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Abstract

This project examines the problem of single channel blind dereverber-
ation. After estimating the T60 value, a time-domain binary masking
approach was used to remove regions of the signal that were largely domi-
nated by reverberant energy. Performance of the system was examined for
several different classes of audio (hand clapping, drums, and speech) and
for varying amounts of reverberation. In addition to subjective evaluation
via spectrograms and audio output, results were assessed by comparing
the accuracy of the binary mask to an ideal binary mask calculated us-
ing a clean reference signal. Results were generally good although as
expected, performance was better for sparse signals. Interestingly, some
mask accuracy results were better when more reverberation was present,
even though subjectively the system performed worse on these examples.

1 Introduction

1.1 Background

Although reverberation can be desirable in some situations, there are many
practical applications where it causes significant problems. For example, it
is well known that the performance of automatic speech recognition systems
suffers greatly when reverb is present and it is likely that similar problems
arise for automatic music transcription. Reverberation can also impact speech
intelligibility, especially for hearing-impaired listeners [4].

In this project, I explore a blind approach to dereverberation of audio, mean-
ing that no prior knowledge about the clean signal or transfer function is as-
sumed. Although there are other approaches to this difficult problem [9, 8],
many require multiple audio channels [3] or make assumptions about the har-
monicity of the signals [5]. In contrast, the approach taken here works with
single channel recordings, makes no assumptions about the source, and is con-
ceptually straightforward.

1.2 Motivation

My approach to blind dereverberation is motivated by the simple observation
that the envelope of late reflections in a reverberant signal is well described by
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Figure 1: Overview of the proposed dereverberation algorithm

an exponential decay curve: er[n] ≈ exp(−1/τ)n = an. Therefore a describes
the reverberation time of a room or environment and relates to the T60 time
(the time it takes an impulse response to drop 60dB below its initial level) as

T60 = − log(1000)
log(a) . If we can estimate a, we can estimate the T60 time which can

be used to identify and remove regions of the signal that are mostly reverberant
energy.

2 Algorithm

This section describes the proposed algorithm which is depicted in Figure 1.
The very first step is to run the reverberant signal through a bank of bandpass
filters. Because reverberation times are frequency dependent, the algorithm is
run on each band individually and the results are combined at the end. Next
the envelope of each band is calculated and transformed to the dB scale. A
window of length N (empirically determined) is then moved along the envelope
signal one sample at a time and at each position the window of samples is fit
using linear regression. The slope of the line fit for each window is retained and
the set of all slopes is postprocessed to determined the estimate of the true slope
(which in the linear domain corresponds to a scaled version of the exponential
decay parameter, a).

2.1 Filterbank

Several different types of filterbank were implemented in order to investigate
the impact on dereverberation performance. This included both linearly-spaced
and constant-Q 4th-order Butterworth bandpass filters, constant-Q linear phase
FIR filters (designed using Parks-McClellan), and Gammatone filters (designed
using Glasberg and Moore parameters [2] with Nick Clark’s Gammatone tool-
box [1]). For the Butterworth and Gammatone filterbanks, phase distortion was
minimized using time-reversed filtering (via Matlab’s filtfilt function) while for
the FIR filterbank, shifting was used to correct for the introduced delay.

In general, I found that the constant-Q Butterworth filters produced the
best results for speech, while linearly spaced Butterworth filters worked bet-
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ter for drum and clapping sounds. It is important to note, however, that this
assessment is based largely on the binary mask accuracy metric described in
Section 2.5. In terms of perceived quality, the filter types were similar. Gam-
matone filters produced results that were very similar to the linearly spaced
Butterworth filterbank.

2.2 Envelope Follower

Two approaches to envelope detection were implemented: a simple low-pass
filter and rectification scheme as well as a detector based on the Hilbert trans-
form. In general, the latter approach seemed to work better and so it was used
in the experiments presented below. Using ŷ[n] to denote the Hilbert transform
of y[n], the Hilbert transform based envelope detector is defined as:

e[n] =
√

ŷ[n] ŷ∗[n]

The result of the detector was then low-pass filtered using a first-order But-
terworth filter with a (empirically determined) cutoff frequency of 80Hz. This
helped to remove high frequency elements of the envelope that were not re-
lated to reverberation. The time reversal zero-phase filtering scheme was used
to eliminate the phase distortions that the lowpass filter would have otherwise
introduced.

2.3 Analysis

The first analysis step is to convert the envelope to a logarithmic (dB) scale.
Next a window of length N is moved along the envelope and linear regression is
used to fit a line at each position. The slopes si ∈ s of the lines fit at each window
position are then analyzed to determine the best estimate of the true slope, s∗.
Following Ratnum et al. [6], this was done using an order-statistics approach
where a threshold value of s was selected such that the left tail of the density
function p(s) occupies a specified percentile value, γ. Although this method of
selecting the estimated value is somewhat ad-hoc, it works reasonably well in
practice. I found that a value of γ = 0.25 worked well in most circumstances.

2.4 Masking

Regions of the input signal that are largely reverberant decay are removed using
a masking technique. First a binary mask is constructed from the set of local
slope calculations. Using α to represent an empirically determined tolerance
parameter, mask cell i is defined as:

mi =

{

0 if |si − s∗| < α
1 otherwise

In practice I found that binary masking was too abrupt and introduced un-
acceptable transient artifacts. To help alleviate this problem, a moving average
filter (50ms worked well in practice) was used to smooth the mask.
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2.5 Evaluation

As mentioned earlier, along with spectrograms and listening tests, an objective
metric based on binary mask accuracy was used to evaluate the results of the
dereverberation algorithm. The calculated mask m was compared to the ideal
binary mask m̂ which was calculated using the clean and reverberant signal
envelopes, ec and er. Using β to denote an empirically set threshold parameter,
m̂ is defined as:

m̂i =

{

0 if er

ec

> β

1 otherwise

Evaluating the accuracy of a mask m is then simply defined to be the per-
centage of points in m that match m̂.

3 Experiments

Table 3 summarizes the experimental results. All spectrograms, binary mask
figures, audio examples, and source code will be available at:

http://www.ee.columbia.edu/~grindlay/classes/E4810/project.html

Table 1: Summary of accuracies obtained for different sound classes with differ-
ent levels of reverberation

T60=0.25sec T60=0.5sec T60=1.0sec
Clapping 0.71 0.86 0.97
Drums 0.82 0.86 0.87
Digits(F) 0.63 0.71 0.78
Digits(M) 0.68 0.73 0.78
Speech(F) 0.73 0.73 0.74
Speech(M) 0.72 0.74 0.73

3.1 Reverb IRs

In order to precisely control the level of reverberation present in the test signals,
artificial impulse responses were used. The impulse responses were constructed
by shaping a random series of filter taps (i.e. −1, 0, or 1) with an exponential
curve. Typically, the probability of non-zero taps was 1/10th of the zero tap
density. The exponential curve parameter τ was determined by the desired T60
value.

I also experimented with some recorded impulse responses as well as im-
pulse responses generated by commercial reverberators. In these experiments,
Schroeder’s method [7] was used to estimate the T60 of the impulse response.
The results were generally similar to those when using artificial impulse re-
sponses of the same T60 time and so are not included in the results below.
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Figure 2: Clapping results with T60 = 0.5 seconds

3.2 Clapping

Hand claps provide a good first test as they closely approximate impulse re-
sponses and should therefore be easy to dereverberate. Artificial reverb IRs
were constructed as described in Section 3.1 and added to an anechoic record-
ing of four hand claps using convolution. Linear Butterworth filters were used
in the filterbank, the analysis window length was set to 100ms, α to 0.05, and
β to 2. Because of the impulse response characteristics of the clapping sounds,
the binary mask did not require smoothing.

Mask accuracy results for three different T60 values are given in Table 3.
Interestingly, in terms of mask accuracy, the algorithm performed best when the
most reverb was present, a somewhat counterintuitive finding. However, much
of this difference appears to be due to silent portions of the sound clip and the
fact that the ideal mask is noisy in these areas. Figure 2 shows the results for
T60 = 0.5 seconds which are, from top to bottom: calculated binary mask, ideal
binary mask, the reverberant sound, the original clean sound, the reverberant
sound when cleaned with the ideal binary mask, and the reverberant sound
when cleaned with the algorithm’s binary mask.

3.3 Drums

A slightly more challenging drum clip was also tested with varying amounts of
reverberation. The clip has bass drum, high-hat, and snare drum parts present
which overlap. The filterbank used linear Butterworth filters, the analysis win-
dow was 100ms, α was set to 0.015, and β set to 2. Again, we see the same
trend of higher mask accuracy with higher T60 values, even though these results
sound markedly worse than those of the lower T60 values.
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Figure 3: Drum results with T60 = 0.5 seconds

3.4 Speech

3.4.1 Digits

Percussive sounds are easy to dereverberate becausethey are close to impulse
responses. Speech signals, on the other hand, are more difficult to dereverberate
because they are often dense. I constructed sound clips of both male and female
speakers saying the digits ’one’ through ’four’ in succession. The digits were
placed far enough apart that there was time for reverberant decay between
them. This made the digit task challenging, but not as difficult as a naturally
uttered sentence.

Again we find the same counterintuitive relationship between T60 and mask
accuracy as was found for drums and clapping. This time, however, the results
do not sound appreciably different (although T60 = 0.25 seconds might be a bit
better than the other values). Figures 4 and 5 show the results for male and
female speakers using constant-Q Butterworth filters in the filterbank and the
same parameter settings as the drum experiment.

3.4.2 Sentences

The most challenging dereverberation experiment used natural (in so far as the
TIMIT sentences are natural!) speech utterances. The sentences, “she had your
dark suit in greasy wash water all year” (female speaker) and “cottage cheese
and chives is delicious” (male speaker) were used. Numerical results are given
in Table 3 and the spectrograms and masks for T60 = 0.5 seconds are shown
in Figures 6 and 7. Interestingly, in this case the mask accuracy performance
is relatively consistent across T60 values. Listening to the results, however,
it is clear that the speech becomes more distorted as the reverberation level
increases, although the degree to which the reverb has been attenuated also
becomes more apparent with the more reverberated examples.
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Figure 4: Female digit results with T60 = 0.5 seconds

Figure 5: Male digit results with T60 = 0.5 seconds
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Figure 6: Female sentence results with T60 = 0.5 seconds

Figure 7: Male sentence results with T60 = 0.5 seconds
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4 Conclusions

This simple approach to dereverberation seems to have worked reasonably well.
Although the algorithm distorted some elements of the signals it operated on,
it did manage to significantly reduce reverberant energy in many cases. Not
surprisingly, more percussive and impulse response-like signals, such as clapping
and drumming, tend to work better than dense speech.

It seems likely that the system could be improved in several areas. First, the
quantitative mask accuracy metric does not always yield results that correspond
to subjective assessment. Although this is, to some extent, the point of an
objective metric, there are cases where the mask accuracy results are clearly off.
Second, although not much time was spent tuning the algorithm’s parameters,
performance can be quite sensitive to thir settings, especially α. It would be
helpful to have a data-driven approach to determining these parameters. Finally,
although it would complicate the algorithm, it may be possible to include some
kind of source modeling. This would allow prior knowledge to be incorporated
and could reduce the harmonic artifacts that sometimes result from the masking
process.
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