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ABSTRACT

In this paper we propose a systematic procedure for design-
ing minimum-error-rate lattice (space-time) codes. By em-
ploying stochastic optimization techniques we design lattice
(space-time) codes with minimum error rate when maxi-
mum likelihood (ML) detection is employed. Our design
methodology can be tailored to optimize lattice (space-time)
codes for any fading statistics and SNR of interest.

1. INTRODUCTION

Wireless communications using multiple transmit and re-
ceive antennas can exploit the multiplexing gain (i.e., through-
put) and diversity gain (i.e., robustness) in fading channels
[1]. It has been shown in [1] that for any given number of
antennas there is a fundamental tradeoff between these two
gains. That work establishes a framework to compare ex-
isting space-time systems against the optimal multiplexing-
diversity tradeoff curve. In [2] the authors propose a family
of lattice space-time (LAST) codes that achieve the opti-
mum diversity-multiplexing tradeoff in delay-limited MIMO
channels. Unfortunately, the diversity-multiplexing tradeoff
framework does not quantify the coding gain or error rate at
signal-to-noise (SNR) ratio of interest (notice that the trade-
off gives asymptotic results). That is, for two LAST code
designs with the same tradeoff, different error rate perfor-
mance can be obtained at the SNR of interest.

Minimum-error rate high dimensional lattice codes have
been extensively studied for AWGN single-input single-output
(SISO) channels when maximum likelihood (ML) decod-
ing or lattice decoding are used [3]. However, these lattice
codes are not necessarily optimal in the sense of minimum
error rate for MIMO fading channels with arbitrary fading
statistics. Moreover, even for the simpler SISO channel, the
design of optimal high dimensional lattice codes using al-
gebraic number theory for ML receivers and non-AWGN
channels would be intractable (if not impossible). In this
paper, we propose to design spherical LAST codes under a
minimum error-rate criterion by employing a stochastic ap-
proximation technique based on the well known Robbins-

Monro algorithm [4] together with unbiased gradient esti-
mation. Stochastic optimization techniques focus on prob-
lems where the objective function, in this case the error rate,
is sufficiently complex so that it is not possible to obtain a
closed-form analytical solution. In our problem, we mini-
mize the error rate function over a set of possible vector pa-
rameter values (i.e., possible generators of the LAST code-
book) satisfying some constraints, in this case the average
power at the transmitter. An iterative algorithm is used (a
step-by-step procedure) for moving from an initial guess to
a final value that is expected to be closer to the true opti-
mum. Our designs can be tailored to optimize the spherical
LAST codes given a particular SNR of interest and channel
statistics.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the system model for LAST codes, code-
book construction, and LAST detectors. Section 3 discusses
the LAST code design procedure and the proposed stochas-
tic optimization algorithm. Section 4 provides simulation
results. Finally Section 5 concludes the paper.

2. SYSTEM DESCRIPTIONS

Consider the M -transmit N -receive multiple-input multiple-
output (MIMO) channel with no channel state information
(CSI) at the transmitter and perfect CSI at the receiver. The
wireless channel is assumed to be quasi-static and flat fad-
ing and can be represented by an N ×M matrix Hc, whose
element hc

ij represents the complex gain of the channel be-
tween the jth transmit antenna and the ith receive antenna,
which is assumed to remain fixed for t = 1, ..., T . The re-
ceived signal can be expressed as

yc
t =

√
ρ

M
Hcxc

t + wc
t , (1)

where {xc
t ∈ C

M : t = 1, ..., T} is the transmitted signal,
{yc

t ∈ C
N : t = 1, ..., T} is the received signal, {wc

t ∈
C

N : t = 1, ..., T} denotes the channel Gaussian noise,
and with the power constraint E{ 1

T

∑T
t=1 |xc

t |2} ≤ M , the
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parameter ρ represents the average SNR per receive antenna
independent of the number of transmit antennas. The entries
of wc

t are independent and identically distributed (i.i.d.) cir-
cularly symmetric complex Gaussian variables with unit vari-
ance, i.e., wc

t,i ∼ Nc(0, 1). The equivalent real-valued chan-
nel model corresponding to the T symbol intervals can be
written as [2].

y = Hx + w, (2)

where x = [xT
1 , ...,xT

T ]T ∈ C
2MT is a codeword belong-

ing to a codebook C with xt = [�{xc
t}T ,�{xc

t}T ]T , w =
[wT

1 , ...,wT
T ]T ∈ C

2NT with wt = [�{wc
t}T ,�{wc

t}T ]T
and

H =
√

ρ

M
I2 ⊗

[ �{Hc} −�{Hc}
�{Hc} �{Hc}

]
. (3)

The goal of this paper is the design of the codebook C ⊆
R

2MT , which minimizes the error rate when ML detection
is employed, with the constraint that the codewords x ∈ C
belong to a lattice and satisfy the average power constraint

1
|C|

∑
x∈C

|x|2 ≤ TM. (4)

Note that the rate of the code is R = 1
T log2 |C| bit/s/Hz.

2.1. LAST Codes

Basic lattice definitions: An n-dimensional lattice Λ is de-
fined by a set of n basis (column) vectors g1, ..., gn in R

n

[3]. The lattice is composed of all integral combinations of
the basis vectors, i.e., Λ = {x = Gz : z ∈ Z

n}, where
Z = {0,±1,±2, ...}, and the n × n generator matrix G is
given by G = [g1, g2, · · · , gn]. Note that the zero vector is
always a lattice point and G is not unique for a given Λ. In
the Euclidean space, the closest lattice point quantizer Q(·)
associated with Λ is defined by

Q(r) = x ∈ Λ, if ‖r − x‖ ≤ ‖r − x′‖, ∀x′ ∈ Λ.
(5)

The Voronoi cell of Λ is the set of points in R
n closest to

the zero codeword, i.e., V0 = {r ∈ R
n : Q(r) = 0}. The

Voronoi cell associated with each x ∈ Λ is a shift of V0

by x. The volume of the Voronoi cell is given by V (Λ) =√
det(GT G).

LAST codebook construction: Consider the dimension of
the lattice generated by G to be n = 2MT . A finite set
of points in the n-dimensional lattice can be used as code-
words of a codebook C. Given a bit rate R bit/s/Hz, the
codebook will contain |C| = 2T ·R lattice points. In par-
ticular, the codewords consist of all translated lattice points
inside a shaping region S. In spherical LAST codes, the
shaping region is chosen to be a sphere centered at the ori-
gin. The code is specified by the generator matrix G, the
translation vector u, and the radius of the shaping sphere,
i.e.,

C = (Λ + u) ∩ S (6)

where the cardinality of the codebook (i.e., the rate) is a
function of the radius of the sphere. If we form the inter-
section of the sphere of volume V (S) with the lattice of
Voronoi volume V (Λ) we could expect to obtain a code with
about V (S)/V (Λ) codewords. In fact, the value V (S)/V (Λ)
is correct on average although it is clear that there are some
codes that have more and some that have less. It is eas-
ily proven that at least one value of u ∈ R

n exists, such
that |(Λ + u) ∩ S| ≥ V (S)/V (Λ). Among all the possible
choices for u, we are interested in the one that leads to a
code with the smallest average energy 1

|C|
∑

x∈C |x|2. Us-
ing the centroid, an iterative algorithm can be used to find
the translation vector u which generates a codebook with
minimum energy. Hence, given a translation vector, the
codewords are obtained by taking |C| points of the shifted
lattice Λ + u that are closer to the origin 1 inside the shap-
ing sphere. A method to enumerate all the lattice points in
a sphere is given in [5]. To speed up the enumeration of all
such points, the radius of the shaping sphere or the lattice
generator should be scaled such that V (S)/V (Λ) � |C|.

2.2. LAST Detectors

Given the input-output relationship in (2) the task of a LAST
detector is to recover the transmitted codeword x (or its cor-
responding integer coordinates z) from the received signal
y. Next we overview some LAST detectors.
Maximum likelihood decoding: The maximum likelihood
detector (ML) is the optimal receiver in terms of error rate.
The ML detection rule is given by

ẑ = arg min
Gz+u∈C

‖y − Hu − HGz‖ . (7)

The minimization is performed over all possible codewords
in C. The decoding regions are not identical due to the
boundary of the codebook. This breaks the symmetry of
the lattice structure, making the computation of an error rate
analytical expression complicated.
Lattice decoding: In lattice decoding, the receiver is not
aware of the boundary of the codebook (e.g., the spheri-
cal shaping region S employed in spherical LAST codes)
and assumes that any point in the infinite lattice may be
transmitted, corresponding to infinite power and transmis-
sion rate. For a given lattice, the lattice decoder will search
for the (translated) lattice point that is the closest to the re-
ceived vector, whether or not this point lies in S. This de-
coder is known as the naive closest point in the lattice (see
[6] for an overview). More recently, it has been shown in
[2] that an MMSE-GDFE front-end can further improve the
performance of the lattice decoding algorithms in MIMO
systems. Given uncorrelated inputs and noise, with mean
zero and covariance I , the feedforward (FF) and feedback
(FB) MMSE-GDFE matrices are denoted by F and B re-
spectively. In particular, B is obtained from the Cholesky

1we use either x or its integer coordinates z to refer to each codeword,
since for any codeword x there is a univocal relation x = Gz + u.
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factorization BT B = I2TM + HT H and is upper trian-
gular with positive diagonal elements and F T = HB−1.
In this case, the MMSE-GDFE closest point lattice decoder
returns

ẑ = arg min
z∈Z2T M

‖Fy − Bu − BGz‖ , (8)

which essentially finds the point in the lattice generated by
BG that is the closest to the point Fy − Bu.

Other receivers: A combination of the MMSE-GDFE front-
end and the lattice-reduction-aided (LRA) linear receiver
described in [7] can be used to simplify the detector. The
LRA receiver makes a change of basis such that the deci-
sion regions of the detectors are improved and more robust
to noise. The change of basis is obtained via lattice reduc-
tion. The idea behind LRA linear receivers is to assume that
the signal was transmitted in the reduced basis, to equalize
in the new basis, which is more robust against noise en-
hancement, and then return the decoded symbol to the orig-
inal basis. Other receivers include classic linear detectors
such as MMSE or ZF linear detectors.

3. SPHERICAL LAST CODE OPTIMIZATION

In this section we propose a systematic method to design
the LAST codebook that minimizes the error rate when a
ML detector is employed. Note that the exact analytical
expression for the error rate performance in a ML detector
presented previously is intractable. Simulation-based opti-
mization turns out to be powerful for this scenario [8]. In
particular, we consider the case where only noisy informa-
tion about the objective function and gradient can be ob-
tained via simulations.

Our goal is to compute the optimal lattice generator ma-
trix G so as to minimize the average block error rate prob-
ability denoted as Υ(G) (i.e., objective function) with the
following power constraint

min
G∈Θ

Υ(G), with Θ = {G :
1
|C|

∑
Gz+u∈C

|Gz + u|2 ≤ MT}

(9)
where Θ represents the set of lattice generators that satisfy
the energy constraint at the transmitter. Note that G ∈
Θ if and only if, the coordinate vectors {zi}|C|i=1 and the
translate u which minimize average anergy for that G, sat-
isfy the constraint in (9). Let γ(y,z,u,H ,G) be the in-
dicator function of the block error event of ML detection
for a given generator matrix G, transmitted coordinates z,
translate u, received signal y, and channel matrix H , i.e.,
γ(y,z,u,H ,G) = 1, if ẑ = z (i.e., the ML decoded vec-
tor is equal to the transmitted vector) and 0 otherwise. Then
the average block error rate of ML detection is obtained by,

Υ(G) = E{γ(y,z,u,H,G)}. (10)

Since in general there is no closed-form expression for the
average block error rate Υ(G) we propose to use a stochas-
tic gradient algorithm to optimize it. The aim of gradient
estimation is to compute an unbiased estimate of the true
gradient. Let ĝ(G) denote an estimate of ∇GΥ(G). We
consider the case in which E{ĝ(G)} = ∇GΥ(G). The con-
strained Robbins-Monro (R-M) simulation-based algorithm
[4] is of the form

Gk+1 = ΠΘ(Gk − akĝ(Gk)) (11)

where Gk is the solution after the kth iteration, ĝ(Gk) is an
estimate of ∇GΥ(G)|G=Gk

, {ak} is a decreasing step size
sequence of positive real numbers such that

∑∞
k=1 ak = ∞

and
∑∞

k=1 a2
k < ∞, and the operator ΠΘ projects each ma-

trix Gk onto the nearest point in Θ. The step-size sequence
{ak} is usually chosen as the harmonic series ak = c/k,
where c is a positive scalar.

3.1. Lattice Design via Stochastic Approximation

Consider again the LAST system model in hand

y = H(Gz + u) + w. (12)

The average block error rate is obtained as

Υ(G) = E{γ(y,z,u,H ,G)}

=
1
|C|

|C|∑
i=1

∫ ∫
γ(y,zi,u,H ,G)p(y,H|zi,u,G)dydH,

where p(y,H |zi,u,G) is the joint probability density func-
tion (pdf) of (y,H) for a given zi,u,G. Note that Υ(G)
cannot be evaluated analytically. The design goal is to solve
the minimization problem minG∈Θ Υ(G), where the con-
straint Θ guarantees the average power of the codewords.
Note that

Υ(G) = EzEHEy|z,u,H,G{γ(y,z,u,H,G)}, (13)

where

Ey|z,u,H ,G{γ(y, z, u, H , G)} (14)

=

Z
γ(y, z, u, H , G)p(y|z, u, H , G)dy.

For a given channel realization H , codeword z, translate
u and lattice generator G, y in (12) is Gaussian with mean
HGz + Hu and covariance matrix 1

2I2MT , i.e.,

p(y|z, u, H , G) ∝ exp
h
−(y−HGz−Hu)T (y−HGz−Hu)

i
.

(15)
On the other hand, ∇GΥ(G) cannot be computed analyti-

cally, and therefore the constrained R-M iterative optimiza-
tion algorithm in (11) is not straightforward to apply. The
situation is even more complicated since {zi} and u can
depend on G. To break this knot, we proceed in the follow-
ing manner. Suppose we fix {zi} and u. Then an unbiased
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estimate of the gradient of Υ(G) with respect to G is given
by

∇GΥ(G) = EzEH

h
∇GEy|z,u,H,G{γ(y, z, u, H , G)}

i

= EHEz

R ∇G

n
γ(y, z, u, H , G)p(y|z, u, H , G)

o
dy

= EH Ez

Z “
∇Gγ(y, z, u, H , G)

”
p(y|z, u, H , G)dy

| {z }
0

+ EHEz

R
γ(y, z, u, H , G)

“
∇Gp(y|z, u, H , G)

”
dy

= EzEH

R
γ(y, z, u, H , G)∇Gp(y|z, u, H , G)dy (16)

where (16) follows due to the finite cardinality of the code-
book, and the definition of γ(·) (owing to space limitation
we omit a rigorous proof). Then, we can rewrite (16) as

∇GΥ(G) =

EzEH

Z
γ(y, z, u, H , G)

∇Gp(y|z, u, H , G)

p(y|z, u, H , G)| {z }
∇ log p(y|z,u,H ,G)

p(y|z, u, H , G)dy

= EzEHEy|z,u,H,G

h
γ(y, z, u, H , G)∇G log p(y|z, u, H , G)| {z }

∇Gf(G)

i
.

Defining,

f(G) = −(y − HGz − Hu)T (y − HGz − Hu)

and with p(y|z,u,H,G) given in (15), it follows that ∇Gf(G) =
∇G log p(y|z,u,H ,G). The (n, l)th entry of the gradient
of f(G) can be computed as

[
∂f(G)

∂G

]
n,l

= lim
δ→0

f(G + δeneT
l ) − f(G)

δ

= 2yT HeneT
l z − 2uT HT HeneT

l z

−2zT ele
T
nHT HGz. (17)

where en is the 2MT vector with a one in the n-th posi-
tion and zeros elsewhere. Clearly for given {zi} and u a
sufficiently small step in the direction of the negative gra-
dient, i.e. Ĝ = G − δ∇GΥ(G), δ > 0, will decrease the
error probability. Next, based on insight gained from sim-
ulations, we re-determine the {zi} and u which minimize
the average energy for Ĝ and take βĜ, βu, {zi} to be the
new generator matrix, translate and coordinate vectors, re-
spectively, where, the scaling factor β satisfies

β =


 MT |C|∑

ˆGz+u∈C |Ĝz + u|2




1/2

. (18)

We have seen that in general, this results in a decrease in
error probability when Ĝ ∈ Θ and is a good choice (yield-
ing a small increase in error probability) when Ĝ /∈ Θ. The
design algorithm is described next.

3.2. The Design Algorithm

Assume that at the kth iteration the current lattice generator
is Gk. Perform the following steps during the next iteration
to generate Gk+1.
Step 1 - Composition method to generate mixture sample:

1. Draw L coordinate vectors z1, ...,zL uniformly from
the set of possible coordinates that generate the code-
book.

2. Simulate L observations y1, ...,yL where each yi is
generated according to the system model yi = Hi(Gkzi+
uk) + wi, i = 1, ..., L.

3. Using the ML rule, decode zi based on the obser-
vations yi and the channel value Hi, i = 1, ..., L.
Compute γ(yi,zi,uk,Hi,Gk) (the empirical block
error rate).

Step 2 - Score function method for gradient estimation: Use
(17) to obtain

ĝ(Gk) =
1

L

LX
i=1

γ(yi, zi, uk, H i, Gk)
h
∇G log p(yi|zi, H i, G)

i
,

where the gradient is given in (17).
Step 3 - Update the new lattice generator matrix, translate
and coordinate vectors:

{Gk+1,uk+1, {zi}} = Π(Gk − akĝ(Gk)), (19)

where ak = c/k for some positive constant c. For a given
lattice generator matrix G, the function Π returns βG, βu, {zi},
as described in the previous section. Note that the gradient
estimator is unbiased for any integer L, but the variance de-
creases for larger values of L. Hence, a larger number of
samples L can provide a better estimate of the gradient al-
though it will slow down the algorithm.
Practical implementation issues: (i) In our implementation
we have assumed u = 0 and the translation vector has been
updated after the last iteration; (ii) The speed of conver-
gence of the algorithm is highly dependent upon the choice
of the step-size ak = c/k. The value of c needs to be large
enough so the step-size does not decrease too fast before
moving to the vicinity of the optimal generator matrix. On
the other hand, it should be small to make the solutions sta-
bilize as soon as possible.
Remark 1: As in any other gradient descent algorithm, only
convergence to a local minimum can be expected but not
global optimality. By trying different initial conditions and
picking the best solution, we can obtain a better code.
Remark 2: Note that the design algorithm is not restricted to
space-time systems. For example, substituting the required
system model in Step 1.2 of the algorithm, the same design
methodology can be used to design lattice codes for:
a) AWGN channels: generate Hc = I .
b) SISO fading channels: generate Hc = hSISO.
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c) MIMO or SISO channels with particular fading statis-
tics: generate the elements in H according to the particu-
lar PDF, e.g., Rician channels, Nakagami channels, spatial-
correlation, etc.

4. NUMERICAL RESULTS

We provide examples to show the performance of the new
LAST codes obtained by the described design procedure.
For brevity, we only report results for the ML decoders with
uncorrelated MIMO channels with Rayleigh fading statis-
tics. Similar results have been obtained taking into account
other MIMO channel statistics (e.g., taking it into account
in Step 1.2 of the algorithm). It has also been observed that
lattices designed for ML detectors also perform well with
MMSE-GDFE lattice detectors (i.e., no boundary control).

Consider M = N = T = 2 and R = 4 bit/s/Hz (i.e.,
a codebook with 256 codewords, and dimension n = 8).
In the first iteration of the algorithm we use a random initial
guess G0 properly scaled to satisfy Θ. The code is designed
for ρ = 15.5 dB. We assume ML decoding. The block error
rate convergence of the algorithm is shown in Fig. 1 aver-
aged over 88 random initial lattice generators. The number
of samples in the algorithm was set to L = 17000. It is seen
that during the first iterations the algorithm rapidly moves
towards a lattice generator whose LAST code gives a low
block error rate.

Next, we report the block error rate performance using
the LAST codebook obtained with the 8-dimensional gen-
erator matrix given in [2] that we denote as GCD, and also
for the LAST codebook obtained from the Gosset lattice E8

given in [3]. In Fig. 2 it is seen that our optimized code
obtains better performance than the other LAST codes.

5. CONCLUSIONS

We have proposed a systematic method for designing min-
imum error rate spherical LAST codes taking into account
the channel statistics and SNR of interest. The design method
has been shown to be universal in the sense that can be ap-
plied to optimize the lattice codes for a wide range of chan-
nel statistics and other system models. Simulation results
have shown that our optimization method converges to a low
error rate LAST code and our LAST codes outperform other
lattice codes proposed in the literature.
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