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Overview

• System for transcribing multi-instrument, polyphonic musical recordings

• Implicitly handles source (instrument) separation

• Based on novel semi-supervised NMF variant called Subspace NMF (SsNMF)

• SsNMF incorporates prior knowledge by imposing constraints derived from training data

Non-negative Matrix Factorization for Music Transcription

• Non-negative matrix factorization (NMF) solves V ≈ WH [1]

• One possible error function function (generalized KL-divergence):
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• Fast multiplicative updates exist to solve for W and H :
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• Smaragdis and Brown showed how NMF can be used for piano music transcription [2]

• V is the f -by-t magnitude STFT of the audio

• W contains note spectra in its columns and represents a source model

• H contains note activations in its rows and gives the transcription

• Rank of decomposition corresponds to number of pitches p

• W unknown a priori → unsupervised transcription

• W known a priori → supervised transcription

Figure 1: Using NMF to transcribe a piano note sequence (pitches have been manually sorted)

• Can extend to mixtures of n sources (instruments) by interpreting W and H in block-form:

Figure 2: Using NMF to transcribe a mixture of piano and cello

• Not clear how to assign columns of W to the submatrices W i in the unsupervised case!

Subspace NMF

• Idea: Constrain solution of each W i to lie in a linear subspace derived from training data

• Reminiscent of “eigenvoice” technique used in speech recognition [3, 4]

Training

• Given set of m instrument modelsM, each with p pitches and f frequency bins

• Vectorize models and and combine into a model matrix Θ =
[

vec(M1) vec(M2) . . . vec(Mm)
]

• Decompose model matrix using rank-r NMF: Θ ≈ ΩC

• Unvectorize model basis vectors: Wi = vec−1(Ωi)

• Each Wi represents an “eigeninstrument” (f -by-p matrix)

Figure 3: Process of deriving “eigeninstruments” from a set of training instrument models

The Model

• Use eigeninstrument basis to represent mixture of n unknown instruments V as:
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Figure 4: Illustration of the Subspace NMF decomposition of a spectrogram

Transcription

1. Update each Hs by combining into big H and using NMF update

2. Update for B is as follows:
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3. Solve for each W s using B

4. Iterate until convergence

5. Post-process Hs using median filtering and thresholding to get pianoroll representation

Experiments

• Experiments conducted with both synthesized (MIDI) and audio recordings

• MIDI-derived instrument models used as training data

• Frame-level metrics: total error, substitutions, missed notes, false alarms, accuracy

Figure 5: Transcription results of Beethoven string quartet recording (two sources)

Acc Etot Esub Emiss Efa

Recorded Audio (flute & clarinet) 0.65 0.43 0.04 0.11 0.28
Synthesized Audio (bass & piano) 0.69 0.32 0.07 0.11 0.13
Synthesized Audio (flute & violin) 0.72 0.31 0.03 0.18 0.11

Table 1: Experimental results (averaged across sources) of three mixtures, each with two sources

Discussion

• SsNMF provides a framework for transcribing multi-instrument, polyphonic recordings

• Adaptive source modeling has distinct advantages over a purely supervised approach

• Current work involves extending the static spectrum note model to handle dynamic spectra
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