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1 Preliminaries

• We are considering absorbing, discrete-observation hidden Markov models.

• We refer to the parameters generically as θi (an entry in a multinomial).

• Trying to update parameter estimates in the model given a batch of data sequences Ω, where
each sequence X ∈ Ω is comprised of a set of observations such that X = {x1, x2, ..., xT }.

2 The Joint-Entropy Update (Singer & Warmuth, 1996)

• Goal is to reestimate parameters by maximizing a weighted combination of log-likelihood and
model divergence:

U(θ̃) = LL(θ̃|Ω)− 1
η
∆(θ̃, θ) (1)

• Intuitively, want to stay close to our old parameters which encapsulate all that we have learned
so far.

• LL(θ̃|Ω) depends on usage statistics from the model whose parameters we are trying to solve
for!

• Approximate with first-order Taylor expansion:

U(θ̃) =
(
LL(θ|Ω) + (θ̃ − θ)∇θ(LL(θ|Ω)

)
− 1

η
∆(θ̃, θ)

• ∆(θ̃, θ) is a relative entropy measuring the divergence between the distributions induced by
two HMMs over all possible data and hidden state sequences. This also depends on usage
statistics and so is approximated as well:

ˆ̂∆(θ̃, θ) =
∑

i

n̂qi(θ)
∑
j∈qi

θ̃j log
θ̃j

θj

where n̂qi(θ) is the expected usage of state qi.

• After setting derivatives to 0 and solving, we arrive at the batch JE batch update:

θ̃i =
θi exp

(
η

n̂qi (θ)

∑
X∈Ω n̂θi(X|θ)

|Ω|θi

)
∑

j∈θi θj exp
(

η
n̂qj (θ)

∑
X∈Ω n̂θj(X|θ)

|Ω|θj

) (2)
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3 The Entropic MAP Estimator (Brand, 1998)

• Very similar form to JE framework, but formulated in a Bayesian fashion where the objective
function, U(θ̃) is interpreted as a log-posterior.

• Given some evidence, ω (in our case usage counts), construct the following posterior:

P (θ̃|ω) =
P (θ̃)L(θ̃|ω)

P (ω)
(3)

=
e
− 1

η
∆(θ̃,θ)L(θ̃|ω)
P (ω)

(4)

∝ e
− 1

η
∆(θ̃,θ)

P (ω|θ̃) (5)

log(P (θ̃|ω)) ∝ LL(θ̃|ω)− 1
η
∆(θ̃, θ) (6)

• Brand’s formulation uses the Shannon entropy (e−H(θ̃)) as the prior, thus biasing updates
towards sparse distributions.

• We use the relative entropy, which can include Shannon entropy as a special case (using the
uniform distribution).

• The expected complete-data log-likelihood (like the E step in EM) is used to form L̂L and
it’s derivative:

L̂L(θ̃|Ω) =
1
|Ω|

∑
X∈Ω

log(
∏

i

θ̃
n̂θi(X|θ)

i ) (7)

∂

∂θi
L̂L(θ̃|Ω) =

∑
X∈Ω n̂θi(X|θ)

|Ω|θ̃i

(8)

where n̂θi
(X|θ) is the expected number of times that parameter θi was used over all state

sequences that produce X in the HMM with parameters, θ.

• Now define the evidence to be:

ωi =
∑

X∈Ω n̂θi(X|θ)
|Ω|

(9)

• In this form, the log-likelihood depends only on the evidence term rather than the data and
hidden variables. In the case of HMMs, this effectively decouples the model parameters so
that we can decompose the model into a set of independent multinomial distributions and
solve each independently.
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3.1 Multinomial Distributions

• Simplifies the problem considerably.

• Can now use exact relative entropy:

∆(θ̃, θ) =
∑

i

θ̃i log
θ̃i

θi
(10)

• We can write the posterior as follows:

P (θ̃|ω) ∝ L(θ̃|ω) P (θ̃)

∝
∏

i

θ̃ ωi
i

∏
i

(
θ̃i

θi

)−
(

θ̃i
η

)

∝
∏

i

θ̃ ωi
i

(
θ̃i

θi

)−
(

θ̃i
η

)
(11)

• The posterior has an interpretation as a minimization of entropies:

−max
θ̃

log(P (θ̃|ω)) = min
θ̃
− log

∏
i

θ̃ ωi
i

(
θ̃i

θi

)−
(

θ̃i
η

)
= min

θ̃

(
∆(ω, θ̃) + H(ω) +

1
η
∆(θ̃, θ)

)
(12)

• To solve for new parameters, set the log-posterior to 0, and add a Lagrange multiplier to
ensure that the parameters sum to 1:

0 =
∂

∂θ̃i

log

∏
i

θ̃ ωi
i

(
θ̃i

θi

)−
(

θ̃i
η

)+ λ

(∑
i

θ̃i − 1

)
=

ωi

θ̃i

− 1
η

log
θ̃i

θi
− 1

η
+ λ (13)

• We can easily solve for λ, but θ̃i is a bit more tricky due to the mixed polynomial and
logarithmic terms.

• We can use the Lambert W function: W (y)eW (y) = y. This gives:

θ̃i =
ηωi

W
(

ηωi

θi
e1−ηλ

) (14)

• θ̃i and λ form a fix-point solution for λ and therefore θ̃i. We can iteratively update the current
update’s estimate of θ̃ by first solving for θ̃ given λ, normalizing θ̃, and then calculating λ
given θ̃. Convergence is fast (2-5 iterations).
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4 The Joint-Entropy MAP Estimator

• Hybrid of the Joint-Entropy update and entropic MAP estimator.

• Use expected complete-data log-likelihood of new parameters.

• Use approximated (probably can get around this) relative entropy with respect to the entire
HMM.

• Setup up and solve log-posterior in similar fashion to multinomial case.

• In the following derivations, superscripted variables denote the state or distribution of which
the indexing parameter is a member:

0 =
∂

∂θi
L̂L(θ̃|ω)− ∂

∂θ̃i

1
η

ˆ̂∆(θ̃, θ) +
∂

∂θ̃i

λθ̃i

 |θ̃i|∑
i

θ̃i − 1


=

ωi

θ̃i

−
n̂qi(θ)

η
log

θ̃i

θi
−

n̂qi(θ)
η

+ λθ̃i (15)

(16)

• Easy to solve for λθ̃i :

λθ̃i = −ωi

θ̃i

+
n̂qi(θ)

η
log

θ̃i

θi
+

n̂qi(θ)
η

(17)

• Now let a =
n̂qi (θ)

η to simplify the expression a bit.

0 = a

[
ωi

aθ̃i

− log
θ̃i

θi
− 1 +

λθ̃i

a

]
(18)

• Solve for θ̃i by working backwards from the W function to the bracketed expression in (18).
First, note that the W function can be re-written as: W (y) + log(W (y)) = log(y). Now let
y = em.

0 = W (em) + log(W (em))−m

=
z

z/W (em)
+ log(W (em))−m + log z − log z

=
z

z/W (em)
+ log

(
W (em)

z

)
−m + log z (19)

Now, let m = 1− λθ̃i

a + log z − log θi. Substituting in m and continuing, we have:
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0 =
z

z/W
(
e1−λ

a
+log z−log θi

) + log

W
(
e1−λ

a
+log z−log θi

)
z

− 1 +
λ

a
+ log θi

=
z

z/W
(

z
θi

e1−λ
a

) + log

W
(

z
θi

e1−λ
a

)
z

− 1 +
λ

a
+ log θi

=
z

z/W
(

z
θi

e1−λ
a

) − log

 z

θi W
(

z
θi

e1−λ
a

)
− 1 +

λ

a

=
ωi
a

ωi
a /W

(
ωi
aθi

e1−λ
a

) − log

 ωi
a

θi W
(

ωi
aθi

e1−λ
a

)
− 1 +

λ

a
(20)

Where we have let z = ωi
a . This implies that:

θ̃i =
ωi/a

W
(

ωi
aθi

e1−λ
a

) (21)

Substituting (21) into (20), we get:

0 =
ωi/a

θ̃i

− log

(
θ̃i

θi

)
− 1 +

λ

a
(22)

Which is the derivative of the log-posterior divided by the constant a (ie. the bracketed term
in (18)). Multiplying by a we get:

0 =
ωi

θ̃i

− a log

(
θ̃i

θi

)
− a + λ

=
ωi

θ̃i

−
n̂qi(θ)

η
log

(
θ̃i

θi

)
−

n̂qi(θ)
η

+ λθ̃i (23)

• We have arrived back at (15) and therefore derived an expression for θ̃i. Now we can substitute
back in for ωi and a:

θ̃i =
ωi/a

W
(

ωi
aθi

e1−λ
a

)
=

η
∑

X∈Ω n̂θi(X|θ)
|Ω|n̂qi (θ)

W
(

η
∑

X∈Ω n̂θi(X|θ)
θi|Ω|n̂qi (θ)

exp(1− ηλ
n̂qi (θ)

)
) (24)
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