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Algorithms that employ feedback from users to guide the search process can provide

relatively rapid and efficient results from large multimedia data collections.
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ABSTRACT | As the first decade of the 21st century comes to a
close, growth in multimedia delivery infrastructure and public
demand for applications built on this backbone are converging
like never before. The push towards reaching truly interactive
multimedia technologies becomes stronger as our media
consumption paradigms continue to change. In this paper, we
will profile a technology leading the way in this revolution:
active learning. Active learning is a strategy that helps
alleviate challenges inherent in multimedia information re-
trieval through user interaction. We will show how active
learning is ideally suited for the multimedia information
retrieval problem by giving an overview of the paradigm and
component technologies used with special attention given to
the application scenarios in which these technologies are
useful. Finally, we give insight into the future of this growing
field and how it fits into the larger context of multimedia
information retrieval.

KEYWORDS | Active learning; content-based information
retrieval; human-computer interaction; image/video search;
interactive pattern recognition; relevance feedback; user-
centered design

I. INTRODUCTION

Interactive multimedia applications are becoming more
commonplace as both media delivery infrastructure and the
success of new participatory web technologies such as Web
2.0 [1] continue to mature. One consequence of this growth
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is the emergence of a sophisticated user base more skilled in
learning and adapting to new technologies and interaction
paradigms than in years past. This user aptitude, but more
specifically the potential to monetize this aptitude through
focused advertising, has not gone unnoticed by media
providers: consider the $580 million purchase of MySpace.
com by News Corporation in 2005 [2].

The recent explosion in multimedia-oriented web
technologies straddles the intersection between improved
media delivery and tech-savvy users. The great popularity of
social networking sites such as MySpace [3] and FaceBook
[4], image sharing websites like Flickr [5] and Zooomr [6],
as well as the gold rush on video sharing sites sparked by
Google’s $1.65 billion acquisition of YouTube [7] has the
potential to usher in a new era in web economics.

Though consumers have quickly embraced multimedia
technologies such as image and video search, commercial
content-based indexing and interactive search of multi-
media documents is still in its nascent stages. With the
exception of a beta-version of face-image search function-
alities by Google [8] and Exalead [9], respectively, most
commercial systems still adapt standard text retrieval
technologies to index and search these databases. Finding
new and useful interaction paradigms for a tech-aware user
base also remains a challenging domain for the research
community. It is clear users want to connect and interact,
but it is unclear how to leverage this interaction for
content organization and search.

Given this commercial playing field, the potential
impact of a great advance in interactive multimedia search
justifies the continued interest in this well-studied research
area. The unique aspect of multimedia information
retrieval is that database documents are indexed holistically
using multiple modalities, by extracting low-level features
from each of these modalities such as color, texture,
motion, audio timbre, etc. For more focused search
applications (such as object detection and retrieval) mid-
level features such as shape and trajectory can be used.
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In order to use low-level information extracted from
visual and audio information properly, designers must
balance the tradeoff between the extra discriminative
ability gained from these modalities with the semantic
ambiguity of matching documents based purely on low-
level features. This phenomenon is known as the semantic
gap [10] and motivates the use of interactive strategies in
designing such search systems.

To further motivate our discussion, consider the
following application domains whose technologies seek
to bridge the divide between basic research and the
potential of the new web economy.

A. Image and Video Search and Retrieval

Commercial image and video search systems have
garnered great attention in past years by making multi-
media content indexed through text meta-data or file-
names searchable. These systems, however, do not index
or compute similarity among images or videos using the
actual content of the documents themselves.

This challenging task is the domain of the well-studied
area of content-based image/video retrieval (CBIR) [11],
[12]. This field seeks to utilize low-level information seen
in the content itself, along with information gained from
user interaction to improve search.

Consider, for example, using Google Images to perform
a keyword search and then being able to interact with the
system by telling it which of the returned images are
relevant to the intended query and having it respond to this
feedback by adjusting the ranked list of returns accord-
ingly. This interactive paradigm is known as relevance
feedback [10], [13] and is an approach intended to close the
gap between semantic notions of search relevance and the
low-level representation of content seen in multimedia
documents [14], [15]. This has been the main crux of
research in interactive multimedia search technologies
over the past 15 years.

Truly interactive content-based systems have the
potential to not only improve online image and video
search but also many other application areas as well.
Progress has been made in the areas of trademark search
for digital rights management [16], objectionable content
detection [17], sports video analysis and search [18],
broadcast news video search [19], as well as other domains
which abstract to the content-based retrieval problem. For
a broader overview, the reader is referred to [11] and [12].

B. Music Organization and Search

Despite its rocky courtship (and with the help of nearly
continuous legal counseling [20]) the tenuous marriage
between the recording industry and the online economy
continues to grow. Despite constant industry objections,
the web is becoming the preferred medium for music
delivery. The massive success of online music, in particular
Apple’s iPod and iTunes [21], serves not only as a cultural
and technological landmark but an economic one as well.

Through the development of playlist sharing, as in
Apple’s iTunes, or interplayer song sharing, as in
Microsoft’s Zune player [22], it is clear the industry sees
music organization and search as a potentially profitable,
opportunity-rich area for interactive technologies. Music
organization and search presents researchers with won-
derfully challenging technical problems.

As music libraries grow, identifying music to listen to
or buy becomes increasingly difficult. Music recommen-
dation services such as Pandora [23] provide a pseudo-
content-based strategy for interactive playlist generation,
but rely on a large collective-labeling project for its aspect
profiles. Over recent years, work from the interactive
content-based perspective has tried to lift this constraint
by envisioning automatic indexing of music files for
recommendation and search [24], [25]. In addition,
analysis and search of information from the audio track
can be used in a general scenario for related or contextual
media delivery [26].

II. GENERAL TECHNICAL PARADIGM

For any of these application domains, it is imperative to
choose a technical paradigm that best fits the general
interactive multimedia search problem. Since we are
seeking to represent, model, and search among large
collections of data interactively, we must draw on principles
from machine learning, data mining, and information
retrieval collectively. To illustrate some subtleties of the
problem, we ask the reader to consider briefly a typical usage
scenario.

Kevin is using an interactive, online image search
system to find images for a class project. In particular,
he is interested in finding images of his favorite golfer,
Tiger Woods. He can either type a text query such as
“tiger woods” into the system, or provide to it an image
similar to what he is interested in, his query by example
[10]. The system uses information from the example
clip or text query to infer which images in its database
most closely resembles his initial search concept. From
the ranked list of results, Kevin can try to reformulate
the query by interacting with the system. The system
readjusts its understanding of the query concept based
on information gleaned from this interaction and
returns a new set of results. This continues until he
is happy with the results. This paradigm is illustrated
in Fig. 1.

Designers of such systems must take into consideration
the fact that Kevin’s time and effort are at a premium. In
all search and retrieval applications, the user wants to
expend as little effort as possible while being presented
with a large number of relevant results quickly. As a result,
in order to design successful interactive multimedia
retrieval systems, we must balance this constraint across
two interrelated system components: the learning/search
strategy and the interaction strategy.
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Fig. 1. Interactive multimedia search paradigm. Query-by-example is used to search database of images. System refines its understanding of
search concept from user interaction on this set of results. (Image search results in this figure courtesy of images.google.com.)

A. Learning Strategies

The content-based learning/search algorithms tasked
to solve these problems must operate under three critical
constraints.

The first challenge is tackling the small sample learning
problem [27]. In many practical applications, a user’s
initial query often gives little information to the system.
Algorithms must contend with only a handful of labeled
training examples, often coming from unbalanced data sets
in high-dimensional feature spaces. Consequently, many
potentially discriminating observations go unlabeled.

A second major challenge rises again from the semantic
gap [10]: correlating user-dependent interpretation of mul-
timedia content with low-level audio-visual descriptors.

Finally, the speed at which both training and search
occurs in such systems must be fast. Users do not want to
wait indefinitely for search results, and designers must
take this into account. These considerations motivate the
need for interaction.

B. Interaction Strategy

Though the term implies the learner’s subjugation to
the user, the true nature of interaction for content-based
learners is more self-serving. Interaction will help alleviate
some of the challenges inherent to small-sample learning
through the extra labeling effort of the user. This labor,
however, comes at a cost. The user’s time and effort are at a
premium, so any extra information the learner wants to
gain must be done in the most efficient and useful way. The
interaction must be quick and painless for the user while at
the same time provide the most information to the learner.

As one can see, the selection of these two components
are not mutually exclusive. The learner we choose for
multimedia search motivates our choice for interaction
strategy and vice versa. For the interaction strategy, how-
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ever, there is a general paradigm that all approaches fit
into regardless of the learner: active learning. We will
motivate this paradigm in the general context of interac-
tion strategies in the next section.

ITI. GENERAL INTERACTION
STRATEGIES

Consider again the retrieval scenario. Using the query-by-
example approach, a learning algorithm trains itself on a small
amount of training data. From this result, the system
determines an interaction strategy for the user in order to
further improve its idea about the intended target of the
search. The system wants to get the best information from the
user in order to better learn the user’s information need. This
is the main goal of the interactive learning strategy.

A. Relevance Feedback

The first interactive learning approach for content-
based search that garnered great attention and success was
relevance feedback [10], [13]-[15]. From the initial re-
turned set of most relevant instances, the user is asked to
give explicit feedback by labeling instances in the returned
set as being either “relevant” or “irrelevant.” This infor-
mation is then used to refine the search strategy typically
by adjusting the notion of similarity between documents in
the database. Each round of feedback is intended to bring
the system closer to finding the user’s implicit target
concept.

Initial work in relevance feedback was based on
heuristic-based feature reweighting schemes [10], [28]
that weighted certain features over others based on the
user’s past preferences. Since then, a plethora of tech-
niques from different fields have been studied. These
include probabilistic frameworks [15], artificial neural
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Fig. 2. Active learning paradigm. Learning and interaction strategies collectively make active learning system. System initially starts with
red labeled examples and at each round returns both resultant set (green examples) and to-be-labeled pool-query set (black examples)

which when labeled will be added to training set for next round.

networks [29], and others including those that seek to
combine other modalities such as text into the search
process [30]. In addition, algorithms from the text retrieval
community like query-point-refinement [10] have been
adapted to the problem in conjunction with pattern recog-
nition techniques such as discriminant analysis [27], [31].

As we will see in the next subsection, relevance
feedback and techniques based on this idea fall under the
umbrella of active learning, an approach ideally suited to
the information retrieval problem.

B. Active Learning

Active learning is a paradigm that proposes ways to
incrementally learn from unlabeled data, provided the
system has available to it an oracle, an entity which knows
the correct labeling of all examples [32], [33]. In the case
of multimedia information retrieval, this is the user. Given
an initial weak retrieval learner, the system asks the oracle
to label those points whose correct labeling it deems to be
most informative: the pool query set. The information
provided from the pool-query labeling is then used to
update the learner and this process can be repeated
indefinitely to improve the learning performance of those
points in the returned or resultant set. This paradigm is
illustrated in Fig. 2.

From the perspective of the user, the resultant set is
the list of most relevant multimedia documents (with
respect to the search concept) and the pool-query set is the
set of most informative documents. He must label to
“help” the system refine the search. Determining what
most informative means and how to choose these points for
labeling is the fundamental challenge in this field and the
main focus of research.

This is active learning in its most general incarnation.
Examples of special cases include when the pool-query-set
is singular (stream-based active learning [34]) or when we

are not restricted to unlabeled instances but can seek to
label arbitrary points in the feature space (membership
query learning [35]), among others. In fact, traditional
relevance feedback can be seen as a degenerate case of
general active learning as the set of top-k returned points
serves both as the returned and pool query sets.

Active learning is the most natural formalism to the
interactive learning problem. Because it is incremental, it
is more similar to boosting or sequential training
algorithms as opposed to the one-shot training of tradi-
tional learning systems. It most closely resembles semi-
supervised learning in that its main goal is to properly
learn from unlabeled data, though its job is a bit easier in
that it has available to it the oracle which can divine the
true labeling of unlabeled instances in the data set, as
opposed to inferring them as in semi-supervised
approaches.’

Active learning techniques are used when we encoun-
ter two types of constraints in an application area. The
first, and historical root of active learning research, arises
from expensive data measurement. When new data is ex-
pensive or slow to obtain, we want to make sure to choose
the most representative, informative training set to model
the system. This can be seen in problems as diverse as
celestial mechanics [36], statistics [37], and economic
theory [38].

The second scenario is when we have a scarcity of
labeled data. This is the case where unlabeled examples
are plentiful to obtain, but data labeling is time consuming
and expensive. This is also referred to as learning with
unbalanced data sets and arises in multimedia information
retrieval applications.

'The distinction between semi-supervised and active learning is
blurred a bit with work in selective sampling for query learning in the
neural network community.
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These two justifications for when to use active learning
correlate closely to the historical evolution of the field.
Active learning, or active-learning like problems, have been
studied in a variety of fields and have a diverse pedigree.

C. Historical Perspective

According to Jaynes [36], the earliest recorded use of
active learning in science is attributed to Laplace who used
them along with Bayesian reasoning techniques to solve
problems in celestial mechanics in the early 19th century.
The active learning-like problem of experimental or
sequential design was explored extensively in the fields of
statistical and economic theory by Lindley [37] and
Federov [38], respectively, in the mid-to-late 20th century.

The field began to mature in the late 20th century as
researchers from the pattern recognition and machine
learning communities began to explore the potential of
these approaches. This was around the same time that
researchers began formalizing the organization of active
learning approaches.

In the neural network community, several works [32],
[35], [39] explored the use of active learning in the con-
text of efficient network training. These techniques fell
under a variety of names including query-learning, active
learning with membership queries, and selective sampling,
though all shared the same underlying approach. In each
round of learning, the system chooses a point in feature
space and requests its label from the oracle (active learn-
ing in which the unlabeled pool of examples consists of all
possible points in the low-level feature space). The tech-
niques rely on choosing the two most extreme learner
hypotheses given the current set of training data and
choosing a point in the feature space where they disagree
most for user labeling.

In the context of stream active learning, the query-by-
committee system of Freund et al. [40] introduced the
concept of a version space for classification problems. A
version space is the set of classifier learners that correctly
partition the feature space with respect to the current set
of labeled data. Active learning takes place by sampling
from this space of consistent hypotheses an even number
of classifiers and classifying points as they stream in by
committee voting, requesting labels only when the voting
results in a tie. The seminal theoretical result of this work
is that sampling from the version space in this way de-
creases its cardinality and that this corresponds to an
exponential reduction of the generalization error for
classification.

At the same time, general pool-based techniques were
making headway with systems that provided firm
probabilistic analysis on how to choose the optimal
unlabeled example(s). In [32], the point(s) with the
minimum expected variance of the learner (with respect
to the data) was chosen for active labeling in closed form.
The work of Roy and McCallum [33] advanced this idea
by noting for many learners, the expected variance could
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not be found in closed-form, and advocated a computa-
tionally feasible model to estimate this value using Monte
Carlo techniques.

Another seminal theoretical and practical discovery
was made by [41] in the context of version space reduction
in support vector machine (SVM) classifiers. Exploiting
version space duality for SVMs, it was proven that for
these classifiers, only unlabeled points that fall within the
SVM margin are to be considered for improving classifi-
cation accuracy. They proved the intuitive result that
those unlabeled points closest to the separating hyper-
plane are the optimal choice to most reduce the size of the
version space and thus improve the classification accuracy
at each round.

The first two special cases of active learning serve as
inspiration for, though are not directly applicable to, the
multimedia information retrieval problem. Selective sam-
pling assumes an infinite number of unlabeled points to
chose for labeling, which is not the case for a finite, though
large, database. Stream-based approaches require users to
label unlabeled points at a time, which is impractical from
an interface perspective. For these reasons, active learning
research for multimedia information retrieval lies in the
realm of pool-based approaches.

Applying pool-based active learning techniques to prob-
lems of multimedia information retrieval and mining makes
sense because the amount of high-quality labeled training
data is often dwarfed by the amount of unlabeled data for
these application areas, the so-called small-sample learning
problem. Advances in both textual and visual retrieval
problems [41]-[44], face database mining [45], as well as
robust video annotation for outlier detection [46] have been
made in the recent past using pool-based techniques.

Given these considerations, several interesting questions
arise at this point. What form should the learning algorithm
take? What is our interactive learning strategy? What is our
approach or criterion for best utilizing the user’s effort in
interactive labeling? We will seek to address these questions
and profile active learning research in multimedia retrieval
in the following sections. We first begin by outlining classes
of learning algorithms used for active learning in multi-
media information retrieval applications.

IV. LEARNING ALGORITHM

In general, the learning algorithm chosen for a particular
problem helps to dictate the exact implementation of the
interactive learning strategy. More clearly, each unique
learner will change our definition of most informative
point(s) and how we go about choosing it.

Because of our application considerations (small-
sample learning, semantic gap, and speed) we have to re-
strict our discussion of learning algorithms to those that
are robust to these constraints. We next profile three im-
portant classes of learners from the spectrum of techniques
used in active learning systems.
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A. Classification-Based Algorithms:
Support Vector Machines

Often multimedia information retrieval applications
can be formulated as classification problems. Whether we
are modeling a scenario as a binary classification problem
(relevant versus irrelevant images [41] or anomalous
versus normal video events [47]) or whether we are look-
ing at multiclass discrimination problems such as the
organization and search of news group messages [32], we
can rely on classifier-based active learning techniques to
help solve our problems. Though many classification algo-
rithms have been explored for active learning, we will
focus on an algorithm that has had great applicability to
multimedia information retrieval applications in recent
years: SVMs.

SVMs: Consider a binary classification problem given a
set of labeled training data {(x;,y)}L, where samples
x; € R% and binary labels are given as y € {—1,1}. In the
case of multimedia information retrieval, we can consider
R the d-dimensional space of low-level features so that
each image or video has a unique feature-vector descriptor.
The labels y; are markers indicating whether examples are
either relevant or irrelevant. Our goal is to learn a linear
function that will separate relevant examples from irre-
levant ones. In doing so, we can separate the documents
that are relevant to the user’s search from ones that are not.

Consider also that there is a mapping between the
original input space X to a higher (possibly infinite)
dimensional feature space F given by @ : X — F. (This
is appealing because many problems which are not
linearly separable in X become linearly separable when
mapped to F.)

In their most general form, SVMs are classifiers of
the type

fx) = ZOG/C(XI',X) 1)

where y=1 if f(x) >0 and y=-1 if f(x) <0,
{ozi}iNzl € R, and K(xi,y;) is a Mercer kernel satisfying
the property KC(x;,X;) = (P(x;), (X;)). The use of such
kernels allows for the implicit projection of the input
space X to a higher space F. This is better seen if we
rewrite (1) as

f(x) = w'o(x) )

where w = Zil 0;P(x;) and w € F. In this form, it is
easy to see that SVMs most simply are hyperplanes in the

Fig. 3. SVM classification problem. Goal is to find classifier with largest margin between closest positive and negatively labeled
examples: support vectors. Normal vector for optimal separating hyperplane w., is found using a quadratic optimization procedure.
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Fig. 4. BDA problem. Green circles represent positive examples, red circles represent negative examples. BDA seeks to
transform feature space so that positive examples cluster close together and each negative instance is pushed away as far as

possible from positive cluster.

feature space F. The {ai}fil needed to compute the
normal vector w of this hyperplane are obtained by
maximizing the minimum distance of all labeled points
from the hyperplane. The final value of this distance is
referred to as the margin and those labeled points that lie
on the margin are referred to as the support vectors. This
is illustrated in Fig. 3. The margin can be normalized so
that the absolute value of f(x) for support vectors is
always one. This optimal hyperplane is found via a
quadratic optimization procedure. For a more detailed
treatment, the reader is referred to [48].

B. Query-Point Refinement Algorithms: Biased
Discriminant Analysis

Query-point refinement is a pseudo-ranking learning
strategy that is closely coupled with interactive learning.
That is, its greatest usefulness comes through interaction
with a user. Historically, these techniques have been
closely associated with the special case of active learning:
relevance feedback. On its own, it is closest to a weighted
k-nearest neighbor ranker. Though many other query-
point-refinement learners and techniques exist [49]-[51],
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for the purposes of this paper, we focus on one ideally
suited for the small-sample learning problem: Biased
Discriminant Analysis (BDA) [27].

BDA was developed to address the inherent problem in
traditional feature reweighting techniques that try to clus-
ter all negatively (irrelevant) labeled examples together.
These approaches do not make intuitive sense because
negative examples can come from many different classes
and many different parts of the feature space. (Irrelevant
Google Image Search returns may, as a group, have nothing
to do with one another.)

Accordingly, BDA casts the problem of relevance
feedback from a two-class (positive and negative) to a
one-to-many class (one positive, multiple negative) prob-
lem. The idea is that positive examples are derived from
one class while negative examples may come from multiple
classes.

The goal, as illustrated in Fig. 4, is to find a feature
space transformation that closely clusters the positive
examples while pushing away the negative ones. In its full
form this becomes a query-point-refinement algorithm.
Each round of user feedback results in a new set of labeled
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points, which in turn yields a new BDA transformation of
the feature space, which results in the centroids of both the
positive and negative examples being moved.?

The BDA problem is characterized by the following
objective function:

. WISy W
W' = argmax|——e—r
W W' S;W

3

where Sp is the intraclass scatter matrix for positive
examples and Spy is the interclass scatter matrix between
positive and negative examples. Specifically

Sp = Z(X —pp)(x —pp)" 4)
xeP

Sev =Y (v —mp)(y —mp)" (5)
yeN

where x and y are feature points from the positive and
negative labeled sets P and N, respectively, and pp is the
mean of the points in P.

As in traditional discriminant analysis techniques
such as Linear Discriminant Analysis (LDA), and its
general form Multiple Discriminant Analysis (MDA), the
solution reduces to solving the generalized eigenvalue
problem for the Rayleigh quotient in (3). The columns of
matrix W correspond to the generalized eigenvectors
corresponding to the largest eigenvalues

SpNWi = )\iSWWi-

(6)

Once these are found, the discriminating transforma-
tion matrix is computed as

A = A2 (7)

where A is the diagonal eigenvalue matrix and ® is the
corresponding eigenvector matrix so that W* = ATA. The
distance between two points then becomes

d(xi, %)) = (% — x,-)TW*(x,- - Xj). (8)

This distance corresponds to the canonical euclidean
distance in the new feature space induced by the
transformation A.

*The BDA transformation matrix can also be used as a feature space
reduction technique akin to Principal Component Analysis (PCA).

All unlabeled points in the database can be rank sorted
with respect to this distance measure and returned to the
user as the result of the retrieval process.

In the next section, we look to the use of a ranker-
learning framework to the information retrieval problem.

C. Ranker-Based Algorithms: Bipartite Ranking

Though there has been little interest in this direction
until recently, problems of information retrieval, and
particularly relevance feedback-style scenarios, can be
posed in a ranking framework. Consider the case where the
user has a number of multimedia documents that she has
labeled. This labeling induces a ranking on the set of
labeled instances: positively labeled instances being pre-
ferred over the negatively labeled ones. A ranking function
can then be constructed for all the images in the database so
that the images we have labeled as positive are ranked
above those that have been labeled negative, the hope being
that unlabeled images similar to the labeled ones will be
ranked in the same way. An initial work in this regard was
[52]. These ideas can be illustrated in Fig. 5.

Despite the wealth of research into ranking problems,
active ranking is a new area. That is, to the best of our
knowledge, there has been only one work [53] studying
how to choose the most informative unlabeled points with
respect to the ranking scenario.

In this section, we will outline this approach to looking
at active learning in the context of rankers along with a
review of the bipartite ranking scenario.

Bipartite Ranking: Consider the input to a learning
algorithm is a set of training examples S = {(x;,y;) }, €
(X % y)N. The learning algorithm should predict if the
new instance is relevant or irrelevant by learning from S a
function h : X — Y so that given a new instance x € &,
the algorithm would predict the label as h(x). In the case
where )Y is {0,1}, the learning algorithm is a standard
binary classification algorithm as before. However, in our
case, we do not need a labeling of the instances as relevant
or irrelevant as in traditional multimedia information re-
trieval techniques. Instead, we desire an ordering of the
instances in such a way that relevant instances are on the
top of the list and the irrelevant ones are at the bottom.
Such an ordering problem corresponds to the bipartite
ranking formulation introduced in [54] and analyzed
further in [55] and [56].

The goal of ranking is to obtain an ordered list of
entities where order is determined by preference or
choice. The preference is either hand-crafted or more
desirably learned from the annotated data. Learning a
ranker amounts to finding an axis in the feature space that
data points are mapped to so that the relative position
between points reflects the desired preference. The ab-
solute value of the projected examples does not have any
particular meaning and this feature distinguishes ranking
from ordinal regression. Further, absolute rankings do not
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Fig. 5. Queried concept is an elephant in a blue background. Plot shows ranker output on a real line in which squares indicate relevant
instances and circles indicate irrelevant instances. Cross mark refers to unlabeled instance which falls between current labeled set of
relevant and irrelevant instances leading to confusion about its label, an idea that is exploited later to motivate the interactive strategy for

active ranking.

need to have any particular meaning across disjunctive
data sets. Ranking is solely based on the relative position
of the one dimensional mapping.

Consider again inputing to the learning algorithm a set
of training examples S = {(x;,y))}r; € (X x V)" where
X =R" and Y = {0,1}. Formally, we require that the
algorithm learn from S a real-valued ranking function
f: X — R that assigns scores to instances and thereby
induces an ordering over X: an instance x € & is ranked
higher by f than an instance ¥’ € X if f(x) > f(x') and
lower if f(x) < f(x').

In the bipartite ranking setting [54], the quality of a
ranking function is measured as

> L) ©)

nony . ;
{iyi=0} {jryj=1}

where nj=|{i:y;=1}| and Iy} denotes the indicator
variable whose value is one if its argument is true and
zero otherwise. The bipartite ranking error effectively
counts an error each time a relevant instance (label 1) is
ranked lower by f than an irrelevant instance (label 0),
represented by Lif(y)<f(x)}-

In [54], Freund et al. introduced a boosting style algo-
rithm called RankBoost for solving the ranking problem. It
is similar to traditional boosting, except the boosting is
done over rankers, as opposed to classifiers. For the sake of
brevity, we omit this analysis, but we direct interested
readers to [52]-[54] for more information.
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V. INTERACTION STRATEGY

Often, in order to properly choose unlabeled points to
form the pool-query set, we must take into consideration
the learning strategy we have adopted. That is, we need to
understand how best to form this set under the constraint
of the learner being considered. In this section, we outline
interactive learning strategies for the selection of points
for inclusion in the pool-query set.

A. Classifier-Based Strategies: SVM Version
Space Reduction

In the case of support vector machines, finding the
optimal set of unlabeled points for the user to label is
motivated by version space reduction. We begin this
analysis by first motivating version spaces.

Version Space: The general problem of classifier
selection boils down choosing the “best” classifier among
all classifiers that correctly classify the training data. This
set of classifiers is known as the Version Space [57].

A subtle point here is that we are implicitly making the
overoptimistic assumption that the “true” classifier for a
particular multimedia search concept exists in the set of
consistent classifiers. This is a necessary assumption, how-
ever, because each unique user and search session can
yield a different target concept and as such will result in
different “true” classifiers that may not always reflect the
underlying distributions inherent in the data.

If we restrict the discussion to linear SVM classifiers
and adapting the naming convention in Section IV-A,
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there exists a one-to-one correspondence between classi-
fiers and their normal vectors w. The version space can
therefore be written as

V= {w e F:|wl =1, {n(w'o(x)) > O}L} (10)

In other words, for optimization we restrict our dis-
cussion to those normal vectors with unit norm that cor-
rectly classify the training data. The version space is more
than a statement of the constraint set for SVM optimiza-
tion. It is the foundation upon which we can build a dual
view of the classification problem.

Consider a potential parameter space W where w € W
and ||w|| = 1. Because of the unit norm constraint, this
corresponds to points on the surface of the unit hyper-
sphere in V. Consider now the (slightly rewritten) set of

labeled data constraints {(y®(x;))"w > 0} ,. Since we

are in the parameter space W, each vector y;&(x;) can now
be seen as a normal vector of a hyperplane in W (assuming
|&(x)|| = 1, which for many kernels is the case). This is a
critical step, because now each constraint (y;@(x;)) w > 0
corresponds to a half-space in V. The intersection of all
these half-spaces and the unit hypersphere results in a
delineation of the hypersphere surface which corresponds
exactly to the set of points given in (10).

In this dual space, SVM optimization corresponds to
growing the largest hypersphere which can be inscribed
within the delineated space in W, whose center lies on the
version space, i.e., the remaining surface of the unit
hypersphere. The radius of this inscribed hypersphere
corresponds to the SVM margin, and the labeled sample
hyperplanes it touches at the boundaries of the version
space are the support vectors. (A more detailed treatment
can be found in [41].)

The version space is critical for active learning with
SVMs. Each unlabeled sample point corresponds to a hyper-
plane which passes through the unit hypersphere in the
parameter space. Some unlabeled hyperspheres may also
pass through the current version space. A labeling of these
points would decrease the size of the version space, fine
tuning the classification and thus improving performance.
This can be seen in Fig. 6.

Version Space Reduction: Each unlabeled training
example has the potential to reduce version space size
once it has been labeled, thus reducing the number of
possible classifiers that will properly classify the data.
Doing this is not just intuitively attractive. It has been
proven by Sueng et al.’s query by committee (QBC) work
that halving the size of the version space each round
exponentially reduces the classifier’s generalization error
(relative to random sampling) [40].

Despite this result, it is still computationally infeasible
to calculate the reduction in version space size following
the two possible labelings ({—1,1}) of all unlabeled points
which exist in the version space. Instead, an intelligent
approximation is needed. In their seminal paper [41], Tong
and Koller observed the weight vector w found by SVM
optimization approximates the center of mass of the
version space, the so-called Bayes point. They reasoned if at
each round if the active learner chooses those unlabeled
points whose hyperspheres pass closest to the classification
hyperplane, the version space size would be approximately
halved at each round of active learning.

B. Query-Point Refinement-Based Strategies:
Diversity Analysis

Active learning algorithms relying on query-point re-
finement most closely relate to traditional relevance feed-
back. As more unlabeled data is labeled in the relevance

4V 4

(a

Fig. 6. (a) Version space duality. Surface of hypersphere represents unit weight vectors. Each of the two hyperplanes corresponds to

a labeled training instance. Each hyperplane restricts area on hypersphere in which consistent hypotheses can lie. Here, version space is
surface segment of hypersphere closest to the camera. (b) SVM classifier in version space. Dark embedded sphere is largest radius sphere
whose center lies in version space and whose surface does not intersect with the hyperplanes. Center of embedded sphere corresponds to SVM,
its radius is the margin of the SVM in F, and training points corresponding to the hyperplanes that it touches are the support vectors.

(c) Top down view, dotted lines correspond to unlabeled point hyperplanes. Choosing those points that roughly bisect the version space

(are closest of w,,,) help reduce version space size and improve performance.
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feedback process, the optimal transformation of the fea-
ture space continues to change, thus allowing for the
refinement of the initial query point with respect to the
original feature space. We can lift query-point refinement
out of the degenerate case of active learning (the relevance
feedback paradigm) and choose for the user to label a
distinct pool-query set as in [44] and [58]. In particular,
we advocate the incorporation of diversity information
into the labeling process.

As motivation, consider that whether a traditional or
active learning-based paradigm is used, the user is often
asked to label examples which are quite similar to one
another, often times as a result of examples clustering in
the same area of the feature space. In a small-sample
setting, especially when we want to minimize both user
and system effort, it makes more sense for the user to
label a diverse set of points for each pool query rather than
many similar points which are, by comparison, much less
informative.

From a purely active learning viewpoint, one of the first
works to incorporate diversity sampling was [43] and sub-
sequently [42], where the notion of angular diversity was
investigated for SVMs and as such using diversity is not
unique to query-point refinement techniques. The idea of
using angular diversity was motivated specifically by the
version-space reduction requirements inherent in SVM ac-
tive learning. Additionally, the use of information-theoretic
diversity sampling has recently been used for a variety of
active learners, including ranker-based [53], SVM-based
[59], and query-point refinement-based [58] techniques.

Incorporating Diversity: A general active learning algo-
rithm chooses both a resultant and pool-query set to pre-
sent to the user at each step. We assume that the algorithm
narrows down the set of all unlabeled points at each round
of feedback to a candidate pool-query set C. In a query-point
refinement algorithm, this set can be localized to a neigh-
borhood of unlabeled examples around the query-centroid
by either heuristic or index-based nearest neighborhood
techniques. Once a candidate pool-query set has been
found, the goal then becomes selecting a diverse, or repre-
sentative, set of points from this larger set C, to include in
our pool-query set, P.

Before we elaborate on diversity measures used to ac-
complish this task, we first address a practical issue.
Assume at each round the cardinality of the candidate-pool
set remains the same and is L. Assume also that we wish
the cardinality of the pool-query set to be K where K < L.
There then becomes (1L<) possible representative sets from
which the system must choose the most representative, or
diverse, set of unlabeled instances for the user to label.
Even for moderate sample sizes, however, this number
becomes quickly intractable. Clearly, greedy algorithms
must be used along with our diversity measure. In recent
work, two main diversity measures have been used:
angular and entropic.
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Angular Diversity: Angular diversity was first introduced
in the context of active learning for SVMs in [43] and later
used in a query-point-refinement setting in [44]. Given the
set of unlabeled instances in the candidate set C, {Xi}iLzl
(x; € RY), the angular diversity between any two instances
X; and X; can be defined as

(t ) = [ 0 =)
O = e = el =

(11)

where X, is the mean of the relevant instances. A diverse
set can then be incrementally constructed in a greedy
fashion by minimizing

max cos (£(x,x;)) (12)

lep,

where P, is the current pool-query set (greedy-increment
round n) and X; is an instance from the candidate set C
under consideration for addition to the updated pool-query
set Poy1. In addition to being angularly diverse, we also
require instances to be sufficiently close to the query
centroid x.. Accordingly, the final cost function for each
instance in the candidate set becomes

F(x;) = ad(xi, %) + (1 — a) rllé%"x(cos /(x1,%;))

(13)

where X; € C and « denotes a convex mixing parameter
between diversity and centroid proximity. The instance
among all C with the smallest value for the final cost
function is chosen and added to the new increment of the
pool-query set P,i;. This process is repeated until all
greedy increment rounds are completed and the final pool-
query set is complete.

Information-Theoretic Diversity Sampling: A drawback of
using the convex cost function as above is knowing how to
set the tradeoff parameter o. To combat this, [53] took a
slightly different approach to forming a cost function and
that is through the use of information-theoretic diversity.
Associating high entropy with diversity is intuitively at-
tractive as entropy is essentially a measure of randomness
in a variable.

As pointed out in [60], two samples are enough to
estimate the entropy of a density. The first sample is used
to estimate the density and the second sample is used to
estimate the entropy. That is, the system must choose K
instances which are diverse and representative of the L
instances in candidate set C. In other words, the problem
reduces to identifying K points which are used to
estimate the density in such a way that the entropy
estimated over the remaining L — K points is maximized.
In practice, density estimation is typically done using
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Parzen windowing techniques and empirical entropies
through numerical integration approaches.

We note again that picking the optimal pool-query set
is computationally infeasible and hence we must resort to a
greedy algorithm that begins by selecting the unlabeled
instance that is closest to the query centroid. Subse-
quently, instances are incrementally added to the pool
query set such that their addition maximizes the entropy
computed with respect to the instances in C \ P,, where P,
again represents the current pool query set at round n.

C. Ranker-Based Strategies: Ranking Clarity

As we have seen from previous sections, in the case of
SVM active learning, the candidates for the pool-query set
correspond to the unlabeled points which lie in the version
space. In a query refinement algorithm, one can choose
from a large number of points in the neighborhood of the
query centroid. In this section, we look at how best to
choose a collection of points for labeling in the bipartite
ranking scenario.

In general, the pool-query set is chosen as those
instances that are hardest to handle or most confusing for
the current classifier/ranker. We rely on a quantity called
the clarity index for each unlabeled instance in order to
represent this idea.

Let T = ((x1,y1),- - -, (xn,yn)) be the complete set of
labeled instances obtained from previous active learning
rounds and f be the current ranker. For every unlabeled
instance x relevance loss RL(x!", f, T) is defined as

RL(e1 1) = {5 £(s) < )y =0} ()

and irrelevance loss IL(x¥,f, T) as
1
IL(x!,f, T) ::n—1|{j () > fx), =1} (15)

Relevance loss can be interpreted as the bipartite
ranking loss R(f; Sg) [defined in (9)] where the set Sy is
given by ((x},1),T;) where T; represents the irrelevant
instances present in the set T. Irrelevance loss is given by
the bipartite ranking loss R(f;S;) [defined in (9)] where
the set S; is given by ((x!',0), Tr) where Tx represents the
relevant instances present in the set T.

By definition of the bipartite ranking loss, a good
ranking function is expected to have low relevance loss
for relevant instances and low irrelevance loss for
irrelevant instances. The clarity index of an unlabeled
instance x;' with respect to a ranking function f and
labeled set T is

CI(x!,f, T) == [RL(x!, f, T) — IL(x',f, T)|. (16)
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Fig. 7. Green squares and red circles represent ranking function
evaluated at relevant and irrelevant instances, respectively. Blue cross
indicates ranking function evaluated on an unlabeled instance.

It is clear that the top-most case is the easiest, followed by the
bottom-most case, and the middle one is hardest. Relevance loss = 1;
Irrelevance loss = O; Clarity index = 1 (top). Relevance loss — 0;
Irrelevance loss = 0; Clarity index = O (center). Relevance loss — 0;
Irrelevance loss = 2/3; Clarity index = 2/3 (bottom). Difficulty in
ranking is captured by clarity index values.

Clearly, the clarity index orders the instances in terms of
their difficulty for the ranking function. The higher the
clarity index, the easier it is to classify an instance. A
simple illustration is presented in Fig. 7.

The clarity index is evaluated for every unlabeled
instance and the instances with the L smallest clarity index
values form the candidate set C for the pool query set.

VI. APPLICATIONS

In this section, we profile a selection of results and
applications based on techniques motivated in previous
sections. These are intended to give the reader a sampling
of results balanced between application domain and the
active learning approach and are by no means an autho-
ritative review. For brevity, we have omitted a specific
profiling of results for query-point refinement instead
choosing to profile them as a component technology in the
ranking-based approach in Section VI-C. The interested
reader is referred to [44] and [58] for an in-depth treat-
ment. We begin by profiling results from the classification
algorithm perspective.

A. SVM Active Learning for Image Search

A straightforward application of active learning tech-
niques in multimedia retrieval is the image search domain.
The SVM active learning approach can be adapted in a
straightforward way, mapping low-level visual features to
high-level semantic search concepts.

To illustrate the learning experience from the user’s
perspective, we present a sample query session to dem-
onstrate how a query concept is learned in the active
learning framework in Fig. 8. The user interface shows
two frames. The frame on the left-hand side is the feed-
back frame, on which the user marks images in the pool
query set as relevant or irrelevant. On the right-hand side,
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Fig. 8. Successive rounds of active learning for query “cat.” As can be seen, as images are labeled for the pool-query set from feedback panel,
accuracy of the returns in resultant set, return panel, increases. Screenshots are for Rounds two and six respectively.
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the search engine returns what it considers matching the
concept learned this far from the image database, the
resultant set.

Given an initial labeling of cat images in the feedback
frame, the SVM active learning algorithm refines the clas-
sification boundary between “cat” and “non-cat” images
and then returns the second screen in Fig. 8(b). In this
figure, we can see that the results in the (right-hand side)
result frame have been greatly improved.

The performance of this system was evaluated using a
large collection of images using multiresolution low-level
features such as color and texture. The databases inves-
tigated were four, ten, and 15 category image sets from the
COREL image database [61]. Experimental results com-
paring the SVM active learning approach showed its
viability in comparison with traditional query-point refine-
ment techniques for relevance feedback as well as passive
SVM learning. In addition, it was found that incorporating
diversity in SVM active learning resulted in greater im-
provement for conceptually complex datasets. For more
details, the reader is referred to [41] and [42].

In later adaptations of this paper [42], [62], angular
diversity information as well as perceptual concept detec-

tion, disambiguating keywords through active learning
strategies using images, was implemented to improve the
performance of these learners with respect to the initial
results. This work was also adapted into a commercial
offering known as ImageBeagle [63].

B. SVM Active Learning for Music Search

Music information retrieval is another domain well
suited to the use of active learning techniques. Speci-
fically, music search and playlist generation may be cast as
active learning problems. In both of these cases, active
learning maps low-level audio features such as timbre or
spectral shape [64] to higher-level concepts like genre,
mood, and style.

An example of an active learning interface for music
search can be seen in Fig. 9. The pool-query set takes up
the upper left section of the interface along with check
boxes for rating whether or not each song is appropriate to
the query. Any of the songs can be played by clicking on
its name. The right side of the interface shows the re-
sultant set, and the bottom two panes show the labeled
songs. In Fig. 9, the user is in the process of searching for
the genre “jazz.”

X' AMR_GUI
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A

Fig. 9. Graphical user interface for training phase of music playlist generator. User begins by entering a song in query-field on the
upper-left corner of window. Results are returned in vertical panel on right, and to-be-labeled pool-query instances are
listed below search query-field. Running list of previously labeled songs is maintained in panel frames on the bottom of the window.
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An example of an active learning interface for playlist
generation can be seen in Fig. 10. Specifically, relevance
teedback is particularly well suited for playlist generation
in a music player because a single pool of results is gen-
erated. The user’s normal interaction with the player pro-
vides training labels and feedback. For example, if a user
listens to a song in its entirety, it can be given a positive
label. If an inappropriate song comes on, the user can skip
it, assigning it a negative label. Fig. 10 illustrates a user
building a playlist for the genre “rap.”

The performance of the SVM active learning approach
was compared to traditional SVM learning on the classi-
fication of 1210 pop songs from the USPOP dataset [65].
Songs were classified by genre, mood, and style as deter-
mined by the allmusic online music guide [66]. Each genre,
mood, or style was used separately to train and test classi-
fiers and the results were measured in terms of classifica-
tion accuracy for all remaining songs and the precision of
the top 20 songs. Active learning provided significantly
improved results, halving the number of training examples
needed to achieve a given level of accuracy. For the same
number of labeled examples, active learning resulted in a
10% increase in precision-at-20. For more information, the
reader is referred to [24].

C. Active Ran