues in the network for all arrival rates in the capacity
region of the network (without explicitly knowing the arrival
rates). However, for a general network, MWS involves finding
the maximum weight independent set of the conflict graph,
with time varying weights, in each time slot which requires
the network to solve a complex combinatorial problem in each
time slot and hence, is not implementable in practice. This has
led to a rich amount of literature on design of approximate
algorithms to alleviate the computational complexity of the
MWS algorithm.

CSMA (Carrier Sense Multiple Access) type algorithms
are an important class of scheduling algorithms due to their
simplicity of implementation, and have been widely used in
practice, e.g., in WLANs (IEEE 802.11 Wi-Fi) or emerging
wireless mesh networks. In these protocols, each user listens
to the channel and can transmit, with some probability, only
when the channel is not busy. In this paper, we consider design
of CSMA algorithms in order to maximize throughput and
improve delay performance.

Recently, it has been shown that it is possible to design
CSMA algorithms that are throughput-optimal, e.g., see [3],
[5] for the continuous-time CSMA, and [4], [7] for the
discrete-time CSMA. The common component in all these
works is a Markov chain (called CSMA Markov chain) over
the space of feasible schedules. The transition probabilities
of the CSMA chain are controlled, by queue lengths or the
differences between the average arrival rates and the average
departure rates of the links, to make sure that a suitable
schedule is selected at each time. Similar algorithms with fixed
link weights were developed earlier in [2] and [8].

Essentially, the prior works on CSMA are mostly concerned
with ensuring network stability. Their main focus is often on
solving the maximum weight independent set problems in a
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distributed manner by using the so-called Glauber Dynamics.
In CSMA algorithms, each user has two parameters: an access
probability that controls how often the user tries to access the
channel and a transmission probability that controls the length
of the data transmission once the user acquires access to the
channel. In the traditional ALOHA protocol, for a network of
N users, the access probabilities {al}N

l=1 are chosen to be
1
N in order to maximize the throughput and the maximum
throughput per user is approximately 1

Ne . However, in the
CSMA schemes, as we will see in section II, one of the
parameters is fixed and the other parameter is controlled,
as a function of the user’s local information to achieve the
maximum throughput. In particular, in Q-CSMA (Queue-
based CSMA) schemes, the access probabilities do not play a
role in showing the stability/throughput optimality of CSMA
because they do not appear in the steady state distribution of
the CSMA chain. Hence, they have been simply regarded as
some constants between zero and one. However, we will see
that, they do have a significant impact on the mixing time of the
chain, i.e., the amount of time that it takes to reach close to the
steady state starting from some initial condition. Therefore, the
access probabilities control the rate at which CSMA responds
to the queue dynamics and hence, have a significant effect
on the delay performance of the network. The relationship
between the delay of the scheduling algorithm and the mixing
time of the CSMA chain has been characterized in [10].

A. Main Contributions and Organization

In this paper, we analyze the mixing time of the Q-
CSMA Markov chain and develop guidelines to choose access
probabilities that result in small mixing times. The main
contributions of the paper are the following:
(i) In the case of collocated networks, we show that access

probabilities of the form 1/N yield mixing times that are
within a constant factor of the optimal mixing time, i.e,
the minimum mixing time assuming the global knowl-
edge of the queues/weights of the network.

(ii) In d-regular networks, we show that access probabilities
of the form 1/χ, when χ is the chromatic number of the
graph, have the same kind of property when we replace
the mixing time with a suitable upper-bound on it. In
general, χ ≤ d+1, nevertheless, replacing the chromatic
number with the d + 1 still yields similar result but for a
larger constant gap.

(iii) Based on these observations, in general graphs, We
conjecture that access probabilities of the form {a l =

1
dl+1}N

l=1 should yield good performance, where d l is
the degree of the link l. Our simulation results show that
the conjectured access probabilities have a good delay
performance, indeed, they seems to yield average queue
lengths that are very close to the smallest queue lengths
that can be obtained with any fixed access probabilities.

The remainder of the paper is organized as follows. In section
II, we give an overview the CSMA-type algorithms. In section
III, we briefly explain some preliminaries and definitions used
in the proofs of the results. Section IV is devoted to the results

for collocated networks. We extend the results to the general
networks in Section V. Section VII contains proofs of some of
the results. Section VI contains the simulation results. Finally,
we will end the paper with some concluding remarks.

II. DESCRIPTION OF CSMA-TYPE ALGORITHMS

Let G(V, E) denote the conflict graph of the wireless
network consisting of N communication links. Formally, a
schedule can be represented by a vector X = [xs : s =
1, ..., N ] such that xs ∈ {0, 1} and xi + xj ≤ 1 for all
(i, j) ∈ E. Let M denote the set of all feasible schedules
and C(i) denote the set of neighbors of i. Then, the basic
idea of CSMA is to use Glauber Dynamics (to be described
below) to sample the independent sets of such a graph.

A. Continuous-Time CSMA

In the continuous time CSMA, each link l has two param-
eters λl and μl. The parameter λl determines the attempt rate
and μl determines the transmission length. In other words, the
link l senses the channel at the end of exponentially distributed
back off intervals with the parameter λl and if it detects no
ongoing transmissions (the channel is idle), it will transmit for
an exponentially distributed amount of time with the mean μ l.
It is easy to check that such a Markov chain is reversible with
the stationary distribution

π(X) =
∏

l∈X λlμl∑
Y ∈M

∏
l∈Y λlμl

, ∀X ∈ M.

By choosing λlμl = ewl where wl is the weight of the link l,
e.g., an appropriate function of its queue length, the stationary
distribution will be in the form of

π(X) =
1
Z

exp(
∑
i∈X

wi); X ∈ M, (1)

where Z is the normalizing constant. Hence, when the weights
are large, the algorithm picks the maximum weight schedule
with high probability in steady state. Therefore the algorithm is
throughput optimal [9] if we make sure that the instantaneous
probability distribution and the stationary distribution are close
enough. To get a faster mixing time, one can let λ l grow
very large (and μl = exp(wl)/λl). But this does not make
sense since, in practice, the carrier sensing is performed using
energy detection (and hence, cannot be instantaneous) and the
back off interval cannot be smaller than a certain mini-slot.
Similarly, the data transmission slot cannot be made arbitrarily
small. Moreover, this model is based on a perfect carrier
sense assumptions and does not consider the collisions due to
propagation delays. Thus, in the rest of the paper, we consider
the discrete time CSMA algorithm proposed in [4] called Q-
CSMA.

B. Q-CSMA

In Q-CSMA, each link l has two parameters al and pl.
The parameter al is the access probability and chosen to be
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constant and pl is the transmission probability and chosen to
be

pl(t) =
ewl(t)

1 + ewl(t)
, (2)

where wl is an appropriate function of ql (the queue length
at link l). Each time slot is divided into a control slot and
a data slot. In the control slot, each link l that wishes to
become part of the data transmission schedule transmits an
INTENT message with probability al. Those links that trans-
mit INTENT messages and do not hear any INTENT messages
from the neighboring links consist a decision schedule. In the
data slot, each link l that is included in the decision schedule
can transmit a data packet with probability p l only if none of
its neighbors have been transmitting in the previous data slot
(see the description of the algorithm below).

Algorithm 1 : Q-CSMA in Time Slot t

1: In the control slot, randomly select a decision schedule
m(t) ⊆ M by using access probabilities {al}N

l=1.
2: - ∀ i in m(t):

If no links in C(i) were active in the previous data slot,
i.e.,

∑
j∈C(i) xj(t − 1) = 0:

• xi(t) = 1 with probability pi(t), 0 < pi(t) < 1;
• xi(t) = 0 with probability p̄i(t) = 1 − pi(t).

Else xi(t) = 0.
- ∀i /∈ m(t): xi(t) = xi(t − 1).

3: In the data slot, use X(t) as the transmission schedule.

If the weights are constant, then the above algorithm is the
discrete-time version of the Glauber dynamics with multiple-
site updates that generates the independent sets of G. So,
the state space M consists of all independent sets of G. Q-
CSMA algorithm uses a time-varying version of the Glauber
dynamics, where the weights change with time. This yields a
time inhomogeneous Markov chain but, for the proper choice
of weights, it behaves similarly to the Glauber dynamics. It
is easy to check that the stationary distribution with fixed
transmission probabilities, i.e., when weights are fixed and do
not change with time, is given by

π(X) =
1
Z

∏
i∈X

pi

p̄i
, ∀X ∈ M.

By choosing the transmission probabilities to be in the form
of (2), the stationary distribution will be the same as (1), and
therefore can pick the maximum weight schedule with high
probability as the queues in the network grows.

C. Throughput Optimality

The proof of throughput optimality of CSMA algorithms
follows based on a time-scale separation assumption, i.e., the
Markov chain evolves much faster than the rate of changes in
the weights (due to queue dynamics in the network) such that
the chain always remains close to its stationary distribution.
This time-scale separation is justified in [6] and [5]. More
precisely, for Q-CSMA, it is shown in [6] that, throughput

optimality is preserved with weight functions of the form
w(q) = log(1 + q)/g(q), where g(q) can be a function that
increases arbitrarily slowly, e.g., w(q) = (log(1 + q))1−ε

for any small positive ε. Roughly speaking, by choosing any
function slower than such a w(.), the rate of changes in the
weights will be much smaller than the rate at which the
CSMA chain responds to these changes, although, for the sake
of delay, we will always choose the fastest weight function
possible.

III. PRELIMINARIES

Before we state the main results, some preliminaries regard-
ing the mixing time of Markov chains is needed.

Consider a time-homogenous discrete-time Markov chain
over the finite state-space M. For simplicity, we index the
elements of M by 1, 2, ..., r, where r = |M|. Assume the
Markov chain is irreducible and aperiodic, so that a unique
stationary distribution π = [π(1), ..., π(r)] always exists.

A. Distance Between Probability Distributions

First, we introduce two convenient norms on R
r that are

linked to the stationary distribution. Let �2(π) be the real
vector space R

r endowed with the scalar product

〈z, y〉π =
r∑

i=1

z(i)y(i)π(i).

Then, the norm of z with respect to π is defined as

‖z‖π =

(
r∑

i=1

z(i)2π(i)

)1/2

.

We shall also use �2( 1
π ), the real vector space R

r endowed
with the scalar product

〈z, y〉 1
π

=
r∑

i=1

z(i)y(i)
1

π(i)
,

and its corresponding norm. For any two strictly positive
probability vectors μ and π, the following relationship holds

‖μ − π‖ 1
π

= ‖μ

π
− 1‖π ≥ 2‖μ − π‖TV ,

where ‖π − μ‖TV is the total variation distance

‖π − μ‖TV =
1
2

r∑
i=1

|π(i) − μ(i)|.

B. Mixing Times of Markov Chains

Starting from some initial distribution μ0, the convergence
to steady state distribution is geometric with a rate equal to the
second largest eigenvalue modulus (SLEM) of the transition
matrix [11] as it is described next.

Lemma 1. Let P be an irreducible, aperiodic, and reversible
transition matrix on the finite state space M with the station-
ary distribution π. Then, the eigenvalues of P are ordered in
such a way that

λ1 = 1 > λ2 ≥ ... ≥ λr > −1,
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and for any initial probability distribution μ0 on M, and for
all n ≥ 1

‖μ0Pn − π‖ 1
π
≤ σn‖μ0 − π‖ 1

π
, (3)

where σ = max{λ2, |λr|} is the SLEM of P .

Therefore, if we define the mixing time as

τ(ε) = inf{n : ‖μ0Pn − π‖1/π ≤ ε},
then a simple calculation reveals that

(T − 1) log(‖μ0 − π‖1/π/ε) ≤ τ(ε) ≤ T log(‖μ0 − π‖1/π/ε).

where T = 1
1−σ . We will see that for Q-CSMA algorithm,

T is exponential in number of links or the maximum weight
of the network. Therefore, T is approximately proportional
to τ(ε), and by abusing terminology, we will also sometimes
refer to T as the mixing time.

C. Characterization of The Eigenvalues

Let βi = 1 − λi, so 0 = β1 < β2 · · · ≤ βr < 2. For any
vector θ ∈ R

|M|, define the Dirichlet form Eπ(θ, θ) as

Eπ(θ, θ) = 〈(I − P )θ, θ〉π ,

and also the variance

V arπ(θ) = ‖θ‖2
π − 〈θ, 1〉2π .

Lemma 2 (Raleigh Theorem [11]). Let P be an irreducible,
aperiodic and reversible transition matrix on a finite state
space M, then for j ≥ 2,

βj = inf
θ �=0

{ Eπ(θ, θ)
V arπ(θ)

: 〈θ, vi〉π = 0 for 1 ≤ i ≤ j − 1
}

,

where vis are the right eigenvectors of P . Moreover, any vector
θ achieving the infimum is an eigenvector of P corresponding
to the eigenvalue λj = 1 − βj .

Expanding the inner product, and using reversibility of the
Markov chain, reveals that

Eπ(θ, θ) = =
1
2

∑
i,j∈M

π(i)pij(θj − θi)2.

To characterize the SLEM σ, we need to find λ2 and λr. When
solving the minimization in Lemma 2 is difficult, one can still
use the result of the geometric convergence rate, Lemma 1,
by finding good bounds on λ2 and λr . In these cases, the
following Lemmas are useful [12], [11]. First, for a nonempty
set B ⊂ E, define the followings:

π(B) =
∑
i∈B

π(i),

and
F (B) =

∑
i∈B,j∈Bc

π(i)pij .

Then, the conductance of an irreducible, aperiodic, and re-
versible transition matrix P is defined as

φ(P ) = inf
B:π(B)≤1/2

F (B)
π(B)

.

Lemma 3. (Cheeger’s inequality)

1 − 2φ(P ) ≤ λ2 ≤ 1 − φ2(P )
2

.

Lemma 4 (Gershgorin’s bound). Let P be a finite r×r matrix.
Then for any eigenvalue λ, and all k ∈ [1, r],

|λ − akk| ≤ min(rk, sk),

where rk =
∑

j �=k |akj | and sk =
∑

j �=k |ajk|.
IV. MAIN RESULTS FOR COLLOCATED NETWORKS

Consider a collocated network under Q-CSMA where every
link interferes with all the other links, i.e., the conflict graph is
complete. In this case, we can index the feasible schedules by
0, 1, 2, · · · , N where 0 shows the empty schedule and nonzero
indices show the active link number. Every link i, 1 ≤ i ≤ N ,
can change its state, i.e., becomes active or silent, if and only
if it is selected in the decision schedule. Link i is selected in
the decision schedule, when it sends an INTENT message and
nobody else transmits INTENT messages which happens with
probability

αi = ai

N∏
j=1
j �=i

(1 − aj).

Therefore, it follows that the transition probabilities of the
CSMA Markov chain are given by

p0i = aipi

∏
j �=i

(1 − aj), i �= 0,

pii = 1 − aip̄i

∏
j �=i

(1 − aj), i �= 0,

pi0 = aip̄i

∏
j �=i

(1 − aj), i �= 0,

p00 = 1 −
N∑

i=1

p0i,

where p̄i = 1 − pi.
Calculating λ2 and λr (r = |M|) directly from the transition

probability matrix, especially when N is large and weights
are different, is not an easy task. Instead, we use the Raleigh
Lemma (Lemma 2) to calculate λ2. Solving the exact mini-
mization in Lemma 2 is possible, but it does not yield a closed
form expression for β2 = 1−λ2 (See [14], β2 is expressed as
a zero of a complex polynomial). Hence, we do not present the
exact solution due to space limitations and instead, present the
following more useful result about the upper and lower bounds
on λ2. The proof is provided in Section VII.

Lemma 5. For a collocated network of N ≥ 2 links, and given
a set of access probabilities {ai}N

i=1 and a set of transmission
probabilities {pi}N

i=1, βlow
2 ≤ β2 ≤ βup

2 , where

βlow
2 = min

1≤i≤N
p̄iai

∏
j �=i

(1 − aj). (4)

βup
2 = 2 min

i:πi≤1/2
p̄iai

∏
j �=i

(1 − aj). (5)
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Note that in the case of N = 1, trivially, no scheduling is
needed and a∗

1 = 1. So, we can assume that there are at least
two links in the network. Next, we use the Gershgorin’s bound
(Lemma 4) to find a lower bound on all the eigenvalues. We
state the result as a Lemma, whose proof is given in Section
VII.

Lemma 6. For a collocated network of N ≥ 2 links,
under equal access probabilities and any set of transmission
probabilities, all the eigenvalues are nonnegative, i,e, λr ≥ 0.

Note that for general access probabilities, T = 1
1−σ ≥ 1

β2
.

However, in the case of equal access probabilities, by Lemma
6, SLEM is dominated by λ2 and, hence, T = 1/β2.

We will use the following result in bounding the smallest
possible mixing time.

Lemma 7. The optimal access probabilities that maximize
βlow

2 , in Lemma 5, are in the form of a∗
i = k

k+p̄i
, where the

constant k is chosen such that
∑N

i=1 a∗
i = 1.

See [14] for the proof. As a special case, when all the p is are
equal, i.e., weights are equal, simple calculation reveals that
the optimal access probabilities in Lemma 7 are all equal to
1/N . Therefore, for such a choice of access probabilities, the
equality T = 1/β2 holds and therefore, T ≤ 1/β low

2 . Hence,
in the case of equal weights, the access probabilities of the
traditional ALOHA protocol, i.e, ai = 1

N , minimize the upper
bound 1/β low

2 .
In general, the ALOHA access probabilities are not optimal

for the queue-based random access protocols and finding the
optimal access probabilities requires the knowledge of all the
weights in the network which might not be feasible in practice.
In this case, one might be interested in a suboptimal solution
that does not require the global knowledge and the mixing time
ratio, i.e., the ratio of the optimal solution to the suboptimal
solution, remains bounded, i.e.,

1 <
T (subopt.)

T (opt.)
< M, (6)

for some constant M independent of the network size N . It
suffices to find a suboptimal solution such that

1 <
T up(subopt.)
T low(opt.)

< M, (7)

where T up(subopt.) is the upperbound on the suboptimal
solution and T low(opt.) is the lower bound on the optimal
solution. Equivalently, for a suboptimal solution with equal
access probabilities, we need to show that

1 <
βup(opt.)

βlow(subopt.)
< M. (8)

where βup and βlow were defined in Lemma 5. To show such
a property, we need to consider an appropriate distribution of
p̄is as the number of nodes N grows. Here, we assume that
there exist m types of weights, such that a constant fraction αk

of the nodes have the weight p̄k for k = 1, ..., m. Note that in
such a setting, if there exists a state/link l with πl > 1/2, then

since pl is one of the m possible weights, there must exist αkN
links with the same transmission probability pl, and all of them
should have stationary probabilities greater than 1/2 which is
impossible since

∑N
i=0 πi = 1. Therefore, all the states have

the stationary probability less than 1/2, and βup
2 = 2βlow

2
1.

Hence, the access probabilities that maximize βup
2 , i.e., yield

the smallest lower bound on the mixing time, are given by
Lemma 7. Then, it is easy to see that the optimal k in Lemma 7
is in the form of c

N for some constant p̄min < c < 1/2, where
p̄min = mini p̄i. Thus, we have

βup(opt.) = 2k∗∏
i

p̄i

k∗ + p̄i
=

2c

N

m∏
k=1

(
p̄k

p̄k + c/N

)αkN

,

Putting everything together, the suboptimal access probabil-
ities of the form ai = 1

N yield a bounded mixing time ratio
independent of N , because

βlow(subopt.) =
p̄min

N

(
1 − 1

N

)N−1

,

and

lim
N→∞

βup(opt.)
βlow(subopt.)

=
2c

p̄min
exp

(
1 − c

m∑
k=1

αk

p̄k

)
< ∞.

Therefore the mixing time ratio is bounded for all values of
N . Furthermore, it is easy to check that choosing access prob-
abilities independent of N results in unbounded mixing time
ratio. The importance of the above ratio is that it guarantees
that the mixing time of the suboptimal solution is within a
constant multiple of the optimal mixing time, independent of
the network size.

V. MAIN RESULTS FOR GENERAL NETWORKS

The extension of results to general networks is more difficult
since the corresponding CSMA Markov chain is much more
complex than the Markov chain of collocated networks, hence
finding the second largest eigenvalue by solving the optimiza-
tion (2) is cumbersome. Instead, we find an upper bound on
the SLEM based on the conductance bound (Lemma 3).

Assume the current schedule is X(t) = X , for some X ∈
M, and the CSMA Markov chain makes a transition to the
next state/schedule X(t+1) = Y . Note that X\Y = {l : xl =
1, yl = 0} is the set of links that change their states from 1
(active) to 0 (silent). Similarly Y \X = {l : xl = 0, yl = 1}
is the set of links that change their states from 0 to 1. From
the scheduling algorithm, it is clear that a link can change its
state only when it belongs to the decision schedule. Therefore,
X can make a transition to Y when XΔY ⊆ m, for some
m ∈ M, where XΔY = (X\Y ) ∪ (Y \X).

Let α(m) denote the probability of generating a decision
schedule m. Then, it is not hard to argue that P (X, Y ), the

1The same analysis is possible for other kinds of weight assignments.
Essentially, since there exists at most one link l with πl > 1/2, we can
prove that this does not change the asymptotics. The details are omitted here
due to the space limit.
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probability of transition from the schedule X to the schedule
Y , is given by

P (X, Y ) =
∑

m∈M:XΔY ⊆m

α(m)
∏

l∈X\Y

p̄l

∏
k∈Y \X

pk

×
∏

i∈m∩(X∩Y )

pi

∏
j∈m\(X∪Y )\C(X∪Y )

p̄j . (9)

Recall the mechanism for generating a decision schedule
m by transmitting the INTENT messages based on access
probabilities {ai}N

i=1. All the links that are included in m,
should have transmitted INTENT messages and have not heard
any INTENT messages from their interfering neighbors. So
the probability of generating a decision schedule α(m) =
α(m; G) in the graph G can be characterized by

α(m, G) =
∏
i∈m

ai

∏
j∈C(m)

(1 − aj)α (∅; G\(m ∪ C(m))) ,

where α (∅; G\(m ∪ C(m))) is the probability that no nodes
included in the decision schedule in graph G\(m ∪ C(m)),
i.e., the graph obtained by removing all the links in m and
C(m) from G. The expression for α(∅; G′) could be quite
complicated since it has to account for all the events that
yield a ∅ schedule due to either not transmitting INTENT
messages or collision between INTENT messages transmitted
by the nodes of G′. Nevertheless, the mixing time can be upper
bounded by2

T =
1
β2

≤ 2
φ̃2(P )

, (10)

where φ̃(P ) is an approximate conductance defined in the
following Lemma. The proof is presented in Section VII.

Lemma 8. In a general network, under the Q-CSMA with
transition probability matrix P , the conductance φ(P ) is lower
bounded by φ̃(P ), where

φ̃(P ) = min
m0∈M0

P (m0, ∅),

M0 ⊂ M is the set of all maximal schedules, and P (m0, ∅)
is the probability of transition from the maximal schedule m0

to the empty schedule ∅.

Therefore, we can try to find optimal access probabilities
that maximize φ̃(P ). In this case, the optimal access proba-
bilities are the solution to

max
{ai}

min
m0∈M0

∏
i∈m0

aip̄i

∏
j /∈m0

(1 − aj). (11)

Solving the above optimization needs some global knowledge
of the network. Hence, we investigate possible suboptimal
solutions with the bounded mixing time ratio (6) when we use
the upperbounds on the mixing times, based on (10), instead
of the exact values.

As a special case, consider a d-regular network with N
links, i.e., each link has exactly d interfering neighbors.

2Here, we assume that the SLEM is λ2. To ensure this, one may have to
modify the CSMA Markov chain slightly to make it a lazy chain [13]. But
this is not considered here due to page limitations.

Furthermore, assume that the weights are equal, i.e., p̄1 = ... =
p̄N . It is easy to show that, in this case, in the optimization
(11), we need to consider the minimization over the maximal
schedules with the maximum size, i.e., over the set of nodes
with the same color in a valid node coloring of the graph. Let
χ denote the chromatic number of the corresponding graph.
Note that since there is no unique way of constructing a d-
regular graph with N nodes, the chromatic number depends
on the construction, but we know that

maximum clique size ≤ χ ≤ d + 1.

Since the graph is symmetric, all the access probabilities must
be equal and the maximum size of the maximal schedule is
s = �N

χ �. Then, the optimal access probabilities in (11) are
all equal and simply the solution to

max
a

as(1 − a)N−s,

i.e., a = s
N = 1

N �N
χ � or

1
χ

≤ a ≤ 1
χ

+
1
N

. (12)

This suggests using 1/χ as the access probability. Since, in
general, the chromatic number of the network might not be
known, our conjecture is that 1

d+1 is a good candidate for the
access probabilities when each node only knows the number of
its interfering neighbors. We validate this conjecture through
simulations later.

Next, consider a more general case of a d-regular network
with different weights. Although 1/χ or 1/(d + 1) are not
the optimal access probabilities, we argue that they yield a
bounded gap between the upper-bound (10) on the mixing
time of the optimal access probabilities and the correspond-
ing upper-bound on the suboptimal solution. To prove such
a property, similar to the collocated network, we need to
consider an appropriate scaling of the network and a weight
assignment as we add more nodes to the network. For the
assignment of transmission probabilities/weights, we consider
the worst assignment that is possible for the suboptimal
solution: consider transmission probabilities p̄1 ≤ p̄2... ≤ p̄χ

and then assign p̄i to all the links in the i-th maximal schedule,
for i = 1, ..., χ. It is clear that the following optimization gives
an upper bound on (11)

φ̃up(P ) = max
{ai}

min
1≤i≤χ

p̄s
ia

s
i

∏
j �=i

(1 − aj)s, (13)

where s is the maximum size of a maximal schedule. The rest
of calculations follows in parallel with those of the complete
graph. The optimal access probabilities, maximizers of (13),
are given by

a∗
i =

k

k + p̄i
,

χ∑
i=1

a∗
i = 1. (14)
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Next, we prove that the suboptimal solution has a bounded
mixing time property, i.e.,

T up(subopt.)
T up(opt.)

=

(
φ̃(opt.)

φ̃(subopt.)

)2

≤
(

φ̃up(opt.)
φ̃(subopt.)

)2

< ∞.

To show such a property, we need to consider an appropriate
scaling of the network as the number of nodes N grows. We
assume that the degree d grows uniformly for all the nodes in
G as N increases, i.e., the number of interfering neighbors
of each node increases uniformly. Therefore the chromatic
number grows linearly in N (χ = χ

N
) and the maximum size

of a schedule remains constant s. Moreover, there are m types
of weights such that αk fraction of maximal schedules have
the transmission probability pk for k = 1, ..., m. Noting that
constant k is in the form of k∗ = c

χ for some p̄min ≤ c ≤ 1/2,

the optimal φ̃up is given by

φ̃up(opt.) =

(
k∗

N∏
i=1

p̄i

k∗ + p̄i

)s

=

(
c

χ
N

m∏
k=1

(
p̄k

p̄k + c/χ
N

)αkχ
N

)s

�
(

c

χ
N

)s

exp

(
−cs

m∑
k=1

αk

p̄k

)
,

where “�” shows the asymptotic as N → ∞. The suboptimal
φ̃ is

φ̃(subopt.) =
(

p̄min s

N

(
1 − s

N

)N/s−1
)s

�
(
p̄min s

eN

)s

,

and, hence

lim
N→∞

φ̃up(opt.)
φ̃(subopt.)

=
(

ce

p̄min

)s

exp

(
−cs

m∑
k=1

αk

p̄k

)
. (15)

The importance of the above ratio is that it guarantees that
the gap between the upperbounds on the mixing times of
the suboptimal solution and the optimal solution is a constant
independent of the network size.

Similarly, using 1/(dN + 1) as the suboptimal access prob-
ability still yields a bounded ratio, but the corresponding ratio
will be

lim
N→∞

φ̃up(opt.)
φ̃(subopt.)

=
(

c

p̄min

dN + 1
χ

N

e
χ

N
dN+1

)s

×

exp

(
−cs

m∑
k=1

αk

p̄k

)
, (16)

which is greater than (15) (since dN+1
χ

N
≥ 1 and xe1/x ≥ e

for all x ≥ 1.).

VI. SIMULATION RESULTS

In this section, we evaluate the performance of different
access probabilities via simulations. For this purpose, we have
considered different topologies for the wireless network. In the
algorithm, we have selected the transmission probabilities at

0 0.5 1 1.5 2 2.5 3
100

200

300

400

500

600

Access probabiltiy × N

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
pe

r 
lin

k)

Fig. 1. Average queue size vs Access probability in a collocated network
with N = 8 links.

Fig. 2. Left: A grid network consisting of 16 nodes and 24 links. Right: An
asymmetric network obtained from removing some links from the grid.

time t as pl(t) = ewl(t)

1+ewl(t)
where wl(t) = log(ql(t) + 1), 1 ≤

l ≤ N . This choice makes the network stable [6] and yields
the best delay performance. The first example is a collocated
network of N = 8 links. To choose the arrival rates, choose a
point v = (v1 · · · v8) on the boundary of the capacity region
which satisfies

∑8
i=1 vi < 1 and vi ≥ 0, and consider the

arrival rates of the form λ = ρv for a loading 0 < ρ < 1.
Note that, as ρ → 1, λ approaches a point on the boundary of
the capacity region. For example, we have chosen v1 = · · · =
v4 = 3/16, v5 = · · · = v8 = 1/16 and ρ = 0.8. Figure 1
shows the average queue length (averaged over time and over
the links) for different values of the access probability a (all
the links have the same access probability). It can be seen that
a = 1/N(= 1/8) yields the smallest average queue size.

Next, consider the grid network on the left side of Figure
2. Note that this is the actual network not its conflict graph.
The network has 16 nodes and 24 links. We consider a one
hop interference constraint, i.e., two links interfere if they are
adjacent (share a node in the network). Consider the following
maximal schedules M1 = {1, 3, 8, 10, 15, 17, 22, 24}, M2 =
{4, 5, 6, 7, 18, 19, 20, 21}, M3 = {1, 3, 9, 11, 14, 16, 22, 24},
M4 = {2, 4, 7, 12, 13, 18, 21, 23}. With a little abuse of nota-
tion, let Mi also be a vector whose i-th element is 1 if i ∈ Mi

and 0 otherwise. We consider arrival rates that are a convex
combination of the above maximal schedules scaled by ρ =
0.8, e.g., λ = ρ

∑4
i=1 ciMi, c = [0.2, 0.3, 0.2, 0.3]. Our con-

jecture is that access probabilities of the form {1/(di +1)}N
i=1

(di is the number of interfering links of the link i) should
result in good performance. We compare the performance of
the network under this choice of access probabilities with the
performance of the network under equal access probabilities,
i.e., ai = a, 1 ≤ i ≤ 24, for some constant a between zero
and one. Figure 3 verifies our conjecture where the dashed
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Fig. 3. Average queue size vs Access probability for the grid network in
Figure 2.
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Fig. 4. Average queue size vs Access probability for the asymmetric network
in Figure 2.

line at the bottom of Figure is the average queue size resulted
by using 1/(di + 1) as the access probabilities.

Next, to make the topology more asymmetric, we remove a
random set S of links from the network. In the simulation
shown here, S = {3, 4, 12, 14, 23}. Figure 2 shows the
resulting network. For the arrival rates, we consider the same
convex combination of 4 maximal schedules M1 to M4 with
links of the set S removed from the maximal schedules. The
average queue size for the equal access probabilities, ranging
from 0.05 to 0.55, and also for probabilities of the form
1/(di + 1), the dashed line, have been depicted in Figure 4.
Again we see that the choice of ai = 1/(di + 1) performs
nearly as well as the best choice of fixed access probabilities.
However, it is important to note that the choice 1/(d i + 1)
adapts itself to the topology of the network, whereas it is not
clear how one can choose the best fixed access probabilities a
priori for a network. See [14] for more simulation results.

VII. PROOFS

A. Proof of Lemma 5

Note that v1 = 1, because πP = 1π, and Eπ(θ, θ) = Eπ(θ−
c1, θ − c1), and V arπ(θ) = V arπ(θ − c1) for any constant
vector c1. Therefore, without loss of optimality, we can only
consider zero mean vectors θ. Then, it is easy to show that
the minimization in Lemma 2 can be written as

β2 =
1
2

inf
θ

N∑
i,j=0

π(i)pij(θj − θi)2, (17)

subject to the constraints

θ �= 0,

N∑
i=0

π(i)θi = 0,

N∑
i=0

π(i)θ2
i = 1. (18)

Note that, for the complete graph,

π(i) =
1
Z

pi

p̄i
=

1
Z

exp(wi),

for i = 0, 1, .., N , where we have defined p0 = 1/2 = p̄0.
Hence, the optimization can be written as

β2 =
1

2Z
inf
θ

⎧⎨
⎩

N∑
j=0

p0j(θj − θ0)2 +
N∑

i=1

pi

p̄i
pi0(θ0 − θi)2

⎫⎬
⎭ ,

subject to the constraints in (18). Using the reversibility of the
Markov chain, we have pi

p̄i
pi0 = p0i, and therefore

β2 =
1
Z

inf
θ

N∑
i=1

p0i(θi − θ0)2, (19)

subject to the constraints in (18).
Although solving the above optimization is possible, it does

not yield a closed form expression for β2 (See [14]). Instead,
we try to find upper and lower bounds on β2. By a change of
variable yi = θi − θ0, i = 1, ..., N , the optimization problem
simplifies to

β2 =
1
Z

inf
y,θ0

N∑
i=1

y2
i aipi

N∏
j �=i

(1 − aj), (20)

subject to

N∑
i=1

pi

p̄i
y2

i = Z(1 + θ0)2,
N∑

i=1

pi

p̄i
yi = −θ0Z. (21)

To get a lower bound on β2, we ignore the last constraint, i.e.,
the lower bound is the solution to

βlow
2 =

1
Z

inf
u

N∑
i=1

u2
i p̄iai

N∏
j �=i

(1 − aj), (22)

s.t.
N∑

i=1

u2
i = Z(1 + θ0)2. (23)

where we have used a change of variable u i =
√

pi

p̄i
yi. Then,

it is clear that θ∗0 = 0, and the optimal value, which is a lower
bound on β2, is given by (4) for any set of access probabilities.

Next, we prove the upperbound. By Lemma 3, β 2 ≤ 2φ(P ),
so it remains to calculate the conductance

φ(P ) = inf
B:π(B)≤1/2

∑
i∈B,j∈Bc π(i)Pij∑

i∈B π(i)
.

First, consider the set B to only contain singletons. The
optimal B does not contain 0 since π(0) ≤ π(i) for any i �= 0,
and, by the reversibility, π(i)pi0 = π(0)p0i for any i �= 0. So
considering only the singletons, we have

φ(P ) = min {pi0 : π(i) ≤ 1/2, i �= 0} (24)

= min
i

⎧⎨
⎩p̄iai

∏
j �=i

(1 − aj) : π(i) ≤ 1/2

⎫⎬
⎭ . (25)
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Let i∗ be the minimizer of (24). Then it is not hard to argue
that adding any other state to i∗, only increases φ(P ). So (24)
is the actual conductance. Note that if there is only one link
in the network, the set (24) is empty.

B. Proof of Lemma 6

By Gershgorin’s bound, Lemma 4, λr ≥ −1 + 2 mini pii,
where we have used the fact that

∑
j �=i pij = 1 − pii. Note

that since p̄i ≤ 1/2, pii ≥ 1/2 for i �= 0. Furthermore,

p00 = 1 −
N∑

i=1

aipi

∏
j �=i

(1 − ai)

≥ 1 −
N∑

i=1

a
∏
j �=i

(1 − a)

≥ 1 −
N∑

i=1

1
N

(1 − 1
N

)N−1

≥ 1 − (1 − 1
N

)N−1 ≥ 1/2,

where we used the assumption that there are at least two links
in the network. Hence, pii ≥ 1/2 for all 0 ≤ i ≤ N , and
therefore λr ≥ 0.

C. Proof of Lemma 8

Let m0 be a maximal schedule such that XΔY ⊆ m0, then
it is clear that

P (X, Y ) ≥α(m0)
∏

l∈X\Y

p̄l

∏
k∈Y \X

pk×
∏

i∈m0∩(X∩Y )

pi

∏
j∈m0\(X∪Y )\C(X,Y )

p̄j

≥
∏

i∈m0

ai

∏
j /∈m0

(1 − aj)
∏

l∈m0

p̄l = P (m0, ∅),

where we have used the fact pi ≥ p̄i, for all i, due to (2). The
conductance can be lower bounded by

φ(P ) = inf
B:π(B)≤1/2

F (B)
π(B)

≥ inf
B:∅/∈B

F (B)
π(B)

,

since if ∅ ∈ B, we can replace B with Bc and get a smaller
conductance because π(Bc) ≥ π(B) and F (B) = F (Bc)
by reversibility. Note that there is a transition between X
and Y whenever XΔY is a valid schedule, therefore a direct
transition from the empty schedule ∅ to any schedule X , and
vice versa, is possible. Hence, the conductance can be further
lower bounded as follows

φ(P ) ≥ inf
B:∅/∈B

∑
X∈B,Y ∈Bc π(X)P (X, Y )

π(B)

≥ inf
B:∅/∈B

∑
X∈B π(X)P (X, ∅)∑

X∈B π(X)
= min

X �=∅
P (X, ∅).

Hence
φ(P ) ≥ min

m0∈M0
P (m0, ∅) = φ̃(P ), (26)

where M0 denotes the set of all maximal schedules in M.

VIII. CONCLUDING REAMRKS

Access probabilities affect the mixing time of the CSMA
Markov chain, which, in turn, has a significant impact on
the delay performance of the algorithm. It turns out that
formulating the optimal mixing time, as a function of access
probabilities, in general, is a formidable task. Even if we are
able to formulate the optimal mixing time and find the optimal
access probabilities, they will depend on global knowledge of
the network, and thus, will not be suitable for the distributed
operation of the CSMA algorithm. Instead, sub optimal access
probabilities of the form 1/(dl + 1), where dl is the number
of interfering neighbors of link l, can yield mixing times
that are within a constant gap of the optimal mixing time.
This was proved for fully-connected networks and d-regular
networks. We conjecture that, in general topologies, such
access probabilities should have good delay performance. This
conjecture is verified through extensive simulations, some of
which are shown in the paper. It would be interesting to prove
such a conjecture for general networks as a future work.
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