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Abstract — 1In this paper we propose a systematic pro-
cedure for designing optimal lattice (space-time) codes. By
employing stochastic optimization techniques we design lat-
tice codes with minimum error rates when lattice decoders
are employed at the receiver. Our design methodology can
be tailored to obtain optimal lattice (space-time) codes for
any fading statistics and SNR of interest. Further, we obtain
fundamental lower bounds on the error probabilities yielded
by lattice decoders and characterize their asymptotic behav-
ior.

I. INTRODUCTION

Space-time block code (STBC) design for wireless fading
channels has been the focus of intensive research for the past
several years. As a result, several powerful STBCs such as or-
thogonal designs [1] and linear dispersion (LD) codes [2] have
been discovered. Algebraic number theoretic tools for code
design have also been employed for the i.i.d. Rayleigh fad-
ing model with great success [3]. Recently, [4] used the real-
baseband model to show that all STBCs proposed in the liter-
ature are in-fact lattice codes. This reveals that the traditional
STBC design where input information symbols are drawn from
QAM constellations (or equivalently PAM in the real represen-
tation) result in lattice codes with sub-optimum (in terms of en-
ergy efficiency) shaping regions. Thus, there is a possibility to
further improve performance by designing lattice codes with op-
timized shaping regions. On the other hand, a benefit of fix-
ing input information symbols to be QAM symbols is efficient
maximum-likelihood (ML) decoding via the sphere-decoder [5].
Unfortunately the complexity of ML decoding can significantly
increase for lattice codes with optimized shaping due to the
problem of boundary control [4]. One way to balance this trade-
off is to employ lattice decoders, which avoid boundary control
and hence the increase in complexity, to decode optimized lat-
tice codes. Thus an interesting and important problem which we
address here, is the design of optimal (in terms of error-rate) lat-
tice codes for MIMO systems where the receiver employs lattice
decoders. We note that no such systematic design procedure has
been proposed previously and the examples given in [4] were
obtained through random search.

One of the main problems in our quest for optimal lattice
codes is that obtaining closed-form objective functions needed
for deterministic optimization or other analytical techniques
seem intractable, even for the simple albeit impractical i.i.d
Rayleigh fading model. For such class of problems a promis-
ing approach is to use stochastic optimization based on the well
known Robbins-Monro algorithm [6] . We adopt this technique
and propose several formulations that can be used to obtain op-
timal lattice codes for arbitrary fading statistics and any SNR of
interest.
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II. SYSTEM DESCRIPTIONS

Consider an M -transmit N -receive multiple-input multiple-
output (MIMO) channel with no channel state information (CSI)
at the transmitter and perfect CSI at the receiver. The wireless
channel is assumed to be quasi-static and flat fading and can
be represented by an N x M matrix H€, which is assumed to
remain fixed for ¢ = 1,...,7". The complex-baseband model of
the received signal can be expressed as

ve = ) LHxS + we, (1)

where \/%xg € €M is the transmitted signal at time ¢, t =
1,.., T,y € €V is the received signal and w{ € €V denotes
the i.i.d. circularly symmetric Gaussian noise, with complex
Gaussian elements of zero mean and unit variance, i.e., w§ ~
CN(0,I). The random variables in H€ are assumed to be drawn
from some continuous joint distribution.

The equivalent real-valued channel model corresponding to
(1) can be written as

y=Hx+w, 2)

where x = [x], ..., xh]T € R*"7 is a codeword belonging to
a codebook C with

- | 2t

S{x¢
The goal of this paper is the design of a lattice codebook C C
R2MT satisfying either the average energy constraint

R{H}
S{H*}

~S(H)

], H:IT®[ reEe) |- @

1
el Sl < T, @)

xeC

or the peak energy constraint
I[x||> <TM, VxecC. 5)

Note that the rate of the code is R = 1 log, |C| bits per channel
use and p represents the average transmit power.

A. Lattice Space-Time (LAST) Codes

An n-dimensional lattice A is defined by a set of n ba-
sis (column) vectors g1, ...,g, in R™. The lattice is com-
posed of all integral combinations of the basis vectors, i.e.,
A={x=Gz:z € Z"}, where Z = {0,£1,+2,...}, and
G =[g1,82, -, &n]- In the Euclidean space, the closest lattice
point quantizer Q(-) associated with A is defined by
vx' € A, (6)

llr = x| < [lr — x|,

Q(r) =x€eA, if
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where the ties are broken arbitrarily. The Voronoi cell of A is the
set of points in IR"™ closest to the zero codeword, i.e., Vo(G) =
{r € R" : Q(r) = 0}. The Voronoi cell associated with each
x = Gz € A is a shift of Vo(G) by x and is denoted by V,(G).
The (n—dimensional) volume of the Voronoi cell is given by
Vol(Vo(GQ)) = +/det(GTQG) [7].

Let n = 2MT'. A finite set of points in the n-dimensional
translated lattice (A +u, u € IR™) can be used as codewords of
a codebook C and for a rate R bits per channel use, the code-
book will contain [C| = 2T% such points. Here, we spec-
ify a lattice code using the three-tuple {G, {zi}chll, u}, with
G e R"",z;, € Z™i=1,..,|C|,and u € R". u is referred
to as the translation vector and {z;} are called the coordinate
vectors. For a given G and u, the code will be referred to as a

spherical lattice code if the coordinate vectors {z;} are a solu-
tion to

Icl
in Y 11Ga; + ulf
z; €L™

i=1 3=1

)

For ease in exposition, unless otherwise stated we assume
N = M. Moreover, we will assume that HG has full column
rank with probability one.

B. Lattice Decoders

In lattice decoding, the receiver assumes that any point in the
infinite lattice could have been transmitted. For a given lattice,
the naive lattice decoder determines

z = arg min ||y — Hu — HGz||. (8)

zEZ™

Note that this decoder should be distinguished from the nearest-
codeword decoder, i.e., the maximum-likelihood (ML) decoder.
The absence of boundary-control results in substantial savings in
complexity. An interesting property of lattice codes with naive
lattice decoder is that owing to the lattice symmetry (geometric
uniformity), the error probability is invariant to conditioning on
a particular transmitted lattice codeword and only depends on
the lattice generator. Thus from the energy efficiency point of
view, selecting the codewords with minimum norm minimizes
the average transmit power and hence spherical lattice codes
are optimal for the naive lattice decoder.

It has been shown in [4] that an MMSE-GDFE front-end can
dramatically improve the performance of the lattice decoding al-
gorithms in MIMO systems. This MMSE lattice decoder deter-
mines an upper triangular matrix B from the Cholesky decom-
position of the matrix I,, + HTH and a matrix F = (HB~1)T
and returns

z = arg min ||Fy — Bu — BGz||. )
zEZ™

Consider the statistics of the equivalent system model for the
MMSE lattice decoder. Defining ¥ = Fy — Bu, we have that

¥y = BGz+ (FH-B)(Gz +u)+Fw

(10)

Assuming x = Gz + u to be zero-mean with E[xx’] = 1/2I
and using the fact that w ~ A(0,1/2I) is independent of x,
it can be shown that [4] E[vvT] = 1/2I. Although v contains
a signal (z) dependent term, assuming v ~ N'(0,1/21) is very
effective. Henceforth, we will make this assumption and then
the error probability yielded by the MMSE lattice decoder is
identical to that of a naive lattice decoder operating on (10) but
where v is independent AWGN so that spherical lattice codes
are optimal for the MMSE lattice decoder as well.

III. DESIGN ALGORITHM

We propose to use a stochastic gradient descent algorithm to
optimize the probability of error (or its bounds) over a feasi-
ble set of generator matrices. We provide a brief description
of the algorithm in its general form and elaborate on particu-
lar designs in the next section. Let 7/ denote a random vector
defined over some sample space. Also let ¢ denote the vec-
tor of parameters lying in a feasible set (2. Our objective is to

minimize f(¢) = E[g(¢, )] over Q using “noisy” but unbi-

ased estimates of f'(¢) 2 Veof(®) = E[Veg(p,1)] . Then
the stochastic gradient descent algorithm works as follows. Let
¢y denote the vector of parameters at the k** step. Then the
(k + 1)t" iteration proceeds as follows.

1. Draw L samples 1, - - -, %y

2. Obtain unbiased gradient estimate:

F(be) = 1 i1 Vg (%) o=

3. Update: ¢r1 = Ha(dr — arf'(¢r)).

The step-size sequence {ay} is (usually) chosen as the harmonic
series ap = c/k, where ¢ is a positive scalar. IIg(-) resembles
a projection operator 2 in that it finds a point in the feasible set
close to the input argument when the latter falls outside the fea-
sible set. For the problem at hand several objective functions
which are defined in the sequel can be used since their gradients
are derived in the required form, i.e., their unbiased estimates
can be obtained via simulations. In the subsequent subsections
we will consider various choices for the feasible set ) and the
associated TIg(+).

A. Average Energy Constraint

In order to satisfy the power constraints, the feasible set of
generator matrices is

oRT ) 5
@avg — {G min {M} < MT} (11)

: {z;€Z"},ucR" 2RT
It seems intractable to parameterize the set ®,,g. In fact for
a given G and efficient way of obtaining an optimal spheri-
cal code, i.e. an optimal set of codewords (which minimize
the average energy) is also not known. As a consequence, we
adopt the following sub-optimum approach. We set ¢ = G
and ) = Oy, and define IIg(.) as follows. For a given input
G € IR™*™, we determine a “good” spherical code (having low
average energy) using an iterative technique suggested in [12],
which converges to a fixed point very fast in about 2-3 iterations.

IThe exchange of derivative and the expectation is required for this method.

2Usually this method is employed to solve unconstrained problems. In the
constrained version there is no universal rule or method to enforce the con-
straints.
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With the codewords {Gz; + u} so determined we compute a

MT2RT

m Ifﬁ Z 1then G € @a\;g
and we let IIg(G) = G; otherwise we set IIo(G) = BG.
As will be revealed in the simulation results, this method works

well in practice.

scaling factor § =

B. Peak Energy Constraint

We now consider the design under a peak energy constraint,
where all codewords must satisfy ||Gz; + u||> < MT, Vi.
Letting S,,(vV MT) denote a n—dimensional sphere centered at
the origin and of radius vV MT, we can leverage a result stated
in [4], which says that if Vol(Vp(G)) < %\Tﬂ\ﬁ))’ then
there exists a translation vector u and coordinate vectors {z;}
such that ||Gz; + ul|?> < MT, 1 < i < 2FT. Moreover,
since the error probability and its bounds for a given generator
aG monotonically decrease in «, we consider the set of lattice
generators

Vol(S,,(VMT
Opeak = {G . |GTG,|1/2 = %} . (12)

The nice feature of the set Opeqar is that any G € Opeax
can be expressed as a differentiable function of a parameter
vector ¢p. To see this, let G = UR be the QR decomposi-
tion of G € Opeax, where U is unitary and R is lower tri-
angular with positive diagonal elements. Then since the or-
thogonal group is a differentiable manifold, we can express U
as a differentiable function n(n — 1)/2 parameters. Setting

_ n—1  Vol(S, (VM)
Wi = exp(t)licy and Run = gmrpiden s

that R is a differentiable function of n(n + 1) /2 — 1 parameters
({tx} and all its strictly lower triangular elements). Collecting
all then(n +1)/2 -1+ n(n —1)/2 = n? — 1 parameters into
a vector ¢» we have that G = G(¢) is a differentiable function
of ¢. Thus we can an implement an unconstrained stochastic
gradient-descent search.

weE see

C. Average Energy Constraint: Continuous Approximation

We invoke a popular approximation, see for instance [8],
which is accurate for high rates. The main idea is that at high
rates a codeword x = Gz + u of a spherical lattice code can
be (approximately) considered as a realization of a spherically
uniform random vector. Using this approximation, we can take
the feasible set to be

eavg—cont = {G H |GT(;|1/2 = VOI(Sn(W))} (13)

The advantage is that we again have an unconstrained gradient
descent algorithm. Also a “good” spherical code is determined

only for the final (optimized) generator G and then scaled to
satisfy the average energy constraint.

IV. LATTICE DESIGN: OBJECTIVE FUNCTIONS AND
GRADIENTS

We first derive three objective functions along with their gra-
dients for the naive decoder, which can be employed in the

gradient-descent based design algorithm. The first one is the
exact error probability whereas the second and third ones are an
upper and a lower bound, respectively. Let us start with the ex-
act error probability. As mentioned earlier, for the naive lattice
decoder without loss of generality we can assume that z = 0
is the transmitted coordinate vector. Then letting Pe(G) denote
the error probability (averaged over the channel realizations) of
a lattice code with generator G, from the decision rule in (8) we
see that

Pe(G) = Eu[Pr(w ¢ Vo(HG)H)]

1
™% Jyy(HG

Unfortunately, as noted in [8] the integral in (14) is in general
impossible to obtain in a closed form. However its derivative
can be estimated. To show this, first we invoke a result from [9]
also used in [10], which says that for a random vector q with n
i.i.d components having uniform U[0, 1] distribution, the vector
HGq — Q(HGQq) is uniformly distributed in Vo(HG). As a
result we can express Pe(G) as

(14)

exp(—||wl[*) dw

‘GTHTHG|1/2

1—-Fy /2

Eq[exp(ffeliZI},HHGQ*HGZHZ’)] (15)
We offer the following proposition. A proof is omitted here due
to space constraints.

Lemma 1: Suppose G(¢) is a differentiable function of ¢
and ¢ € ¢. Then %Eq[exp(minzezn [[HGq — HGz||?)]

equals

> Fa [10HGa € V. (1G)) 1 exp(| HG(9)a - HG@))] )
zZz€EZ

where Z is any finite set of coordinate vectors such that
Uzez V2 (HG) covers the (bounded) fundamental parallelotope
{HGq, q € [0,1]"}.
The derivative of (15) can now be computed by first exchanging
it with expectation over H (which is justified by the bounded

convergence theorem) and then using (16).
Next we consider the union upper bound on the conditional
error probability, Pe(G, H), given by [7]

TQTHT
Pe(G,H) 2 Y @ (\/7z AL HGZ>,
ZER

where R is the set of all relevant coordinate vectors for a given
HG such that {HGz},cr determine all the facets of Vo(HG).
An algorithm to determine all such coordinate vectors is given
in [11]. Now, for a lattice generator in n dimensions, it is known
that the maximum number of relevant vectors is 2%+t — 2, [11].
For our design algorithm we would like to be able to estimate
the gradient of the upper bound. Our next result allows us to do
just that.
Lemma 2: Let z be a relevant coordinate vector for the lattice
generated by HG(¢). Then 3 A > 0 small enough such that
V § € [-A, A], z remains a relevant coordinate vector for the

lattice generated by HG(¢ + 9).
Proof: Using Proposition 2 from [11] we note that z; € R
if and only if

a7

IHG(4)z:i/2|| < [|[HG(¢)zi/2 — HG(¢)z;]|, Vz; € Z™"\{0,2:} (18)
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Further since the lattice is a sphere packing we must have that
foreachz; € R

IHG(8)z:/2|| =

min

2D {IIHG(¢)Zl/2—HG(¢)Z]H} 9 (19)

for some §; > 0. Next, to check if z; is relevant for HG(¢$+ ),
using (18) we see that it is sufficient to check if no coordinate
vector lies in the set

Zis ={z2€Z™\{0,2;}:
[[HG(¢ + 0)z;/2 — HG(¢ + 0)z|| < [|HG(¢ + 0)z:/2|}

Letting Smax(-), Smin(.) denote the maximum and minimum
singular values of the matrix argument, it can be seen that

Smax(HG(¢ + 9)) }

25 € {m €2\ (0,3} /2 — 5] < lmy/2) 2RO LD

Smax(HG(¢+0))
Smin(HG(949))
a small interval 6 € [-A,A], A > 0, where this ratio
is bounded above by a positive constant ¢ < oo. Letting
Z] £ {z € 2"\ {0,2z;} : ||z:/2 — z|| < ||z:i/2||c}, we set
2" = U;er 2. Thus, we have obtained a large enough but finite
set Z' of coordinate vectors and A > 0 small enough such that
Ve [-A A &z; €R,if mingezn (0., {/[HG($ + 0)z:/2 —
HG(¢ + 6)z||} is greater than ||[HG(¢ + 6)z;/2||, then z; remains
relevant for HG(¢ + d). Next, using the continuity of G in ¢
we can show that for any z; € Z'\ {0,2;}

Using the continuity of in 6 we can define

|[HG(¢ + 0)z:/2 — HG(¢ + 0)z;|| > [|HG(¢)zi/2]| + §i — 0(i, )
> [[HG(¢ + 0)7/2|| + 6 — 05 (4, 5) — 03(3),

where 0} (i, 7), 03 (i) are positive terms that goes to zero as § —

0. Since the sets R and Z' are finite, we can now conclude
thatV § € [-A,A], where 0 < A < A is small enough, all
the coordinate vectors in R remain relevant for HG(¢ + ) as
well.

Now, suppose for a given HG(¢) the number of relevant co-
ordinate vectors in R is equal to the upper bound 27! — 2.
Then as a consequence of the Lemma 2, we can conclude that
YV § € [-A, A], the set R contains all the relevant coordinate
vectors of HG(¢ + 0). This observation allows us to take the
derivative of the upper bound (conditioned on H) assuming R

to be a fixed set and we have that %Pe”b(G7 H) equals

Z ( —exp(—z' GTHTHGz/4) TG 20)

d
HTH(— )
VrzT GTHTHGz (d¢G(¢))z

zZER

Finally, we derive a lower bound and obtain its derivative in the
desired form. Suppose the kissing number of lattice generated
by HG(¢) is 2 i.e. there are exactly two shortest (non-zero)
vectors in the lattice. Letting HG(¢)z1 and HG(¢)z2 denote
these vectors, we must have that zo = —z; and that z;, zy are
relevant®. Then since the half-spaces {y : ||y — HG(¢)z||*> <
[ly||?} and {y : ||y + HG(¢)z1||? < ||y||*} do not overlap we

can obtain a conditional lower bound, PP (G, H , given b
) g y

zTGTHTHGzl zg'GTHTHGzz
0 e I N e B en

3The kissing number can be no less than 2. Further, the fact that both z1, z2 =
—z; are relevant follows from the necessary and suffi cient condition given in
(18).

Also, using arguments similar to those used before we can show
that the derivative of (21) equals

2 TTyT
Z —exp(—z; G'H"HGz;/4) L GTHT
= \/mzl GTHTHGz;

In our case, the fading matrix is drawn from a continuous dis-
tribution and the generator G has no structure so that HG al-
ways has the maximum number of relevant vectors and the min-
imum kissing number. Thus, the unconditional upper and lower
bounds and their derivatives can be obtained after averaging
(17), (21) and (20), (22) over H, respectively*.

A better upper bound, referred to as the improved upper
bound, can also be obtained as

H(%G(a&))zi @)

Pr(0) + Ex[1(H° € 0°)Pe"®(G, H)], (23)
where O £ {H° : log |- (H°)'H°| < R} is called the outage
set. (23) is obtained by taking the upper bound to be one when

€ (. The improved bound is dramatically tighter for the
naive decoder since the conditional upper bound in (17) almost
always exceeds one when H¢ € O. Further, since the set O is
independent of G the derivative of (23) is readily obtained using
(20).

Finally as a consequence of our assumption, the correspond-
ing bounds and gradients for the MMSE lattice decoder are ob-
tained after replacing H by B. Thus for the improved upper
bound we take O = {H : log |1 + £ (H¢)'HC| < R}. The in-
tuition behind defining the outage sets in this manner rose from
the asymptotic lower bound analysis which is presented below.

V. FUNDAMENTAL LOWER BOUNDS

In this section we allow N > M and first consider the naive
decoder and obtain firm lower bounds for the sets @ peak and
®avg—cont- For a given n and rate R, let G be any matrix in
®yeak. Next, for a given channel realization H, we note that

Pe(G,H) = Pr(w' ¢ Vo(E=Y/?)HG) (24)
where ¥ = (HG)THG > 0. (24) follows after using a change
of variables w' = X~1/2(HG)Tw. We next consider the RHS
of (24). Note that /2 generates a n dimensional lattice with
Vol(Vo(=1/2)) = |22 = |GTG|2|[HTH|'/2. To obtain
the lower bound, we note that w' ~ A/(0,1/21,,) and use Shan-
non’s classical idea developed for lattices in [8], which yields

Pr(w' ¢ Vo(ZY?)|HG) > Pr(w' ¢ Ser(r(HG))|HG)
n/2—1 , 5
= exp(—r2(HG)) Z @

k=0

(25)

where Seer (r(HG)) is a sphere in n dimensions, centered at the
origin and having the same volume as Vo (X'/2) so that

(26)

|GTG|1/2|HTH|1/2) 1/n
Va

r(HG) = (

4 Again the exchange of derivative and the expectation over H can be rigor-
ously justifi ed.
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Clearly the lower bound is decreasing in r (HG). Using the fact

|IGTG|Y2 < VoI(S,,(VMT)) /28T we see that
o A (MT)1/2|%(HC)THC|1/(2M)
Thus a lower bound valid V G € ®peak is given by
n/2— 1 k
HC
Ex |exp(—r?(HC)) Z )) (28)

The corresponding bound for V G € @ gayg_cont follows after
replacing MT in the numerator of (27) by MT + 1.

The following theorem determines the best achievable perfor-
mance of the naive decoder over the set ®4yg_cont in the limit
of large code-lengths, i.e., T' — oo or equivalently n — oo.

Proposition 1: The error probabilities of any sequence of lat-

tice codes of unbounded length with generators {G,}, G, €
®avg—cont,n, V 7 obtained via the naive lattice decoder, de-
noted by {Pe(Gy)}, must satisfy liminf, ,, Pe(G,) >
Pr(log | & (H®)TH| < R). Further, there exists a sequence for
which lim, o Pe(Gy) = Pr(log|£& (H¢)THS| < R).
Proof sketch: [4] proved the existence of a sequence of lat-
tice codes with generators {G,}, Gp € Opeak,n,V 1 such
that limsup,,_,, Pe(Gn) < Pr(log|& (H)'H®| < R). Thus
to prove the theorem we prove the converse for the larger set
®avg—cont- First note that

n/2—1

ZZZ > r?(H)H® | = exp(—r?(H?)) >

k=0

) o,

where {27} are i.i.d N'(0, 1/2) (independent of H). Then using
the weak law of large numbers in (29) along with (27), it is seen
that

1 R>lo He)tH
lim Pr(z Z2 > r?(H)[H) = { o R IOEIL&IC;THC}
j=1

Using (30) with the dominated convergence theorem, we can
infer that the lower bound in the limit n — oo becomes
Pr(log|£ (H®)'H®| < R).

On the other hand the lower bounds for the sets
Opeak; Oavg—cont and the (assumed equivalent) model in (10)
can be derived by simply replacing H with B in the correspond-
ing bounds derived above. The limiting value of both the lower
bounds can be readily verified to be Pr(log [T+ £ (H®)TH¢| <
R).

VI. NUMERICAL RESULTS

Due to space constraints we only provide one illustrative ex-
ample. In Figure 1 we consider a MIMO link with 4 transmit
and 2 receive antennas with 7" = 2 and R = 4 bits per channel
use, experiencing correlated Rayleigh fading. The correlation
parameters were set to model the scenario C (urban). We plot the
block error probabilities (BLERs) obtained with the MMSE Lat-
tice decoder for three randomly generated spherical lattice codes
along with that of the optimized spherical lattice code. The code
was obtained by optimizing the improved upper bound using the
method described in Section III-A over the assumed equivalent

(30)

model (10). Our optimized code yields a gain of about 5 dB
over randomly chosen spherical codes, which highlights the im-
portance of tailoring the code to the channel statistics and shows
that optimizing codes for the naive decoder over the model in
(10) provides excellent designs for the MMSE lattice decoder.

VII. CONCLUSIONS

We have proposed a systematic method for designing optimal
spherical lattice codes for lattice decoders. The design method
is universal in the sense that it can be applied to optimize the
lattice codes for arbitrary channel statistics and SNR. Simula-
tion results have shown that our optimization method yields low
error rate lattice codes that outperform other lattice codes pro-
posed in the literature.
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Fig. 1. BLERS of lattice codes with MMSE lattice decoder.
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