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Eigeninstrument Model

Overview Probabilistic \
Eigeninstruments
e System for transcribing polyphonic music e Prior knowledge included via parametric instrument models e .
—  Works with single channel audio e Constraints derived from example instrument models - > § S .
— Handles multiple instruments e (Can initialize model with correct instrument types %; —= — - TS
e Probabilistic extension of Subspace NMF [1] e Sparsity heuristic improves performance ) A
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e Non-negative matrix factorization (NMF) [3] solves V ~ W H % [E
e V isthe f-by-t magnitude STFT of the audio | ) /6 Q. g 7y
e IV contains note spectra in its columns and represents the source model(s) Test Mixture | / = /
e [ contains note activations in its rows and gives the transcription HE
e Rank of decomposition corresponds to number of distinct pitches § > PET Mo del p Post.
e (an handle multiple instruments by interpreting W and H in block-form (i.e. V = >  W?*H?) g > (p 9 t‘S ) Processing
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— oo _ e Tested two-instrument mixtures from two synthesized data sets and one recorded data set

. . , . e FEigeninstruments generated from set of 33 training instruments (wide variety of types)
e Problem: blind search for instrument models W is an ill-posed problem

e Subspace NMF [1] constrains each W# to lie in a subspace derived from training data o lhreshold 7 was derived empirically to maximize F-measure across tracks

e FEvaluated basic PET model, PET with sparsity on P(s|p,t), and PET with sparsity on P(pl?)

e Compared to oracle/fixed-model (synthesized/recorded data) PET system and to NMF with generic W model

Training Instruments Eigeninstruments

Bach (synth)  Woodwind (synth)  Woodwind (recorded)

~ =t PET 0.51 0.53 0.50
~E= PET, 5 0.57 0.62 0.52

= PET;_; 0.52 0.51 0.56

s = PET;,;; 0.56 0.68 0.59

-+ PET,,uc10) fived 0.87 0.84 0.56

= NMF 0.41 0.40 0.31

e Given set of m instrument models for training, each with p pitches and f frequency bins

e Decompose matrix of training instrument parameters using rank-k NMF: © ~ QC TABLE 1: Frame-level F-measures across three data sets for PET variants as well as basic NMF

e Instrument sources can be represented as linear combinations of the eigeninstruments basis:

Bassoon (PET Clarinet (PET
V ~ Zvec_l(@bS)HS (PET) (PED
S
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Probabilistic Eigeninstrument Transcription =
e NMF has probabilistic interpretation as latent variable model |2, 4]
Bassoon (ground truth) Clarinet (ground truth)
V = P(f,t) = P(t) Y _ P(f|z)P(z[t)
Z
e Probabilistic Eigeninstrument Transcription (PET) generalizes Subspace NMF in a similar way: -
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V= P(f,6) ~ P(t) S P(flp, k)P(kls) P(slp, ) P(plt) e —
S,p7k . = .||||-||.| . ' |||.|.. ' .

A time time

P(f|p, k) - probabilistic eigeninstruments model ! !

P(k|s) - source-specific distribution over eigeninstruments

P(s|p,t) - probability of instrument source s playing pitch p at time ¢ FIGURE 1: Example output distributions P(p,t|s) and ground truth for a recorded bassoon-clarinet mixture

P(p|t) - probability of pitch p at time ¢

PET Algorithm
1. Calculate probabilistic eigeninstruments f’( f|p, k) from training data

Discussion

2. Solve model parameters for a given test mixture V' using EM

3. Compute joint pitch-time distribution for each source: e Sparsity heuristic is helpful in most situations, although different data sets benefit in different ways
P(s|p,t)P(p[t)P(t) e [nitializing model with approximately correct parameters can improve accuracy
P(p,t|s) = :
(p,t]s) Zp - P(s|p, t)P(p[t)P(t) e PET framework shows significant performance advantage over basic NMF algorithm

4. Post-process P(p,t|s) into binary piano roll Tg using threshold ~

e (an encourage sparsity in latent variable distributions using exponentiation heuristic in M-step: References
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