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Abstract- Tuned ring oscillators have found numerous
applications due to their ability to generate multiple phases at
high frequencies of operation while maintaining high signal
purity. However, a comprehensive phase noise theory that
explains the phase noise performance of tuned rings as a
function of design parameters such as the number of elements
and inter element phase shift is lacking. This paper rigorously
builds such a theory and demonstrates that the phase noise
improves by a factor of 10l100N as the number of elements
(N) is increased. Further, the phase noise deteriorates (by
a factor of 40loglocosAi at least) when the inter element
phase shift AO is increased. In the context of multiple phase
generation, under a fixed current budget, we demonstrate
that it is beneficial to use a larger ring sizes. Extensive
GHz-range simulations as well as measurements of prototype
oscillators validate these claims.

Index Terms- Oscillators, phase noise, phase shifters.

I. INTRODUCTION

The multiple-phase generation capability of tuned ring
oscillators has led to their application in the fields of
wireless phased arrays [1], clock and data recovery [2] and
quadrature LO generation for sideband rejection [3]. The
tuned nature of the element loads improves the oscillator
quality factor and enables higher frequencies of operation
when compared to a ring oscillator with resistive loads [2].

While the phase noise of ring oscillators with resistive
loads has been studied [4], a complete theory that details
the dependence of the phase noise of tuned rings on design
parameters such as the bias current, number of elements
and inter element phase shift is missing. Such dependen-
cies are critical to system trade-offs in the aforementioned
applications that employ tuned ring oscillators. This paper
develops such a theory. Section II presents a general model
for tuned rings and a steady state analysis. Section III
contains an extensive phase noise analysis based on a
popular phase noise formulation [6]. Section IV presents
extensive simulations and measurement results to validate
the claims and Section V concludes the paper.

II. STEADY STATE ANALYSIS

Fig. l(a) depicts the block diagram of a differential
tuned ring oscillator. Each element of the ring consists
of a nonlinear transconductance cell driving a parallel-
RLC resonant load. An nMOS differential pair represents
a possible implementation of the transconductance. The
phase boundary condition depends on the manner in which
the ring is closed. For example, the ring may be closed
with a direct or inverted connection of the lines, resulting
in phase boundary conditions of 0° and 180° respectively.
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Fig. 1. (a) Differential tuned ring oscillator, with a possible MOSFET
implementation (b) Piecewise linear model for the nonlinearity of the
differential pair.

To obtain the steady state solution of the oscillator, the
nonlinearity of the transconductance must be modelled.
Fig. 1(b) shows a piecewise linear saturation model for the
differential output current as a function of the differential
input voltage, with a small-signal transconductance of
gm and a saturation voltage of Vth (the input voltage
value at which all the current swings to one side, i.e.,
YmVth = Ib. ). Let Vi be the output voltage of each node.
Further, let us assume that in steady state, the oscillator
is at a frequency of w, and that Vi = Acos(wt + dbi),
where A and Xi are constants with respect to time. Note
that from symmetry, the amplitudes of all nodes must be
the same. If the quality factor (Q) of the resonant load
is high, then the load filters out all harmonics except
the fundamental. The node output voltage then equals the
fundamental component of the nonlinear current times the
load impedance at the oscillation frequency. This yields

i-i-i = AO = tan-lR (I
2

wo

.1mRCOSA(l5 (a + sin(a)) = 1,
7F

(1)

(2)

where a = 2sin-1( I) and wio = . (2) allows for
the computation of the oscillation amplitude, while (1),
in conjunction with the phase boundary condition, allows
one to determine the oscillation frequency. Specifically, the
phase shift around the ring must be an integral multiple of
27, and therefore, NA\¢+ AOboundary= 2iw7, i C I, where
A\boundary is 0° or 180°, depending on the manner in
which the ring is closed.

Intuitively, for i = 0, the boundary phase shift gets
distributed among the elements of the ring. For example,
an 8-element ring with boundary phase inversion pro-
duces an oscillation where the element phase shift AO
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Fig. 2. (a) Oscillation amplitude for an S-element ring versus element
bias current. All elements are in phase since there is no phase inversion
at the boundary. (b) Oscillation amplitude versus phase-shift per element
for Ibias=5 mA.

is -180/8 =-22.5°. Nonzero values of i produce other
modes of oscillation; the orbital stability of those modes
and their regions of attraction1 are beyond the scope of
this paper and will be dealt with in a future publication.
The oscillation amplitude, from (2), reduces to A

2IbiasRcosUAY for A >> Vth. It does not depend on the
number of stages, and linearly increases with bias current
as expected. The amplitude decreases as AO increases, as
the tuned loads function farther off their center frequency
and present lower impedance.
To verify these results, simulations are carried out in

Cadence using IBM's 8RF 0.13 ,um CMOS process. The
differential pair of each element consists of nMOS transis-
tors with 100 fingers of width 0.48 ,um, and an ideal tail
current source is used. The tuned load's component values
are L = 4 nH, R = 240 Q and C = 6.33 pF, resulting in a
center frequency of approximately 1 GHz and Q=10. Fig.
2(a) depicts the oscillation amplitude of an 8-element ring
(with 0° element phase shift) for different element bias
currents, while Fig. 2(b) depicts the amplitude for 'bias=5
mA for different element phase shifts, accomplished by
providing a 180° phase inversion in the ring for different
ring sizes. A good correlation is observed between the
theoretical formulation2 and Cadence simulations.

III. PHASE NOISE ANALYSIS

Two of the most widely accepted phase noise theories
are the Linear Time-Variant (LTV) theory developed by
Hajimiri and Lee [5], and the mathematically-rigorous
theory developed by Demir and Roychowdhury [6]. In
[7], the authors demonstrate the strong similarities between
the two theories and the equivalence of the Perturbation
Projection Vector (PPV), which is central to the latter
theory, and the Impulse Sensitivity Function (ISF), which

'The region of attraction of a stable point of a nonlinear system is
defined as the set of initial conditions that cause the system to converge
to the stable point at steady state.

2The piecewise linear model parameters g, and Vth are computed for
the different bias currents using standard short-channel MOSFET device
equations.

Fig. 3. (a) Comparison of theoretical PPV with Cadence simulations for
a 5-element ring with 180° phase inversion (b) Differential pair output
noise versus differential input voltage - theory versus simulations.

is employed in LTV theory. Both represent the time-
dependent sensitivity of the oscillator's phase response to
perturbations. In this paper, in favor of mathematical rigor,
we will employ the latter theory. A detailed review of this
theory is beyond the scope of this paper, and the reader is
directed to [6] if the ensuing analysis seems unclear.
The perturbed first order differential equations for the

jth element of the tuned ring oscillator are given by

dX2t X2i + X2iC + + =f(X2i-2)+ ni,dt woL R (3)

1 dx21 1I d =i1 2i. (4)w dt
where f represents the piecewise linear saturation model,
X2i(t) is the node output voltage (Vi(t)) and X2i_l(t) is
its integral with respect to time normalized with respect
to the oscillation frequency (w f Vidt). ni(t) is the noise
current injecting into the jth load; assuming that this
noise arises from the devices of the transconductance
cell of the jth node alone3, ni (t) can be written as
B(X2i-2(t), X2i_1(t), X2i(t))bi(t), with (bi(t))%=1..N be-
ing a vector of uncorrelated Gaussian white noise sources
of unit variance and B(X2i_2 (t),X2i-1 (t),X2i (t)) captur-
ing the instantaneous current-and-voltage-dependent mod-
ulation (i.e. the cyclostationary effect) thus serving the
purpose of the Noise Modulating Function (NMF) in [5].

The unperturbed steady state solution can be written as
X2i- 1 = Asin(wt + (i -1)\A), X2i = Acos(wt + (i-
1)Aq5), with A, w and AO taking the values described in
Section I. The PPV is determined by

1. forming the differential equations describing the
deviation from the unperturbed steady state due to the
noise perturbations,

2. forming the adjoint system to those equations and
3. determining the periodic solution to the adjoint sys-

tem, normalized to ±s (0) (the derivative of the steady state
solution vector at t 0). This periodic solution is the PPV.

3This is reasonable as other sources of noise such as power supply
noise, tail current noise and resonator noise can be minimized through
proper design. Noise leakage from the transconductance cells of other
nodes will be negligible if device parasitics are small.
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Fig. 4. (a) Theoretical and simulated phase noise for an 8-element ring
with no phase shift (b) Phase noise difference at 1 MHz offset for rings
with and without 180° phase-inversion.

Following these steps, the PPV, denoted by the vector
v(t)4, is determined to be

1
V2i-1 Cos(wt + (iNAwocosAo

2)Aq5), (5)

V2i =-NA,ocosA strn(wt + (i -2)AO). (6)

To verify these results, a 5-element ring with 180°
phase inversion (element phase shift = 360) and elements
identical to those described in Section II (Ibias=5 mA)
is constructed in Cadence. The PPV component for the
voltage of one of the elements is determined using the
"Direct Measurement of Impulse Response" technique [5]5
and is compared to the theory in Fig. 3(a). An excellent
agreement is seen. It is interesting to note that the PPV's
peak is aligned with the zero crossings of the voltage of
the previous node, rather than the node's own voltage,
unlike traditional LC oscillators that function at the center
frequency of the load.

To determine the NMF, B, we must find the differential
output noise current of the differential pair of Fig. l(a) as
function of the instantaneous currents and voltages. Note
that only the drain current thermal noise is considered in
this treatment. Other noise sources, such as gate resistance
noise, can be treated in a similar fashion. Performing small
signal analysis at a general time instant, we have,

Idriout 9ml (t)Idnr2 + 9m2 (t)Idnrl (7)
gml (t) + gm2(t) glg (t) + gm2(t)

where Idnl and Idn2 are the time-varying drain thermal
noise currents of the devices in the rms sense. The time-
dependent device transconductances (gmi (t), gm2(t)) can
be determined using standard short-channel device models.
The bias dependent drain current thermal noise power of
the FETs of the 0.13 ,um process is characterized. There is
a strong dependence on Vgs, while the variation with Vd,

4Note that odd-indexed elements of the PPV (VI (t),v3 (t)..) are
inconsequential since there is no noise associated with (4).
5Due to the equivalence of the ISF and the PPV, the PPV may also

be measured in this way.
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Fig. 5. (a) Simulated phase noise at 1 MHz offset for rings of different
sizes with no phase shift (Ibias = 5 mA per element) (b) Simulated
phase noise at I MHz offset with a fixed current budget (Ibias = 50
mA per element).

is weak, as expected. Hence, for analysis purposes, the
noise power is approximated with a piecewise linear fit
with respect to Vgs; Since device transconductance also
primarily depends on Vgs, the differential output noise
current Idn,out of stage i is primarily a function of the
input voltage X2i-2 1Vi1. Fig. 3(b) shows the theoretical
Idn,out as a function of Vi-, to Cadence simulations for
Ibias=5 mA. A reasonable match is observed and this curve
is the NMF B(X2i-2(t)) for the 'th element.
The output noise is maximum when the differential

input is 0, and decreases as the input swings. When all
the current has swung to one side, say FET 2, the output
noise current drops to 0, since gin = 0 and 'dni = 0. The
PPV/ISF is also maximum when the differential input is
0 - hence, due the alignment of the peaks of the PPV and
the NMF, the differential pair based ring oscillator does
not possess good cyclo-stationary noise properties.

Using these formulations for the PPV and the NMF, the
single-sideband phase noise spectrum of the tuned ring
oscillator in the j2 -region in dBc/Hz is given by [6]

Y(Af) r-l1loY1o( f2 ) (8)

1 p27~~~~~C 2wNC2A2w02cos2AO j sin OB(AcosO)dO, (9)

where f = 2. As expected, phase noise improves with
an increase in amplitude A. Further, as N is increased,
the phase noise improves by a factor of 10logloN. This
is because the PPV's inverse-N dependence causes a
10log,ON2 phase noise drop, but the number of noise
sources in the circuit has increased by a factor of N,
causing an overall improvement of 10logiON. Finally, as
the inter element phase shift is increased, the phase noise
deteriorates due to the cos2AO term in the denominator,
the reduction of oscillation amplitude (which contributes
another cos2AO as seen in section I) and the integral term.

IV. EXPERIMENTAL VERIFICATION

Fig. 4(a) depicts the theoretical and simulated phase
noise of a ring with 8 elements, no inter element phase
shift and Ibias=5 mA. An close match is seen in the j2 -

region, revealing that the theory is able to predict the phase
noise to an accuracy of 1.5 dB.
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Fig. 6. (a) Circuit diagram for 50 MHz prototype oscillators (b)
Photograph of prototype oscillators.

Fig. 4(b) depicts the phase noise difference for rings of
different sizes with and without boundary phase inversion
(Ibias=5 mA) at 1 MHz offset (which lies in the f2
region) to determine the effect of inter element phase shift.
Fig. 5(a) depicts the phase noise improvement of rings of
different sizes with Tbias=5 mA and no boundary phase in-
version over a single element ring6. Once again, there is an
extremely good match to the theoretical prediction. Note
that Fig. 4(b) also depicts the contribution of A2cos2AqA
in the denominator of (9) to the phase noise degradation
due to inter element phase shift; the remaining degradation
is due to the integral term.

Fig. 5(b) shows the simulated phase noise at 1 MHz
offset for rings of different sizes without boundary phase

50inversion for a fixed current budget of 50 mA (1bias = N
mA per element). The resonant load parameters are scaled
as L = NxO.4 nH and C =63 pF to maintain a constant
oscillation frequency. Assuming a constant quality factor
of 10, the parallel resistance would scale as R = N x 24 Q
and the oscillation amplitude would remain the same. (9)
then dictates that the phase noise would remain roughly
constant as the NMF, B, would scale down by a factor
of N due to the decreasing current in each stage, thus
cancelling the effect of NC2 in the denominator. If bound-
ary phase inversion is present, rings of lower sizes would
experience phase noise deterioration due to the larger inter
element phase shift. This deterioration would be identical
to that described in the previous section and depicted in
Fig. 4(b). The simulation results confirm these conclusions.
Hence, if a phase resolution of 360 is desired for an

application with a fixed current budget, the phase noise
is better (by 5.5 dB in this case) if one uses alternate
node voltages of a 10-element ring with boundary phase
inversion as opposed to a 5-element ring.
To further validate the theoretical and simulated re-

sults, prototype 50 MHz oscillators are built on printed
circuit boards (PCBs) using Fairchild's MMBTH10 BJTs
(fT=650 MHz). The first is a single element ring (i.e.
cross-coupled oscillator) while the second is a 4-element
ring with no boundary phase inversion. Fig. 6(a) depicts
the circuit diagrams, while 6(b) is a photograph of the
prototypes. Fig. 7 shows the measured phase noise of both
oscillators for a bias-current of 1.25 mA per element. In

6A 1-element ring with no boundary phase inversion is nothing but a

cross-coupled LC oscillator

Fig. 7. Measured phase noise for both oscillators for a bias current of
1.25 mA per differential pair.

the region, the average phase noise difference is 6
dB, which matches the expected difference (lOlog(4) = 6
dB). The maximum and minimum phase noise differences
in that region are 7.82 dB and 4.3dB respectively. The
phase noise performance of the oscillators in the J3 region
is beyond the scope of this paper. The limited range of
frequency offsets before the phase noise curves approach
the thermal noise floor is a function of the low frequency
of oscillation.

V. CONCLUSION

A rigorous phase noise theory for tuned ring oscillators
is developed with a focus on the dependence of phase
noise on the number of ring elements and inter element
phase shift. It is seen that an increase in the number of
elements N leads to a lOlog,oN phase noise improvement,
while an increase in inter element phase shift leads to
phase noise deterioration. For multiple phase generation,
under a fixed current budget, it is beneficial to use a larger
ring sizes.Extensive simulations and experiments using
prototype oscillators validate these claims.
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