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Abstract— We consider the downlink of multiuser multiple-
input single-output (MISO) wireless systems, where the base
station is equipped with multiple antennas and each mobile user
is constrained to a single antenna. In particular, we consider
linear precoded systems such that the single antenna receivers
do not have to estimate the channel, but only scale and quantize
the received data. In this scenario, we propose low complexity
opportunistic user scheduling and antenna selection algorithms.
The highly complex optimal scheduling and antenna selection
algorithms are first derived, and then, low complexity greedy
optimization algorithms are proposed. It is shown that the
proposed algorithms obtain near optimal performance.

I. INTRODUCTION

We consider a multiuser MISO wireless system consisting
of a single base station and K mobile units scattered over the
service area. We assume that the base station is equipped with
multiple antennas and each receiver is constrained to a single
antenna. Precoding schemes for broadcast channels effectively
transfer the signal processing for interference suppression from
the mobile receiver to the base station transmitter. This ap-
proach is feasible if the base station can estimate the downlink
channels of all users (e.g., in systems employing time division
duplexing (TDD) where the uplink and downlink channels
are reciprocal). Various practical techniques (linear [1] and
non-linear [2]) have been proposed in order to approach
the downlink capacity [3]. We consider linear precoding in
which the transmit signal is linearly precompensated such
that the single antenna receivers simply quantize the received
signal to the original symbol constellation, which translates
to a reduction in power consumption, the number of training
symbols needed for channel estimation, and a decrease in the
cost of the terminals. One disadvantage of linear precoding in
MISO systems is that to obtain reasonable performance, the
number of antennas needs to be larger than the number of
users served simultaneously [4], which increases the cost of
the base station owing to the expensive RF blocks attached
to each of the antennas. One solution to reducing the cost
while maintaining the performance advantage of using more
antennas than users is to use antenna selection [5]. The idea
behind antenna selection is to use a limited number of the
expensive RF chains and to adaptively switch them to the best
subset among a larger number of available antenna elements,
since antenna elements are in general inexpensive. The subset
selection is performed according to a specific optimization
criterion given a particular channel realization. In this paper we

propose low complexity antenna subset selection algorithms to
the downlink of multiuser MISO systems.

Other advantages of precoding in multiuser MISO systems
is that channel state information (CSI) at the transmitter
can facilitate efficient power control and user scheduling [6]
implemented jointly with linear precoding to increase the
system throughput. Straightforward implementation of user
subset selection in any opportunistic scheduling algorithm
suffers from high computational complexity. In the second
part of the paper, based on our system model we consider low
complexity user selection algorithm to reduce the complexity
of the scheduling solutions. In general, user subset selection
can be seen as an antenna selection problem where the number
of final antennas to be selected in not fixed a priori.
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Fig. 1. Downlink multiuser MISO system with antenna selection.

The remainder of this paper is organized as follows. In
Section II the downlink multiuser MISO system model with
precoding is presented. In Section III antenna selection al-
gorithms are considered. In Section IV user subset selection
algorithms are presented, while Section IV concludes the
paper.

II. SYSTEM MODEL

In the downlink of multiuser MISO systems, different data
streams are transmitted for each of the users. Consider first a
system with K users equipped with one antenna each and nT

transmit antennas (nT ≥ K). Assume that b = [b1, ..., bK ]T is
the transmitted symbol vector with E{|bi|2} = 1, i = 1, ...,K.
The base station computes the precoding matrix M ∈ C

nT ×K

with the knowledge of the CSI of every user and with the
constraint of the total power budget available at the transmitter
PT . Then, the nT × 1 precoded signal ready to be transmitted
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is given by x = Mb. By stacking together the received signal
at all the mobile units in a single vector y = [y1, ..., yK ]T we
can write

y = HMb + n, (1)

where H ∈ C
K×nT corresponds to the flat fading channel

whose element hij represents the complex gain of the channel
between the j-th transmit antenna and the i-th mobile unit, and
ni is the noise at the i-th receiver distributed as N (0, σ2

n,i).
The spatial linear precoder M optimized according to

the MMSE criterion is given by M (u) = H†, where (·)†
denotes the pseudo-inverse [1]. Notice that the precoding
matrix M (u) = H† places no explicit constraint on average
transmit power and a power normalization factor is required.
Assuming that the total available power at the transmitter
is PT , the scaling factor is given by β2 = PT /‖Mb‖2 =
PT /tr(H†H†H) and the precoding matrix becomes M =
βM (u) = βH†. Then the k-th receiver makes a decision
based on yk = βbk + nk. With the precoding matrix M , the
received SNR is equal across the users and is given by

SNRk =
β2

σ2
n

=
PT

tr(H†H†H)σ2
n

=
PT

tr
(
(HHH)−1

)
σ2

n

. (2)

III. ANTENNA SELECTION AT THE TRANSMITTER

Although nT = K is sufficient to implement linear precod-
ing, it has been shown in [4] that there is an optimum ratio
of antennas-to-users (nT /K > 1) such that linear precoding
can achieve around 80% of the sum capacity of the downlink
channel computed at the same ratio. At other ratios the
difference between the capacity with linear precoding and
the downlink capacity can become much more pronounced.
In particular, when K = nT , the sum rate capacity of the
linearly precoded system does not increase linearly with nT

(or K), while the capacity of the downlink channel does.
Similarly, when nT = K, linear precoding exhibits a poor
BER performance. The optimal ratio implies that the number
of transmit antennas nT needs to be not equal but larger
than the number of mobile units K. However, when multiple
users K want to communicate concurrently with the base
station, one major concern to implement nT > K antenna
systems is the high cost due to the expense of the RF chains
required for each antenna. A technique to reduce the cost
of the multiple antenna system while maintaining part of the
capacity is the use of antenna selection [5] where NT > nT

inexpensive antenna elements are installed but only nT are
actually used (see Fig. 1). Now only nT of the more expensive
RF chains is necessary. The selection algorithms for a given
channel realization select the best nT transmit antennas out
of the

(
NT

nT

)
different combinations according to a certain

optimization criterion. In this paper, we choose to select the nT

antennas (i.e., nT columns in H) that maximize the signal to
noise ratio across the users in (2). Although a combinatorial
exhaustive search of the

(
NT

nT

)
antenna subsets can find the

optimal solution, the selection would become highly complex
since for every new antenna subset, a K × K matrix inverse

needs to be computed. In this section, motivated by the greedy
algorithms in [7] we propose sub-optimal low complexity
antenna selection algorithms that only show a small loss
of performance. In particular, we consider a solution using
decremental selection.

The decremental selection solution begins by considering
that all available antennas can be used in the transmission, and
at every step, an antenna is de-activated such that the decrease
in the common SNRk is as small as possible. The process is
repeated with the remaining antennas until only nT antennas
are left. Recall that removing one antenna is equivalent to
removing one column in H while the rest of the columns
remain unchanged.
Consider first the full matrix H ∈ C

K×NT , and let hi and
Hi denote the ith column in H , and the submatrix of H
after removing the ith column, respectively. Therefore, in the
decremental algorithm we remove the i-th column in H such
that the submatrix left Hi minimizes the denominator in (2),
i.e.,

i∗ = arg min
i=1,...,NT

tr
((

HiH
H
i

)−1
)

. (3)

Notice that (3) requires the inversion of NT matrices of size
K × K. Here we make use of the following equality

HiH
H
i = HHH − hih

H
i , (4)

and (3) becomes

i∗ = arg min
i=1,...,NT

tr
((

HHH − hH
i hi

)−1
)

. (5)

Denote A = HHH . Using the matrix inversion lemma we
can write(
A − hH

i hi

)−1

= A−1+A−1hi

(
1 − hH

i A−1hi

)
hH

i A−1.

(6)
Then, applying tr(U + V ) = tr(U) + tr(V ) we can express
(5) as

i∗ = min
i

{
tr

(
A−1hi

(
1 − hH

i A−1hi

)
hH

i A−1
)}

. (7)

Notice that now for the NT possible ways of removing a
single antenna, only one matrix inverse has to be computed,
A−1 = (HHH)−1. Next assume that after removing one
antenna, the number of antennas is still excessive. Then, a
second antenna needs to be removed from the remaining
NT − 1 columns in Hi∗ , and the inverse of (Hi∗H

H
i∗)

−1

is required. However, this inverse has already been computed
using the matrix inversion lemma when we removed the i∗-
th column in (6) (i.e., we do not need to explicitly compute
a new matrix inverse at each step of the algorithm). Hence,
we iteratively remove one column until only nT antennas are
left. The algorithm is shown in Algorithm 1. In the algorithm,
ω denotes the set of antenna indices already selected. It is
straightforward to prove that with NT = nT +1, the algorithm
is optimal. Note that the algorithm also provides us with the
unconstrained precoding matrix M (u) = H[ω]†. Also note
that the operations in the “update inverse” step are computed
in the previous step.



Algorithm 1 Decremental antenna subset selection algorithm
INPUT: H; NT ≥ nT ≥ K;
ω = {1, ...,K} % start with all antennas ;
A−1 = (HHH)−1 %the only inverse computed;
FOR i = 1 : NT − nT DO

find i∗ = arg mini∈ω tr(A−1hi(1 −
hH

i A−1hi)hH
i A−1);

A−1 = A−1 + A−1hi∗(1 − hH
i∗A

−1hi∗)hH
i∗A

−1;
%update inverse

H = H\hi∗; %remove that column
ω = ω \ i∗; %remove that antenna index

END FOR
OUTPUT: ω, Hω = H and M (u) = HH

ω A−1.

Simulation Results: Consider a system with NT = 6,
nT = 5, K = 5 and σ2

n = 1. We compare the BER
obtained by the different antenna selection criteria with a
system without antenna selection, i.e., NT = nT = 5 and
a system that employs the NT available transmit antennas,
i.e., NT = nT = 6. The BER is approximated by BER =
Q(

√
SNRk), which is constant across the users because of the

precoding operation. Fig. 2 illustrates the BER averaged over
1000 different channel realizations. It is seen that antenna se-
lection in MISO systems can bring an important performance
improvement over systems without antenna selection and the
low complexity algorithm is optimal. Note that the maximum
Frobenius norm antenna selection criterion (i.e., select the
antennas that see the best propagation channel in terms of
power) is not a good approach in multiuser MISO systems.
Even with only one extra antenna element, the performance
improvement using antenna selection is considerable. It is also
seen that antenna selection achieves the same diversity as when
all available antennas are used, where diversity is defined as
γ = − limPT →∞

log BER(PT)
log PT

and that the power loss is around
1dB. Therefore, antenna selection can be seen as a good
alternative to boost the performance of these systems. Fig. 3
shows similar results for NT = 12, nT = 6 and K = 6. The
suboptimal decremental selection algorithm achieves almost
the same performance as optimal antenna selection.

IV. DOWNLINK USER SCHEDULING

Scheduling is a technique to increase the utilization of
the wireless medium. For example, in the recently proposed
multiuser opportunistic scheduling scheme [6] the schedulers
opportunistically exploit the channel variations of multiple
users to select the best set of users to transmit data to subject
to fairness (e.g., maximum delay), QoS (e.g., minimum SNR),
and resource constraints (e.g., maximum power available at the
transmitter), with the aim of achieving a significant increase
of total system throughput. In general the number of users
that can be simultaneously supported by the system is small
and thus, there are a large number of possible user subset
selections when the number of users in the system in large.
Straightforward implementation of the user subset selection
by simple exhaustive enumeration suffers from high compu-
tational complexity.
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Fig. 2. Bit error rate for different transmit antenna selection algorithms
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Fig. 3. Bit error rate for different transmit antenna selection algorithms
(NT = 12, nT = 6, K = 6).

In this section, we propose user subset selection algorithms
that can be straight forwardly implemented in our precoded
systems. For simplicity, we assume that the satisfaction that a
user receives in a system (i.e., the utilitiy) is a binary function
that takes zero value when the SNR is below a threshold γ
and takes a unity value when the SNR is above the threshold.

Maximum User Allocation – Optimal Solution: Our objective
is to accommodate as many users as possible such that if
user k is active, SNRk ≥ γ, assuming that the base station
is constrained to a maximum power budget PT . Therefore,
the QoS constraint SNRk ≥ γ translates into the following
condition on H:

tr((HHH)−1) ≤ PT

σ2
nγ

. (8)

Denote U as the total number of users in the network, θ as the
user subset selected, and |θ| as the number of users in θ (e.g.,



selecting the first and third users corresponds to θ = {1, 3}
and |θ| = 2). The channel matrix corresponding to the active
users is Hθ where Hθ is the submatrix of H (where H has
U rows) obtained from the rows indicated in θ. Let Θ be the
set of all possible user subsets. Therefore, the total number of
possible user subsets is |Θ| =

∑U
k=0

(
U
k

)
. Denote Ω as the set

of feasible user selections in Θ, i.e.,

Ω = {θ ∈ Θ : SNRk ≥ γ, ∀k ∈ θ}
= {θ ∈ Θ : tr((HθH

H
θ )−1) ≤ PT /(σ2

nγ)}. (9)

Then the optimization problem becomes finding θ ∈ Ω such
that |θ| is maximized. This is a highly complex combinatorial
problem since for each possible solution in Θ, a matrix
pseudoinverse needs to be computed.

Low Complexity Algorithms: Next we propose low-
complexity algorithms that employ a greedy approach to
add or remove one user at a time. One important property
of the linear precoder is that adding or removing one user
corresponds to adding or removing a row to the channel matrix
H and the rest of the rows remain unchanged. This property
will allow us to propose low-complexity selection algorithms.
Note that the performance only depends on the selected users
and not on the order in which the users are selected. That is, for
any reordering in rows of H , the required power is equivalent.
Any reordering of the rows can be expressed as H ′ = PH
where P is a permutation matrix and hence P−1 = P H .
Therefore, tr

(
(PHHHP H)−1

)
= tr

(
(HHH)−1

)
.

Maximum Frobenius Norm Criterion: An intuitive and
classical approach in user allocation is to activate the users
that see the best propagation channel. Two approaches can
be taken: incremental allocation and decremental allocation.
In the incremental allocation algorithm, the base station starts
without selecting any users. At each step of the algorithm, it
selects the user with maximum channel gain (i.e., maximum
norm of the corresponding row in the MIMO matrix). Then,
the algorithm checks to see if (8) holds. If it does, the
corresponding user is allocated. This is repeated until no
more users can be allocated, i.e., until (8) no longer holds,
or |θ| = min(U, nT ). On the other hand, the decremental
algorithm starts by assuming that all |θ| = min(U, nT ) users
with best channels are active. And it removes one user at a
time until (8) is satisfied. The removed user is the one with
the worst channel quality, i.e., with the lowest channel gain.
The main disadvantage of these approaches is that for every
new user added, the matrix inverse in (8) cannot be reused.

Geometrical Criterion - Incremental Selection: We have
already mentioned that users with good channel qualities (i.e.,
large path gains) are in general good candidates to be allocated.
However, due to the precoding operation, a matrix inverse
needs to be computed. Therefore, users with very large path
gains but with highly correlated spatial signatures (i.e., rows
in the matrix H close to parallel) can have a very undesirable
effect on the power required at the transmitter. Therefore here
we propose to select users based not only on the gains but

also on the correlations (i.e., angles) between the respective
rows of the channel matrix.

Assume that K = |θ| users have already been allocated,
i.e., Hθ with rows h1, ...,hK . Then we propose to select a
new row hi from the (U − K) remaining ones (i.e., users
not allocated yet) such that the projection onto the orthogonal
complement of the already selected rows is maximum, i.e.,

max
i

‖π⊥(hi)‖, i ∈ {non-selected users}, (10)

where π⊥(hi) denotes the projection of hi on
span(h1, ...,hK)⊥ and (·)⊥ denotes the orthogonal
complement. We consider a greedy incremental approach.
The algorithm starts by selecting the row with the maximum
norm and at every iteration the algorithm adds the row with
the largest projection onto the orthogonal complement of the
subspace spanned by the rows already selected. This selection
can be implemented with the help of the Gram-Schmidt (GS)
procedure. At every step of the algorithm, (8) needs to be
checked to see if a new user can be allocated given the total
power budget PT . For every new user added, (8) requires a
matrix inverse. Next, we propose a method to compute the
matrix inverse recursively.

Denote the LQ decomposition of a K × nT matrix as
H = LQ where L is K ×K lower left triangular and Q has
dimension K ×nT with QQH = IK . The LQ decomposition
can be obtained using the GS procedure where the row vectors
in Q, i.e., q1, ..., qK are given by the recursion

q1 = h1/‖h1‖, and qi =
hi −

∑i−1
j=1 µijqj

‖hi −
∑i−1

j=1 µijqj‖
, (11)

for i = 2, ...,K, where the GS coefficients form the lower
triangular matrix L and are given by

µij = 〈hi, qj〉, j < i, and µii = ‖hi −
i−1∑
j=1

µijqj‖. (12)

By simple inspection, we have that [L]ij = µij , and µjj is
the value required in (10). Therefore, the LQ decomposition
does not require any extra computations if we use the greedy
geometrical user allocation.

Assume that one knows the LQ decomposition of H . Then,
(8) can be evaluated using

tr
(
(HHH)−1

)
= tr

(
(LQQHLH)−1

)
= ‖L−1‖2

F . (13)

Note that (13) can be computed recursively as follows. Assume
that we have computed L−1

i−1 of size (i−1)×(i−1). Then, after
selecting the new user (i.e., add one row to H), the (i− 1)-th
leading submatrix of L−1

i is given by L−1
i−1 available from the

previous iteration and the last row in L−1
i is given by

l−1
i =

1
µi,i

(ei −
i−1∑
j=1

µijl
−1
j ), (14)

which follows from the Gauss-Jordan elimination and the
relationship between the GS coefficients and the triangular



matrix L. Hence (13) is computed recursively as

‖L−1
i ‖2

F = ‖L−1
i−1‖2

F + ‖l−1
i ‖2

2. (15)

Finally the low-complexity incremental user allocation is sum-
marized in Algorithm 2. Clearly, the complexity is dominated
by the computation of all the GS coefficients in step (♦).

Algorithm 2 Incremental user allocation – geometrical crit.
INPUT: row vectors h1, ...,hU, γ, PT, σn.
θ = ∅; Pr = 0; %start without users selected
FOR i = 1, 2, ...,
FOR EVERY j ∈ {{1, ..., U}\θ} DO %non-selected

bj = hj −
∑i−1

p=1 µj,pqp (♦)
END FOR
ki = arg maxj{bjb

H
j }; %max orthog. projection

qi = bki
/‖bki

‖ ; %the new GS vector

l−1
i = 1

µi,i
(ei −

∑i−1
t=1 µi,tl

−1
t ); %last row in L−1

Pr = Pr + σ2
nγ‖l−1

i ‖2; %power required
IF Pr < PT

θ = θ ∪ ki; %allocate user and continue
IF |θ| = min(U, nT ) THEN BREAK; %finish

ELSE
Pr = Pr − σ2

nγ‖l−1
i ‖2;

BREAK; % finish
END IF

END FOR
OUTPUT: selected users θ, required power
Pr, submatrix Hθ and H†

θ = QHL−1.

Simulation Results: We first consider the average number
of users that each algorithm is able to allocate versus the total
available power PT (where we define the transmit power PT

relative to the noise power at the receiver, σ2
n = 1). We set

γ = 12dB, we assume that the transmitter has perfect CSI of
all users, and we consider U = 12 available users in the region.
Fig. 4 illustrates the average number of users allocated, i.e.,
|θ| versus PT by the various algorithms. It is seen that the
low-complexity geometrical incremental algorithm achieves
almost the optimal performance. It is seen that under this
scenario, the Frobenius norm selection criterion incurs a loss
of between 2-4dB. Next, we consider a hypothetical scenario
in which K users need to be allocated. The K users are
chosen among the U available users in the network using either
optimal selection, maximum gain selection, or low-complexity
geometrical selection. We look at the total power required at
the transmitter PT to obtain γ = 12dB across the K selected
users. Fig. 5 shows the results with U = 16 available users,
and K = 4. It is seen that the geometrical algorithm again
achieves almost the optimal performance.

V. CONCLUSION

We investigated low complexity antenna selection algo-
rithms to improve the performance of the downlink of mul-
tiuser MISO systems. We also proposed simple user subset
selection algorithms that can facilitate the implementation
of any opportunistic scheduling algorithm. Simulation results
have shown the effectiveness of our low complexity solutions.
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