FI1GURE 1: Using NMF to transcribe a piano note sequence (pitches have been manually sorted)

MULTI-VOICE POLYPHONIC MUSIC TRANSCRIPTION USING EIGENINSTRUMENTS
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System for transcribing multi-instrument, polyphonic musical recordings
Implicitly handles source (instrument) separation

Based on novel semi-supervised NMF variant called Subspace NMF (SsNMF)

SSNMFE incorporates prior knowledge by imposing constraints derived from training data

Non-negative Matrix Factorization for Music Transcription

Non-negative matrix factorization (NMF) solves V.~ W H |[1]

One possible error function function (generalized KL-divergence):
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Fast multiplicative updates exist to solve for W and H:
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Smaragdis and Brown showed how NMF can be used for piano music transcription |2]
V' is the f-by-t magnitude STFT of the audio

W contains note spectra in its columns and represents a source model

H contains note activations in its rows and gives the transcription

Rank of decomposition corresponds to number of pitches p

W unknown a priori — unsupervised transcription

W known a priori — supervised transcription
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Can extend to mixtures of n sources (instruments) by interpreting W and H in block-form:
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FIGURE 2: Using NMF to transcribe a mixture of piano and cello

Not clear how to assign columns of W to the submatrices W* in the unsupervised case!
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Subspace NMF

e Idea: Constrain solution of each W* to lie in a linear subspace derived from training data

e Reminiscent of “eigenvoice” technique used in speech recognition |3, 4]

Iraining

e Given set of m instrument models M, each with p pitches and f frequency bins

e Vectorize models and and combine into a model matrix © = [vec(M?) vec(M?) ... vec(M™)]
e Decompose model matrix using rank-r NMF: © ~ QC

e Unvectorize model basis vectors: W! = vec™1(§);)

e FEach W' represents an “eigeninstrument” ( f-by-p matrix)
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FIGURE 3: Process of deriving “eigeninstruments” from a set of training instrument models

The Model

e Use eigeninstrument basis to represent mixture of n unknown instruments V' as:

n n T
Vady WH =Y Y W'ByH
s=1

s=1 a=1

U
~
AN
—

frequency

o
< Q
o}
o
E2F2 ... pItCh A5

frequency

+
N\
o

N\ &
)
L

time

FIGURE 4: Illustration of the Subspace NMF decomposition of a spectrogram

Transcription
1. Update each H® by combining into big H and using NMF update
2. Update for B is as follows:
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3. Solve for each W* using B
4. Iterate until convergence
5. Post-process H® using median filtering and thresholding to get pianoroll representation
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e Experiments conducted with both synthesized (MIDI) and audio recordings
e MIDI-derived instrument models used as training data

e Frame-level metrics: total error, substitutions, missed notes, false alarms, accuracy
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FIGURE 5: Transcription results of Beethoven string quartet recording (two sources)

Acc Etot Egyp Emiss Efa
Recorded Audio (flute & clarinet) | 0.65 0.43 0.04 0.11 0.28
Synthesized Audio (bass & piano) | 0.69 0.32 0.07 0.11 0.13
Synthesized Audio (flute & violin)| 0.72 0.31 0.03 0.18 0.11

TABLE 1: Experimental results (averaged across sources) of three mixtures, each with two sources

Discussion

e SsNMFE provides a framework for transcribing multi-instrument, polyphonic recordings
e Adaptive source modeling has distinct advantages over a purely supervised approach

e Current work involves extending the static spectrum note model to handle dynamic spectra
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