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Minimum Error-Rate Linear Dispersion
Codes for Cooperative Relays
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Abstract—Cooperative diversity systems have recently been
proposed as a solution to provide spatial diversity for terminals
where multiple antennas are not feasible to be implemented. As
in multiple-input–multiple-output systems, space–time codes can
be used to efficiently exploit the increase in capacity provided
in cooperative diversity systems. In this paper, we propose a
two-layer linear dispersion (LD) code for cooperative diversity
systems and derive a simulation-based optimization algorithm to
optimize the LD code and power allocation in terms of block
error rate. The proposed code design paradigm can obtain optimal
codes under arbitrary fading statistics. Performance comparisons
are made to other cooperative diversity schemes. The effect that
distances between source, relays, and destination terminals have
on the energy allocation between the broadcast and cooperative
intervals is also studied.

Index Terms—Cooperative diversity, gradient estimation, linear
dispersion (LD) codes, multiple-input–multiple-output (MIMO),
stochastic approximation.

I. INTRODUCTION

IN RECENT years, multiple-input–multiple-output (MIMO)
systems have been extensively studied because of their

promise of enormous capacity gain [1], [2]. Cooperative diver-
sity has been proposed for systems with multiple single-antenna
devices as an attempt to realize the spatial diversity gain similar
to that of a MIMO system [3]. The mobile terminals share their
antennas with other users in the network to create a virtual
antenna array and provide spatial diversity for transmission.
Fig. 1 shows a typical cooperative diversity system setup. The
capacity of wireless relay channels has been analyzed in [4],
and relays have also been shown to extend the coverage area
and system performance. In [5] and [6], it is also shown that for
a two-user cooperative diversity system, the achievable capacity
region of the system is increased for a flat block-fading channel
and that the users’ achievable rates are also less susceptible to
channel variations.

Due to the similarity between cooperative diversity and
MIMO systems, space–time codes have been proposed as a
possible solution. These codes utilize both the spatial and time
domains to introduce correlation between signals transmitted
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from the different antennas at different time slots [7]. An im-
portant class of space–time code is the space–time block codes
(STBCs). The Alamouti code [8] is one example of an STBC
for a MIMO system with two transmit antennas. In a cooper-
ative diversity system, space–time coding can also be used to
take advantage of its MIMO-like properties to obtain spatial di-
versity, coding gains, and higher spectral efficiency. In [9]–[11],
performance analyses are made for various cooperative
schemes in a flat fading channel using the Alamouti code, and it
is shown that systems using the Alamouti code outperform the
systems that employ simple repetition coding.

To retransmit the received signal to the destination, relays can
choose from two relay schemes: amplify-and-forward (AF) and
decode-and-forward (DF) [12]. Using an AF relay scheme, the
relays generate the space–time codewords using the received
signal and transmit the space–time codewords to the destina-
tion at a predetermined energy level. When using a DF relay
scheme, the received signal is first decoded, and then, the de-
coded symbols are used to generate the space–time codewords
to be transmitted. It is easy to see that a cooperative diversity
system is different from a MIMO system in one important
aspect: All transmitting antennas except those located at the
source have imperfect knowledge of the information to be
transmitted. The imperfection of the source-to-relay channels
is a source of errors for the cooperative diversity system.

In this paper, we propose a new coding scheme for AF
cooperative diversity systems based on linear dispersion (LD)
codes [13]–[15]. Using LD codes, the energy of the trans-
mitted symbols is spread out along the temporal and spatial
dimensions. In [15], an LD coding scheme is proposed for the
cooperative diversity system. The LD dispersion matrices are
applied to the received signal at the relays, where the source and
relays act as a multiantenna system and transmit the resulting
LD code matrix. Diversity gain is then analyzed for pairwise
error probability. However, no scheme is proposed to construct
the code to optimize the error probability.

In our proposed scheme, instead of using the LD code
only in the relay-to-destination transmissions, we take a two-
layered approach to design an LD code for cooperative diversity
systems. The first layer of the LD code is generated at the source
by Q r-quadratic-amplitude modulation (QAM) symbols with
the first set of dispersion vectors. The second layer of LD code
is then generated by the cooperative nodes with the second set
of dispersion matrices using the received signals. The power
allocated to each node and communication link is also an
important design parameter in the performance of the cooper-
ative diversity system [16]. For cooperative diversity systems
using LD code, an explicit analytical expression for the block
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Fig. 1. (M,N) cooperative diversity system.

error rate (BLER) does not exist, and therefore, deterministic
optimization techniques cannot be used. Here, we employ a
simulation-based stochastic approximation technique together
with gradient estimation [17] to jointly optimize the LD code
and power allocation with respect to the BLER. This method is
useful when the objective function and the gradient cannot be
evaluated analytically but can be estimated.

The remainder of this paper is organized as follows. In
Section II, we describe the system model for cooperative di-
versity systems using a two-layered LD code. In Section III,
we employ simulation-based stochastic approximation and gra-
dient estimation techniques to optimize the LD code and power
allocation with respect to the BLER. In Section IV, we present
simulation results to compare the performance of the optimized
LD code and power allocation with other space–time code
designs. Finally, Section IV contains the conclusions.

II. SYSTEM MODEL

Unlike MIMO systems, where the transmit antennas all are
part of a single antenna array and each transmit antenna has
perfect knowledge of the information to be transmitted, transmit
antennas in a cooperative diversity system can belong to sev-
eral independent terminals, where only the source has perfect
knowledge of the symbols to be transmitted. To be able to use
the cooperative nodes as relays to transmit information jointly
to the destination, the information first needs to be distributed
to the cooperative nodes.

Consider the cochannel transmission, cooperative network
illustrated in Fig. 1 consisting of one source terminal, (M − 1)
relay terminals, and one destination terminal, which are denoted
as S, Rm, m = 1, . . . ,M − 1, and D, respectively. The source
has one transmit antenna, each relay has one antenna, and the
destination has N receive antennas, with the nth receive an-
tenna denoted as Dn, n = 1, . . . , N . The system thus consists

of M transmit antennas and N receive antennas, which we
will denote as an (M,N) system. The source-to-relay, relay-
to-destination, and source-to-destination channels are assumed
to be mutually independent block-fading channels with arbi-
trary fading statistics and are denoted as hm, gm,n, and gM,n,
respectively, where, in the transmissions to the destination, we
designate the source as the M th node. In our model, the source
does not need knowledge of the channels, and we assume that
the destination has knowledge of all the channels hm, gm,n, and
gM,n, m = 1, . . . ,M − 1, n = 1, . . . , N , while relay m has
knowledge of hm. The destination’s knowledge of the source-
to-relay channels can be obtained from the corresponding relays
through some control channel, which we assume to be perfect.

In our proposed scheme, each transmission frame consists of
two intervals:

1) broadcast interval: source broadcasts information using
first-layer LD code to cooperating relays and destination;

2) cooperation interval: source and relays transmit with
second-layer LD code to the destination.

Unlike for MIMO systems, a code design for cooperative
diversity system needs to take into consideration the broad-
cast channels between the source and relays. Moreover, the
energy allocated in the broadcast interval to transmit the first-
layer LD code to the relays has significant impact on system
performance. The total energy consumption E0 is fixed for
each transmission frame, and then, energy allocation to each
interval has an important effect on the BLER performance of
the system. The optimal distribution of energy between the
two intervals depends on the space–time code, the statistics
of the channels between source, relays, and destination, and
the physical distances between the terminals. If insufficient
energy is allocated to the broadcast interval, the first-layer LD
code received by the relays during the broadcast interval can
become so corrupted that the performance of the overall system
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is degraded, despite having more energy allocated to the source-
to-destination and relay-to-destination links in the cooperation
interval. On the other hand, if too much energy is assigned to
the broadcast interval for reliable transmission of the first-layer
LD code to the relays, the lack of energy during the cooperation
interval can still degrade the overall system performance. It
is then clear that energy allocation between the two intervals
should also be an optimization parameter.

A. Transmission Scheme

Let us define s1, s2, . . . , sQ as the Q different r-QAM
symbols that the source terminal wishes to transmit to the
destination terminal, where sq = αq + jβq , q = 1, . . . , Q, and
E{|s2

q|} = 1. For a cooperative diversity system with one
source antenna, M − 1 relays, and N destination antennas, we
can construct the following cooperative transmission scheme.

1) Source forms τ linearly combined symbols k =
[k1, . . . , kτ ]T using Q r-QAM symbols, s1, . . . , sQ, and
the first-layer dispersion τ × 1 vectors cq, dq, q =
1, . . . , Q.

2) Source transmits k1, . . . , kτ to the relays and destination
during τ consecutive symbol intervals.

3) Source and relays form the second-layer LD codeword
using their received signals corresponding to k1, . . . , kτ

and with dispersion matricesAt,Bt, t = 1, . . . , τ , where
At, Bt have dimensions (T − τ)×M , and each relay
uses one column of the dispersion matrices.

In the broadcast phase, the vectors cq and dq disperse the
qth symbol along the time dimension. In the cooperation phase,
the signal received by the relays at time t is dispersed by At

and Bt along both the time and spatial dimensions. Notice
that τ , which is the number of linearly combined symbols
transmitted during the broadcast interval, is also the length of
the broadcast interval. Since the total length of the frame is
fixed at T , the choice of τ will determine the size of both the
broadcast and cooperation intervals. By choosing τ > T/2, we
are devoting more resources to ensure that information received
by the cooperative terminals is less error prone. Intuitively, this
is done when the source sees poorer channels to the relays
compared to the relay-to-destination channels. Conversely, we
can make τ < T/2 when the relays see poorer channels to the
destination compared to the source-to-relay channels. Thus, it is
clear that τ is also a design variable that needs to be optimized.

B. Energy Constraints

The energy allocated to the broadcast interval E1 and co-
operation interval E2 is constrained by the fixed total energy
constraint for one transmission frame E0, where

E0 = E1 + E2, E1 > 0, E2 > 0 (1)

and we can write (1) as a function of an angular coordinate

E1 = E0 cos2 α, E2 = E0 sin2 α, α ∈ (0, π). (2)

For an (M,N) cooperative diversity system, let us denote the
normalized distance between source and relay Rm as dSRm

,

m = 1, . . . ,M − 1, the normalized distance between source
and destination as dSD, and the normalized distance between
relay Rm and destination as dRmD. Denote ρSD,1, ρSD,2, ρSRm

,
and ρRmD as SNR between the source and destination during
the broadcast and cooperation phase, SNR between source and
relay Rm, and SNR between relay Rm and destination, respec-
tively. By assuming that the received noise has unit variance
and incorporating path loss into our model, it follows that

ρSD,1 =
E1

τ

(
1

dSD

)ν

ρSRm
=

E1

τ

(
1

dSRm

)ν

ρSD,2 =
1
M

E2

T − τ

(
1

dSD

)ν

ρRmD =
1
M

E2

T − τ

(
1

dRmD

)ν

(3)

where ν is the path loss exponent. The factor of 1/M di-
vides the energy allocated in the cooperation interval evenly
among the M transmitting terminals. In the following analysis,
unless stated otherwise, we assume that ν = 4 for an urban
environment [18].

C. Broadcast Interval

In this and the following section, in the interest of clarity
in presenting the system model, we will present the details of
the matrices which involves the channel coefficients and the
dispersion matrices to Appendix A. This allows us to give a
clearer presentation of the transmission scheme proposed in
this paper.

For a given τ , let us denote the τ × 1 complex-valued
LD vectors for the source-to-relay transmission as cq =
[c1q, . . . , cτq]T and dq = [d1q, . . . , dτq]T , q = 1, . . . , Q. Recall
that sq = αq + jβq; the τ × 1 linearly combined symbol vector
to be transmitted is then

k =
Q∑

q=1

(αqcq + jβqdq), q = 1, . . . , Q. (4)

The energy constraint is E{kHk} ≤ τ . Using the fact that
αq, βq are independent identically distributed (i.i.d.) with zero
mean and variance 1/2, we get the following constraint

Q∑
q=1

(
cH

q cq + dH
q dq

)
≤ 2τ. (5)

Denote hm, m = 1, . . . ,M − 1 as the fading channel coeffi-
cients for the source-to-relay channels. Let rRm

be the τ × 1
received signal vector at relay Rm after passing through a
matched filter and normalizing by |hm|. The received signal at
relay Rm is then given by

rRm
= |hm|√ρSRm

k + nRm

with nRm
∼ NC(0, I), m = 1, . . . ,M − 1. (6)
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In the broadcast interval, the destination antenna Dn also re-
ceives the transmission from the source, and the τ × 1 received
signal vector at antenna Dn is given as

rDn,B = gM,n
√
ρSD,1k + nDn

with nDn
∼ NC(0, I), n = 1, . . . , N. (7)

Denoting kt = α̃t + jβ̃t, t = 1, . . . , τ , then from (4), we
have the following relationship:

α̃1
...
α̃τ

β̃1
...
β̃τ


2τ×1

= Φ


α1

β1
...

αQ

βQ


2Q×1︸ ︷︷ ︸

x

(8)

where Φ is a 2τ × 2Q matrix of elements of the first-layer dis-
persion matrices. Details for the construction of Φ are given in
Appendix A. We further denote y1 as the real-valued received
signal vector during the broadcast interval at the relays, i.e.,

y1
�
=
[


{
rT

R1

}
�
{
rT

R1

}
· · · 


{
rT

RM−1

}
�
{
rT

RM−1

}]T

2(M−1)τ×1
.

(9)

Using (6) and (8), the received signal y1 at the relays during the
broadcast interval can now be written as

y1 =HΦx+ n, n ∼ N
(
0,

1
2
I

)
(10)

with the real-valued 2(M − 1)τ × 2τ equivalent channel ma-
trix H , composed of the source-to-relay channel coefficients,
given in Appendix A.

D. Cooperation Interval

In the cooperation interval, source and relays construct a new
LD codeword using the received first-layer LD codeword gen-
erated during the broadcast interval. We first need to normalize
the energy of the received signal during the broadcast interval.
From (6), we have

E
{
rH

Rm
rRm

}
= |hm|2ρSRm

τ + τ. (11)

Thus, before performing the linear combination on the received
signals at the relays using the second-layer dispersion matrices,
we multiply by the normalization constant

γRm

�
=
√

τ

|hm|2ρSRm
τ + τ

, m = 1, . . . ,M − 1 (12)

such that

γ2
Rm

E
{
rH

Rm
rRm

}
= τ. (13)

For the cooperation interval, we use a set of dispersion ma-
trices {At,Bt}τ

t=1, with dimension (T − τ)×M . From (13),
the τ received symbols to be linearly combined have total
energy of τ ; thus, we normalize the second-layer dispersion
matrices as

τ∑
t=1

tr
(
AH

t At +BH
t Bt

)
≤ 2M(T − τ). (14)

For transmission in the cooperation interval, the source em-
ploys the first column of the LD matrices and transmit the
following (T − τ)× 1 signal vector:

xS =
τ∑

t=1


{kt}aM,t + j�{kt}bM,t. (15)

The relay Rm will use the (m)th column of the LD matrices
and transmit the following (T − τ)× 1 signal vector:

xRm
= γRm

τ∑
t=1

(
{rRm,t}am,t + j�{rRm,t}bm,t)

m = 1, . . . ,M − 1 (16)

where am,t and bm,t are the mth column of the dispersion
matrices At and Bt, respectively. Denote gm,n, m =
1, . . . ,M − 1, n = 1, . . . , N , and gM,n as the relay-to-
destination and source-to-destination channel coefficients.
Then, the (T − τ)× 1 received signal vector at the destination
antenna Dn during the cooperation interval is

rDn,C = gM,n
√
ρSD,2xS +

M−1∑
m=1

gm,n
√
ρRmDn

xRm
+ vDn

vDn
∼ NC(0, I). (17)

Define y2 as the real-valued received signal vector at the
destination in both broadcast and cooperation intervals as (18),
shown at the bottom of the page. From (7), (9), and (17), we
can write y2 as

y2 = GΦx+ G̃y1 + u, u ∼ N
(
0,

1
2
I

)
(19)

where G is the 2NT × 2τ real-valued equivalent channel ma-
trix for the received signal component at the destination from

y2
�
=
[


{
rT

D1,B

}
�
{
rT

D1,B

}
· · · 


{
rT

DN ,B

}
�
{
rT

DN ,B

}


{
rT

D1,C

}
�
{
rT

D1,C

}
· · · 


{
rT

DN ,C

}
�
{
rT

DN ,C

}]T

2NT×1
(18)
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the source during the broadcast and cooperation intervals, and
G̃ is the 2NT × 2(M − 1)τ real-valued equivalent channel
matrix for the received signal component at the destination
from the relays during the cooperation interval. The channel
matrix G consists of the second-layer dispersion matrices and
the source-to-destination channel coefficients, whereas G̃ con-
sists of the second-layer dispersion matrices and the relay-to-
destination channel coefficients. The details of the equivalent
channel matrices are given in Appendix A.

In order to perform data detection at the destination, we need
to write y2 in terms of x, which is the real-valued transmitted
symbol vector. Substituting (10) into (19), we have

y2 =GΦx+ G̃(HΦx+ n) + u

=(G+ G̃H)Φx+ (G̃n+ u). (20)

In (20), the effective total noise is colored, owing to the noise
amplification and recombination at the relays, with covariance

Σ = (1/2)(G̃G̃
T
+ I). In order to perform detection, we need

to whiten the noise first. That is, define

z
�
= Σ− 1

2y2 = Σ− 1
2 (G+ G̃H)Φx+ ū, ū ∼ N (0, I).

(21)

We can then employ the sphere decoder [19]–[21] to perform
maximum likelihood (ML) detection on z to obtain x̂, which is
the ML estimate of x.

III. OPTIMIZATION OF TWO-LAYER

COOPERATIVE LD CODE

A. Stochastic Approximation and Gradient Estimation

In this section, we develop an algorithm to find the two-
layered dispersion matrices and the energy allocation to
minimize the BLER for a cooperative diversity system in an
arbitrary fading scenario. Since the exact analytical expression
of the average BLER for an arbitrary set of dispersion matrices
and arbitrary fading statistics does not exist, we have to resort
to stochastic gradient algorithms to optimize the average BLER
performance with respect to the dispersion matrices and the
energy allocation. Here, we employ an optimization scheme
based on the Robbins–Monro (R–M) [22] algorithm and use
the score-function algorithm for gradient estimation. The R–M
algorithm takes the recursive form

!i+1 = !i − σi�̂Υ(!i) (22)

where !i is the estimated parameter value at iteration i,
�̂Υ(!i) is the gradient estimate of the objective function at !k,
and {σi} is a decreasing step size sequence of positive numbers
such that

∞∑
i=1

σi = ∞,

∞∑
i=1

σ2
i < ∞. (23)

By choosing σi = σ/i, where σ is a positive scalar, the above
stochastic gradient algorithm will converge to global optimum
in a weak sense.

Consider an (M,N) cooperative diversity system with Q
symbols to be transmitted, broadcast interval length τ , and total
transmission interval of T . Let us define the real-valued channel
vectors corresponding, respectively, to channels from source
to relay, and channels from relay to destination and source to
destination

φ
�
= [
{h1} �{h1} · · · 
{hM−1} �{hM−1} ]T

ψ
�
= [
{g1,1} �{g1,1} · · · 
{gM,N} �{gM,N} ]T .

(24)

For the cooperative LD code design problem, the optimization
parameter set θ consists of the broadcast dispersion vectors,
the cooperative dispersion matrices, and the angular coordinate
defining the energy allocation, i.e.,

θ
�
= {{cq,dq, q = 1, . . . , Q}, {At,Bt, t = 1, . . . , τ}, α}

(25)

with constraints (5) and (14). Define the empirical BLER as
γ(z,x,φ,ψ,θ) for the given sets of noise-whitened receive
signal vector z, information symbol vector x, channel realiza-
tions φ andψ, and the given parameter θ. The empirical BLER
is then given by an indicator function

γ(z,x,φ,ψ,θ)
�
= I(x̂ �= x|z,x,φ,ψ,θ) (26)

where x̂ denotes the decoded symbol vector. Recalling from
(21) that z = Σ−1/2y2, we can thus write the empirical BLER
as a function of y2. For given θ, the average BLER is then

Υ(θ)
�
= ExEφEψEy1,y2|x,φ,ψ {γ(y2,x,φ,ψ,θ)} . (27)

We want to solve the following optimization problem:

min
θ∈Θ

Υ(θ) (28)

with the constraint set given by

Θ
�
=

{
Q∑

q=1

tr
(
cH

q cq + dH
q dq

)
≤ 2τ,

τ∑
t=1

tr
(
AH

t At +BH
t Bt

)
≤ 2M(T − τ)

}
. (29)

In (27), we have

Ey1,y2|x,φ,ψ {γ(y2,x,φ,ψ,θ)}

=
∫∫

γ(y2,x,φ,ψ,θ)p(y1,y2|x,φ,ψ,θ)dy1dy2

=
∫∫

γ(y2,x,φ,ψ,θ)p(y1|x,φ,θ)

× p(y2|y1,x,ψ,θ)dy1dy2. (30)
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From (10) and (19), it follows that p(y1|x,φ,θ) and
p(y2|y1x,ψ,θ) are both white Gaussian probability density
function. Let us denote

P1
�
= p(y1|x,φ,θ)

=
1

π(M−1)τ
exp

[
−(y1 −HΦx)T (y1 −HΦx)

]
(31)

P2
�
= p(y2|y1,x,ψ,θ)

=
1

πNT
exp

[
−(y2−GΦx−G̃y1)

T (y2−GΦx−G̃y1)
]
.

(32)

Using (27), the gradient of the average BLER with respect to θ
is then given by

�θΥ(θ) = ExEφEψ

∫∫
[�θγ(y2,x,φ,ψ,θ)]P1P2

+ γ(y2,x,φ,ψ,θ) [(�θP1)P2 + P1(�θP2)] dy1dy2. (33)

For ML detection, it is shown in Appendix C that

Ex

∫∫
�θγ(y2,x,φ,ψ,θ)P1P2dy1dy2 = 0. (34)

Then, (33) can be written as

�θΥ(θ)=ExEφEψ

∫∫
γ(y2,x,φ,ψ,θ)

× [(�θP1)P2 + P1(�θP2)] dy1dy2

=ExEφEψ

∫∫
γ(y2,x,φ,ψ,θ)

× �θp(y1,y2|x,φ,ψ,θ)dy1dy2

=ExEφEψ

∫∫
γ(y2,x,φ,ψ,θ)

× �θp(y1,y2|x,φ,ψ,θ)
p(y1,y2|x,φ,ψ,θ)

× p (y1,y2|x,φ,ψ,θ) dy1dy2

=ExEφEψEy1,y2|x,φ,ψ{γ(y2,x,φ,ψ,θ)�θ

× log p (y1,y2|x,φ,ψ,θ)}

=ExEφEψEy1,y2|x,φ,ψ{γ(y2,x,φ,ψ,θ)�θ

× [logP1 + logP2]}. (35)

B. Simulation-Based LD Code Optimization Algorithm

We now present the iterative simulation-based algorithm to
optimize the dispersion matrices and the energy allocation. The
optimal value for the design variable τ is chosen by evaluating
the following algorithm at different values of τ and selecting
the one which gives the lowest BLER.

For a given τ in the kth iteration, let θk be the set

θk =
{{
c(k)

q ,d(k)
q , q = 1, . . . , Q

}
{
A

(k)
t ,B

(k)
t , t = 1, . . . , τ

}
, α(k)

}
. (36)

Perform the following steps to update the parameter θk+1 for
the next iteration.

1) Generate symbol and signal samples.
a) Draw L symbol vectors x(1),x(2), . . . ,x(L) uni-

formly from the constellation set.
b) Simulate L observations y1(1),y1(2), . . . ,y1(L),

where each y1(&) is generated by [cf. (8), (10),
and (44)]

y1(&) =H(&)Φ(&)x(&) + n(&), &=1, 2, . . . , L.
(37)

c) Simulate L observations y2(1),y2(2), . . . ,y2(L),
where each y2(&) is generated by [cf. (46)–(48)]

y2(&) = G(&)Φ(&)x(&) + G̃(&)y1(&) + u(&)

& = 1, 2, . . . , L. (38)

d) Decode x(&) based on (21) and compute the empirical
BLER γ(z(&),x(&),φ(&),ψ(&),θk).

2) Score function method for gradient estimation: Generate
the estimate of (35)

�̂Υ(θk) =
1
L

L∑
�=1

γ (y2(&),x(&),φ(&),ψ(&),θk)

×
{
�θ [ log p (y1(&)|x(&),φ(&),θ)

+ log p(y2(&)|y1(&),x(&),ψ(&),θ)]|θ=θk

}
.

(39)

The expressions of the gradients required in (39) are given
in Appendix B.

3) Update parameters: The parameters are updated as

θk+1 = ΠΘ

[
θk − σk�̂Υ(θk)

]
(40)

where ΠΘ(·) is a projection operator onto the set Θ. That
is, ΠΘ(·) normalizes the first-layer dispersion vectors
and the second-layer dispersion matrices such that the
equalities in (5) and (14) are satisfied, respectively.

C. Complexity Issues and Convergence

1) Implementation Complexity: The code design methodol-
ogy proposed in this paper is an offline algorithm. Therefore,
once the dispersion matrices have been designed, the actual use
of the code is similar in complexity to the scheme proposed
in [15], with additional memory requirement for storage of
the dispersion matrices for different physical system config-
urations and fading environments. The need for symbol-level
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synchronization does incur additional overheads. However, this
assumption has been adopted in much of the cooperative diver-
sity literature. Moreover, symbol-level synchronization is also
easier to implement in a cellular-network architecture, which is
assumed for this paper.
2) Convergence: The time it takes for the stochastic gradi-

ent algorithm to converge depends on the size of the system and
the fading environment. They both affect the computational cost
of the sphere decoder. For offline implementation, the changes
in the fading conditions do not affect the performance of the
system once the dispersion matrices have been designed.

IV. SIMULATION RESULTS

In this section, we present simulations to demonstrate
the performance of cooperative diversity systems using the
BLER-optimized LD code obtained by the algorithm given in
Section III-B. It is well known that the orthogonal codes are
only capacity achieving in a (2,1) system [23]. At data rate
that exceeds the rate limit of an orthogonal code for a given
system configuration, the orthogonal code no longer yields
full diversity. When operating at the same high data rate, the
proposed two-layer LD code can be optimized to perform at
a lower BLER compared to the orthogonal codes. Because
explicit analytical equations do not exist for BLER of the two-
layer LD code, the diversity of the system can be obtained by
observing the slope of the BLER curves.

Several two-layer LD codes for a cooperative diversity sys-
tem are optimized for minimum BLER for different physical
system configurations and fading environments. Their BLER
performances are compared against other coding schemes, in-
cluding orthogonal codes such as the Alamouti’s code, for the
range of total energy available for the system. For all examples,
the two-layer LD codes are designed at an energy level where
the BLER is approximately 10−2. It will be seen that codes
designed at a particular SNR also work well for a wide range
of SNR.
Example 1—Cooperative LD Code for a (2,2) System: We

first examine the performance of the cooperative LD code in
a system with one source terminal, one relay terminal, and a
destination terminal with two receive antennas. Fig. 2 compares
the cooperative LD code with that of the Alamouti code for
cooperative relays [9]–[11] in different fading channels for
increasing total energy E0. We can see that the optimized
cooperative LD code outperforms the Alamouti code in a wide
range of SNR values. At a BLER of 10−2, the cooperative LD
code has a 1-dB gain in both the Rician K = 2 and Rayleigh
fading and a 2-dB gain in Nakagami m = 0.5 fading. This
shows that the benefit of using the two-layered cooperative
LD code over the Alamouti code increases as the channel
conditions worsen. In this example, the terminals are all equal
in distance and have i.i.d. fading to all other terminals. The
BLER performances of cooperative LD code and Alamouti
code are compared in Rayleigh, Rician K = 2, and Nakagami
m = 0.5 fading channels. The Rician K = 2 channel repre-
sents better-than-Rayleigh channels, while Nakagami m = 0.5
channel represents worse-than-Rayleigh fading conditions [24].
For the cooperative LD code, we have chosen T = 4, Q = 2,

Fig. 2. Cooperative LD code versus Alamouti code for a (2,2) system under
different fading environments.

and 16-QAM constellation for rate R = 2, and the dispersion
matrices are optimized for the given channel statistics. We
have found that the optimal length of the broadcast interval
is at τ = 3. This means that for this particular physical setup,
more resources are needed in the broadcast interval for optimal
BLER performance. For fair comparison, we consider the same
rate, using 16-QAM constellation for the Alamouti code, and
energy is equally divided between the broadcast interval and
cooperation interval by choosing α = π/2.

In [13], it was determined that LD codes with good perfor-
mance typically have

Q = min(M,N)× T. (41)

In this example, we can see that this constraint is met for one
layer of LD code, since for the broadcast interval, the transmit-
ted symbol size is 3, and min(M,N)× T = 3. In the coopera-
tion interval, we fall short of this limit since we are transmitting
three linearly combined symbols while min(M,N)× (T −
τ) = 2. However, since the first-layer LD code is simply the
linear combination of the two 16-QAM symbols, we can see
that from the overall system point of view, we are transmitting
two 16-QAM symbols over one time period in a (2,2) system,
thus satisfying the constraint. For the cooperative LD code, the
constraint in (41) becomes

Q = min(M,N)× (T − τ). (42)

Example 2—Cooperative LD Code for Different System Con-
figurations: In this example, we compare systems with differ-
ent physical configurations. Fig. 3 shows the performance of
an Alamouti code and four cooperative LD codes optimized
at different physical system setups. The Alamouti code is
simulated under a (2,2) system with dSR1 = 1 and dR1Dn

= 1.
Cooperative LD code 1 is optimized for a (2,2) system with
dSR1 = 1 and dR1Dn

= 1. Cooperative LD code 2 is optimized
for a (4,2) system with dSRm

= 1, dRmDn
= 1. Cooperative
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Fig. 3. Cooperative LD code optimized in different physical configurations
versus Alamouti code for a (2,2) system under Rayleigh fading.

Fig. 4. Optimized cooperative LD code versus randomly chosen cooperative
LD code for a (4,2) system under different fading environments.

LD code 3 is optimized for a (4,2) system with dSRm
= 0.1,

dRmDn
= 1. Cooperative LD code 4 is optimized for a (4,1)

system with dSRm
= 1, dRmDn

= 1. All codes are chosen to
transmit with R = 2 and are compared under Rayleigh fading.
We can see that the LD code for a (4,1) system has the worst
performance. The LD code for the (2,2) system and both LD
codes for the (4,2) system outperforms the Alamouti code for
a (2,2) system. It is interesting to see that the LD code for a
(4,2) system using relays that are farther away from the source
does not offer much improvement over the LD code for a (2,2)
system. On the other hand, the LD code for a (4,2) system using
relays that are much closer to the source offers a much bigger
performance gain, indicating that the choice of relays with
which the source chooses to cooperate is critical in improving
system performance.
Example 3—Cooperative LD Code for a (4,2) System: We

present a cooperative LD code for a system of one source,

Fig. 5. Performance in Rayleigh fading channel of codes optimized for
Rayleigh and Nakagami m = 0.5 fading channels.

three relays, and one two-receive-antenna destination termi-
nal. The terminals are again all equal in distance and have
i.i.d. fading to all other terminals. In Fig. 4, we compare the
optimized cooperative LD code with randomly generated LD
code in different fading environments. For both the optimized
cooperative LD code and randomly generated code, we have
code length T = 12, broadcast interval length τ = 8, and num-
ber of substreams transmitted Q = 8. The optimal broadcast
interval length is chosen by comparing the BLER performance
of a different interval length. When QPSK constellation is
used, we have rate R = 16/12. The energy is evenly divided
between the broadcast and cooperation intervals for the ran-
domly chosen code, while for the optimized cooperative LD
code, it is determined by the proposed algorithm. We can see
that, in general, a randomly chosen code does not provide
good performance, and the performance of the cooperative
LD code is shown to be significantly improved for all fading
environments.
Example 4—Cooperative LD Code for Systems of Different

Channel Statistics: In this example, we show that a code
designed for one type of fading condition no longer provides
the optimal performance when used under other types of fading
conditions. Fig. 5 compares two sets of dispersion matrices
designed under a different fading environment. Both sets of
dispersion matrices are optimized for a (2,2) system: one for
the Rayleigh fading channel and one for the Nakagami m = 0.5
channel. Both codes are then simulated in a Rayleigh fading en-
vironment. Although it is also optimized for BLER, it is clearly
shown in Fig. 5 that the Nakagami m = 0.5 code does not offer
the best performance under Rayleigh fading conditions and that
it suffers a 1-dB loss due to the mismatch in channel conditions.

In Fig. 6, we can see how different fading channels and
a different system setup affect the resulting optimized code
in terms of the energy allocations. In this example, we fixed
the distance between source and destination at dSD = 2 while
varying the ratio of the source-relay and relay-destination
distances. In all fading environments, for dSR/dRD between
(1/2, 2), the allocation of energy to the broadcast interval
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Fig. 6. Ratio of energy allocation in broadcast interval for different
DSR/DRD ratios.

increases as dSR/dRD increases. When the distance between
source and relay increases, more energy is needed to improve
the SNR of the received signal at the relay during the broadcast
interval. We can see that having a clean copy of the symbols
to be transmitted at the relays is just as important as having a
good channel between the relay and destination. For dSR/dRD

between (1/3, 1/2), there is a decrease in the allocation of energy
to the broadcast interval as the ratio increases. This range of
ratio represents the setups of having dRD > dSD. In this case,
there is less path loss between source and destination than relay
and destination. Recall that the destination receives a copy of
the transmission from the source during the broadcast interval,
and the received signal is also used in detection. Thus, BLER
performance is improved by increasing the energy allocation
to the broadcast interval to better utilize this portion of the
transmission. On the other hand, system setups with dSR/dRD

between (2, 3) represent having dRD < dSD. The slight de-
crease in energy allocated to the broadcast interval in this region
represents the devoting of more system resources to the second-
layer LD code, which is affected by dRD. However, we can see
that the decrease in energy is not as dramatic as the decrease
in the range of (1/3, 1/2), since the poorly received signal at
the relay during the broadcast interval will also adversely affect
the BLER. This effect can be seen by comparing the energy
allocation in different fading environments. Fig. 6 shows clearly
that for all ratios of dSR/dRD, the worse fading channel will
require more energy being allocated to the broadcast interval.

V. CONCLUSION

In this paper, we have proposed a two-layered LD code-based
space–time coding scheme for cooperative diversity systems
and a simulation-based optimization algorithm to construct
the optimal code based on BLER performance. The proposed
code design algorithm can obtain optimal codes under arbitrary
fading statistics and arbitrary system configuration in terms of
both number of terminals and distances between the terminals
by finding the optimal set of code matrices, energy alloca-
tion scheme, and broadcast interval length. Since the codes
are designed offline, codes for different configurations can be
obtained beforehand and chosen by the system to match the
detected configuration. In this paper, we have also assumed flat-
fading environment. This is a reasonable assumption given that
the source terminal, in general, will select relay terminals in
close proximity to the source. In the case where the transmitting
terminals are far from the destination, both the source and the
relay terminals will have relatively equal distance to the destina-
tion. Also, since this code design algorithm is simulation-based,
appropriate modifications to the transmission model and the
corresponding gradient computations can also be designed in
a frequency-selective fading environment. Therefore, the same
simulation-based code optimization approach can be used for
different model assumptions, where other code designs such
as delay-diversity codes only work well under the specific
assumption of frequency-selective channels.

APPENDIX A
DEFINITIONS

For (8), we define (43), shown at the bottom of the page.
For (10), we define

H
�
=


|h1|

√
ρSR1I2τ×2τ

...

|hM−1|√ρSRM−1I2τ×2τ


2(M−1)τ×2τ

. (44)

For (19), we define (45), shown at the bottom of the next
page, where

Am,t
�
=
[
{am,t} −�{am,t}
�{am,t} 
{am,t}

]
2(T−τ)×2

Bm,t
�
=
[−�{bm,t} −
{bm,t}


{bm,t} −�{bm,t}

]
2(T−τ)×2

Φ
�
=




{c11} −�{d11} 
{c12} · · · 
{c1Q} −�{d1Q}
...

...
...

. . .
...

...

{cτ1} −�{dτ1} 
{cτ2} · · · 
{cτQ} −�{dτQ}
�{c11} 
{d11} �{c12} · · · �{c1Q} 
{d1Q}

...
...

...
. . .

...
...

�{cτ1} 
{dτ1} �{cτ2} · · · �{cτQ} 
{dτQ}


2τ×2Q

(43)



2152 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 4, JULY 2007

and

gM,n
�
=
√
ρSD,2

[

{gM,n}
�{gM,n}

]
gm,n

�
= γRm

√
ρRD

[

{gm,n}
�{gm,n}

]
m=1, . . . ,M−1 (46)

and

P
�
=

√
ρSD,1 [P1 P2 · · · PN ]T2Nτ×2τ (47)

where

Pn
�
=
[


{gM,n}Iτ×τ �{gM,n}Iτ×τ

−�{gM,n}Iτ×τ 
{gM,n}Iτ×τ

]
2τ×2τ

. (48)

We further define (49), shown at the bottom of the page.

APPENDIX B
GRADIENT DERIVATIONS

A. Gradient Calculation for Energy Allocation

Recall from (35) that

�θ log p (y1,y2|x,φ,ψ,θ) = �θ[logP1 + logP2]. (50)

From (31), we have P1 distributed as multivariate Gaussian.
Define

f1
�
= −(y1 −HΦx)T (y1 −HΦx). (51)

Then, from (2), (3), and (44), we have

∂f1(α)
∂α

= − ∂(y1 −HΦx)T

∂α
(y1 −HΦx)

− (y1 −HΦx)T
∂(y1 −HΦx)

∂α

= − sinα
cosα

[
(HΦx)T (y1 −HΦx)

+ (y1 −HΦx)T (HΦx)
]
. (52)

In the cooperation interval, we have from (32) that P2 is also
multivariate Gaussian distributed. Define

f2
�
= −(y2 −GΦx− G̃y1)

T (y2 −GΦx− G̃y1) (53)

and

G = Λ + Λ̄ (54)

where

Λ
�
=
[

P
02N(T−τ)×2τ

]

Λ̄
�
=


02Nτ×2τ

A1,1gM,1 · · · A1,τgM,1 B1,1gM,1 · · · B1,τgM,1

...
. . .

...
...

. . .
...

A1,1gM,N · · · A1,τgM,N B1,1gM,N · · · B1,τgM,N

.
(55)

Thus,G is separated into two matrices: Λ, which depends only
on E1, and Λ̄, which depends only on E2. From (46)–(48),
we have

∂f2(α)
∂α

=−
[
sinα
cosα

ΛΦx− cosα
sinα

(Λ̄Φx+ G̃y1)−�G̃y1

]T

× (y2 −GΦx− G̃y1)− (y2 −GΦx− G̃y1)
T

×
[
sinα
cosα

ΛΦx− cosα
sinα

(Λ̄Φx+ G̃y1 −�G̃y1)
]

(56)

where �G̃ is given in (57), shown at the bottom of the next
page, with

γ̄Rm
= |hm|2 ρSRm

cos2 α
cosα sinα. (58)

Combining (52) and (56), the gradient of
log p(y1,y2|x,φ,ψ,θ) with respect to α is given by

�θ log p(y1,y2|x,φ,ψ,θ)|α =
∂f1(α)
∂α

+
∂f2(α)
∂α

. (59)

G
�
=


P

AM,1gM,1 · · · AM,τgM,1 BM,1gM,1 · · · BM,τgM,1

...
. . .

...
...

. . .
...

AM,1gM,N · · · AM,τgM,N BM,1gM,N · · · BM,τgM,N


2NT×2τ

(45)

G̃
�
=


02Nτ×2(M−1)τ

A1,1g1,1 · · · A1,τg1,1 B1,1g1,1 · · · BM−1,τgM−1,1

A1,1g1,2 · · · A1,τg1,2 B1,1g1,2 · · · BM−1,τgM−1,2

...
...

...
...

. . .
...

A1,1g1,N · · · A1,τg1,N B1,1g1,N · · · BM−1,τgM−1,N


2NT×2(M−1)τ

(49)
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B. Gradient Calculation for Dispersion Matrices

First-Layer Dispersion Vectors: Next, we provide the gra-
dient of f1 and f2 with respect to cR,q. The tth entry of the
gradient of f1(cR,q) is[

∂f1(cR,q)
∂cR,q

]
t

= lim
δ→0

f1(cR,q + δεt)− f1(cR,q)
δ

(60)

where εt is a τ × 1 column vector with one at the tth position
and zero elsewhere. From (8), we have

ΦcR,q+δεt
=Φ + δΞt,2q−1

ΦcI,q+δεt
=Φ + δΞτ+t,2q−1

ΦdR,q+δεt
=Φ + δΞτ+t,2q

ΦdI,q+δεt
=Φ − δΞt,2q (61)

where Ξi,j is a 2τ × 2Q matrix with one at the (i, j) position
and zeros everywhere else. Therefore

f1(cR,q + δεt)=−
(
y1−HΦcR,q+δεt

x
)T(
y1−HΦcR,q+δεt

x
)

=−(y1 −HΦx− δHΞt,2q−1x)T

× (y1 −HΦx− δHΞt,2q−1x)

=f1 + δ(HΞt,2q−1x)T (y1 −HΦx)

+ δ(y1 −HΦx)T (HΞt,2q−1x) + o(δ).

(62)

Therefore, we have[
∂f1(cR,q)
∂cR,q

]
t

= (HΞt,2q−1x)T (y1 −HΦx)

+ (y1 −HΦx)T (HΞt,2q−1x). (63)

Similarly for the gradients of f1 with respect to cI,q , dR,q,
and dI,q , we have the following expressions:[

∂f1(cI,q)
∂cI,q

]
t

=(HΞτ+t,2q−1x)T (y1 −HΦx)

+ (y1 −HΦx)T (HΞτ+t,2q−1x)[
∂f1(dR,q)
∂dR,q

]
t

=(HΞτ+t,2qx)T (y1 −HΦx)

+ (y1 −HΦx)T (HΞτ+t,2qx)[
∂f1(dI,q)
∂dI,q

]
t

= − (HΞt,2qx)T (y1 −HΦx)

− (y1 −HΦx)T (HΞt,2qx). (64)

We now compute the gradient of logP2 with respect to cR,q

for the cooperation intervals. We have

f2(cR,q + δεt)=−
(
y2 −GΦcR,q+δεt

x+ G̃y1

)T

×
(
y2 −GΦcR,q+δεt

x+ G̃y1

)
= f2 + δ(GΞt,2q−1x)T (y2 −GΦx− G̃y1)

+δ(y2−GΦx−G̃y1)
T(GΞt,2q−1x)+o(δ).

(65)

Therefore, we have[
∂f2(cR,q)
∂cR,q

]
t

= (GΞt,2q−1x)T (y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T (GΞt,2q−1x). (66)

Similarly for the gradients of f2 with respect to cI,q , dR,q, and
dI,q , we have the following expressions:[

∂f2(cI,q)
∂cI,q

]
t

=(GΞτ+t,2q−1x)T (y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T (GΞτ+t,2q−1x)[

∂f2(dR,q)
∂dR,q

]
t

=(GΞτ+t,2qx)T (y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T (GΞτ+t,2qx)[

∂f2(dI,q)
∂dI,q

]
t

= − (GΞt,2qx)T (y2 −GΦx− G̃y1)

− (y2 −GΦx− G̃y1)
T (GΞt,2qx). (67)

Second-Layer Dispersion Matrices: We can see that
p(y1|x,φ,θ) is independent of the second-layer dispersion
matrices; therefore, the gradient with respect to the second-
layer dispersion matrices is zero, and we only have to evaluate
the gradient �θ log p(y2|y1,x,ψ,θ).

Let us evaluate the gradient of log p(y2|y1,x,ψ,θ) with
respect to AR,t. Note from (45) and (49) that G depends only
upon the M th columns of the second-layer dispersion matrices,
while G̃ is independent of the M th columns of the second-layer
dispersion matrices.

Let ςn and κm be T − τ and M dimensional vectors with 1
at the nth and mth position, respectively. Define

GAR,t+δςnκ
T
M =G+ δΞAR,t

n,M

G̃
AR,t+δςnκ

T
m = G̃+ δΞAR,t

n,m , m = 1, . . . ,M − 1
(68)

�G̃ �
=


02Nτ×2(M−1)τ

γ̄R1A2,1g1,1 · · · γ̄R1A2,τg1,1 γ̄R1B2,1g1,1 · · · γ̄RM−1BM,τgM−1,1

γ̄R1A2,1g1,2 · · · γ̄R1A2,τg1,2 γ̄R1B2,1g1,2 · · · γ̄RM−1BM,τgM−1,2

...
...

...
...

. . .
...

γ̄R1A2,1g1,N · · · γ̄R1A2,τg1,N γ̄R1B2,1g1,N · · · γ̄RM−1BM,τgM−1,N

 (57)
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where

ΞAR,t

n,M

�
=


02Nτ×2τ

0 · · · ΛAR,t
n gM,1 · · · 0 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

0 · · · ΛAR,t
n gM,N · · · 0 0 · · · 0


(69)

and (70), shown at the bottom of the page, with

ΛAR,t
n

�
=
[
ςn 0
0 ςn

]
. (71)

Thus, for m = M , we have

f2

(
AR,t + δςnκ

T
M

)
=−

(
y2 −GΦx− δΞAR,t

n,M Φx− G̃y1

)T

×
(
y2 −GΦx− δΞAR,t

n,M Φx− G̃y1

)
= f2 + δ

(
ΞAR,t

n,M Φx
)T

(y2−GΦx−G̃y1)

+ δ(y2 −GΦx− G̃y1)
T

×
(
ΞAR,t

n,M Φx
)
+ o(δ). (72)

Therefore[
∂f2(AR,t)
∂AR,t

]
n,M

=
(
ΞAR,t

n,M Φx
)T (

y2 −GΦx− G̃y1

)
+
(
y2 −GΦx− G̃y1

)T (
ΞAR,t

n,M Φx
)
. (73)

For m = 1, . . . ,M − 1, we have

f2

(
AR,t + δςnκ

T
m

)
=−

(
y2 −GΦx− G̃y1 − δΞAR,t

n,m y1

)T

×
(
y2 −GΦx− G̃y1 − δΞAR,t

n,m y1

)
= f2+δ

(
ΞAR,t

n,m y1

)T

(y2 −GΦx− G̃y1)

+ δ(y2 −GΦx− G̃y1)
T

×
(
ΞAR,t

n,m y1

)
+ o(δ). (74)

Therefore[
∂f2(AR,t)
∂AR,t

]
n,m

=
(
ΞAR,t

n,m y1

)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞAR,t

n,m y1

)
. (75)

For the gradients with respect to AI,t, BR,t, and BI,q , similar
expressions can be given for m = M[

∂f2(AI,t)
∂AI,t

]
n,M

=
(
ΞAI,t

n,MΦx
)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞAI,t

n,MΦx
)

(76)[
∂f2(BR,t)
∂BR,t

]
n,M

=
(
ΞBR,t

n,M Φx
)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞBR,t

n,M Φx
)

(77)[
∂f2(BI,t)
∂BI,t

]
n,M

=
(
ΞBI,t

n,M Φx
)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞBI,t

n,M Φx
)

(78)

and for m = 1, . . . ,M − 1[
∂f2(AI,t)
∂AI,t

]
n,m

=
(
ΞAI,t

n,m y1

)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞAI,t

n,m y1

)
(79)[

∂f2(BR,t)
∂BR,t

]
n,m

=
(
ΞBR,t

n,m y1

)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞBR,t

n,m y1

)
(80)[

∂f2(BI,t)
∂BI,q

]
n,m

=
(
ΞBI,t

n,m y1

)T

(y2 −GΦx− G̃y1)

+ (y2 −GΦx− G̃y1)
T
(
ΞBI,t

n,m y1

)
(81)

where we have (82) and (83), shown at the bottom of the next
page, with (84)–(86), also shown at the bottom of the next page,
and with (87)–(89), also shown at the bottom of the next
page, with

ΛBI,t
n

�
=
[
−ςn 0
0 −ςn

]
. (90)

ΞAR,t
n,m

�
=


02Nτ×2(M−1)τ

0 · · · ΛAR,t
n gm,1 · · · 0 0 · · · 0 · · · 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · ΛAR,t
n gm,N · · · 0 0 · · · 0 · · · 0 · · · 0

 , m = 1, . . . ,M − 1 (70)
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APPENDIX C

Here, we provide the proof for (34). Given symbols {sq}Q
q=1

from a finite r-QAM constellation, with sq = αq + jβq , define
the symbol vector x as in (8), x = [α1, β1, . . . , αQ, βQ]T , i.e.,
each element in x belongs to a

√
r-PAM constellation. Denote

the set of all possible symbol vectors Ω = {x1,x2, . . . ,xrQ}.
We now show that for equiprobable symbol vectors and z =
Σ−1/2y2, it is equivalent to showing

∑
i∈Ω

∫
{�θ [1− γ(z,xi,φ,ψ,θ)]} p(z|x,φ,ψ,θ)dz = 0

(91)

where

p(z|x,φ,ψ,θ) = 1
(2π)NT

exp
[
−1
2
(z −Bx)T (z −Bx)

]
(92)

withB
�
= Σ−1/2(G+ G̃H)Φ.

By making the substitution z = Σ−1/2y2 and change of
variable from z to y in (91), we have∑
i∈Ω

1
(2π)NT

∫
{�θ [1− γ(y2,xi,φ,ψ,θ)]}

× exp
[
−1
2

∥∥∥Σ− 1
2y2 −Bxi

∥∥∥2
]
|Σ− 1

2 |dy2 = 0. (93)

ΞAI,t

n,M

�
=


02Nτ×2τ

0 · · · ΛAI,t
n gM,1 · · · 0 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

0 · · · ΛAI,t
n gM,N · · · 0 0 · · · 0

 (82)

ΞAI,t
n,m

�
=


02Nτ×2(M−1)τ

0 · · · ΛAI,t
n gm,1 · · · 0 0 · · · 0 · · · 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · ΛAI,t
n gm,N · · · 0 0 · · · 0 · · · 0 · · · 0

 , m = 1, . . . ,M − 1 (83)

ΛAI,t
n

�
=
[

0 −ςn

ςn 0

]
(84)

ΞBR,t

n,M

�
=


02Nτ×2τ

0 · · · 0 0 · · · ΛBR,t
n gM,1 · · · 0

...
. . .

...
...

. . .
...

. . .
...

0 · · · 0 0 · · · ΛBR,t
n gM,N · · · 0

 (85)

ΞBR,t
n,m

�
=


02Nτ×2(M−1)τ

0 · · · 0 · · · 0 · · · 0 0 · · · ΛBR,t
n gm,1 · · · 0

...
. . .

...
. . .

...
. . .

...
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0 0 · · · ΛBR,t
n gm,N · · · 0

 m = 1, . . . ,M − 1 (86)

ΛBR,t
n

�
=
[

0 −ςn

ςn 0

]
(87)

ΞBI,t

n,M

�
=


02Nτ×2τ

0 · · · 0 0 · · · ΛBI,t
n gM,1 · · · 0

...
. . .

...
...

. . .
...

. . .
...

0 · · · 0 0 · · · ΛBI,t
n gM,N · · · 0

 (88)

ΞBI,t
n,m

�
=


02Nτ×2(M−1)τ

0 · · · 0 · · · 0 · · · 0 0 · · · ΛBI,t
n gm,1 · · · 0

...
. . .

...
. . .

...
. . .

...
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0 0 · · · ΛBI,t
n gm,N · · · 0

 m = 1, . . . ,M − 1 (89)
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Rearranging (93), we now have

∑
i∈Ω

|Σ− 1
2 |

(2π)NT

∫
{�θ [1− γ(y2,xi,φ,ψ,θ)]}

× exp
{
−1
2

[
y2 − (G+ G̃H)Φxi

]T

×Σ−1
[
y2 − (G+ G̃H)Φxi

]}
dy2

=
∣∣∣Σ− 1

2

∣∣∣|Σ| 12
∑
i∈Ω

∫
{�θ [1− γ(y2,xi,φ,ψ,θ)]}

× p(y2|xi,φ,ψ,θ)dy2

=
∑
i∈Ω

∫ ∫
{�θ [1− γ(y2,xi,φ,ψ,θ)]}

× p(y1,y2|xi,φ,ψ,θ)dy1dy2

=
∑
i∈Ω

∫ ∫
{�θ [1− γ(y2,xi,φ,ψ,θ)]}P1P2dy1dy2.

(94)

Thus, it suffices for us to show (91) to complete the proof.
Recall the system model in (21). With the definition of γ(·) in

(26), signal models given in (10) and (19), and the ML detection
rule, we have

1− γ(z,xi,φ,ψ,θ)

= I(x̂ = xi|z,x = xi,φ,ψ,θ)

=
∏

j∈Ω,j �=i

I
{
‖z −Bxj‖2 ≥ ‖z −Bxi‖2

}

=
∏

j∈Ω,j �=i

I

{
2(xi−xj)T︸ ︷︷ ︸

aT
i|j

BTz−
(
‖Bxi‖2−‖Bxj‖2

)︸ ︷︷ ︸
bi|j

≥0

}
.

(95)

Using (31), (32), and (34), we have

∑
i∈Ω

∫
�θ [1−γ(z,xi,φ,ψ,θ)]Pzdz

=−π−NT− (M−1)τ

∫∫ ∑
i∈Ω

∑
j∈Ω,j �=i

[
aT

i|j
(
�θBTz

)
−�θbi|j

]
× δ (‖z−Bxj‖−‖z−Bxi‖)

×
∏

l∈Ω,l �=j

I
(
‖z−Bxl‖2≥‖z−Bxj‖2

)
× exp

{
−‖z −Bxi‖2

}
dz (96)

where δ(·) denotes the delta function, and we relied on the chain
rule for the derivative of the indicator function. Since ai|j =
−aj|i and �θbi|j = −�θbj|i, (96) becomes zeros by summing
the corresponding (i, j) and (j, i) terms.
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