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relatively rapid and efficient results from large multimedia data collections.
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ABSTRACT | As the first decade of the 21st century comes to a

close, growth in multimedia delivery infrastructure and public

demand for applications built on this backbone are converging

like never before. The push towards reaching truly interactive

multimedia technologies becomes stronger as our media

consumption paradigms continue to change. In this paper, we

will profile a technology leading the way in this revolution:

active learning. Active learning is a strategy that helps

alleviate challenges inherent in multimedia information re-

trieval through user interaction. We will show how active

learning is ideally suited for the multimedia information

retrieval problem by giving an overview of the paradigm and

component technologies used with special attention given to

the application scenarios in which these technologies are

useful. Finally, we give insight into the future of this growing

field and how it fits into the larger context of multimedia

information retrieval.
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I . INTRODUCTION

Interactive multimedia applications are becoming more

commonplace as both media delivery infrastructure and the

success of new participatory web technologies such as Web

2.0 [1] continue to mature. One consequence of this growth

is the emergence of a sophisticated user base more skilled in

learning and adapting to new technologies and interaction

paradigms than in years past. This user aptitude, but more

specifically the potential to monetize this aptitude through

focused advertising, has not gone unnoticed by media

providers: consider the $580 million purchase of MySpace.

com by News Corporation in 2005 [2].
The recent explosion in multimedia-oriented web

technologies straddles the intersection between improved

media delivery and tech-savvy users. The great popularity of

social networking sites such as MySpace [3] and FaceBook

[4], image sharing websites like Flickr [5] and Zooomr [6],

as well as the gold rush on video sharing sites sparked by

Google’s $1.65 billion acquisition of YouTube [7] has the

potential to usher in a new era in web economics.
Though consumers have quickly embraced multimedia

technologies such as image and video search, commercial

content-based indexing and interactive search of multi-

media documents is still in its nascent stages. With the

exception of a beta-version of face-image search function-

alities by Google [8] and Exalead [9], respectively, most

commercial systems still adapt standard text retrieval

technologies to index and search these databases. Finding
new and useful interaction paradigms for a tech-aware user

base also remains a challenging domain for the research

community. It is clear users want to connect and interact,

but it is unclear how to leverage this interaction for

content organization and search.

Given this commercial playing field, the potential

impact of a great advance in interactive multimedia search

justifies the continued interest in this well-studied research
area. The unique aspect of multimedia information

retrieval is that database documents are indexed holistically

using multiple modalities, by extracting low-level features

from each of these modalities such as color, texture,

motion, audio timbre, etc. For more focused search

applications (such as object detection and retrieval) mid-

level features such as shape and trajectory can be used.
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In order to use low-level information extracted from
visual and audio information properly, designers must

balance the tradeoff between the extra discriminative

ability gained from these modalities with the semantic

ambiguity of matching documents based purely on low-

level features. This phenomenon is known as the semantic
gap [10] and motivates the use of interactive strategies in
designing such search systems.

To further motivate our discussion, consider the
following application domains whose technologies seek

to bridge the divide between basic research and the

potential of the new web economy.

A. Image and Video Search and Retrieval
Commercial image and video search systems have

garnered great attention in past years by making multi-

media content indexed through text meta-data or file-
names searchable. These systems, however, do not index

or compute similarity among images or videos using the

actual content of the documents themselves.

This challenging task is the domain of the well-studied

area of content-based image/video retrieval (CBIR) [11],

[12]. This field seeks to utilize low-level information seen

in the content itself, along with information gained from

user interaction to improve search.
Consider, for example, using Google Images to perform

a keyword search and then being able to interact with the

system by telling it which of the returned images are

relevant to the intended query and having it respond to this

feedback by adjusting the ranked list of returns accord-

ingly. This interactive paradigm is known as relevance
feedback [10], [13] and is an approach intended to close the

gap between semantic notions of search relevance and the
low-level representation of content seen in multimedia

documents [14], [15]. This has been the main crux of

research in interactive multimedia search technologies

over the past 15 years.

Truly interactive content-based systems have the

potential to not only improve online image and video

search but also many other application areas as well.

Progress has been made in the areas of trademark search
for digital rights management [16], objectionable content

detection [17], sports video analysis and search [18],

broadcast news video search [19], as well as other domains

which abstract to the content-based retrieval problem. For

a broader overview, the reader is referred to [11] and [12].

B. Music Organization and Search
Despite its rocky courtship (and with the help of nearly

continuous legal counseling [20]) the tenuous marriage

between the recording industry and the online economy

continues to grow. Despite constant industry objections,

the web is becoming the preferred medium for music

delivery. The massive success of online music, in particular

Apple’s iPod and iTunes [21], serves not only as a cultural

and technological landmark but an economic one as well.

Through the development of playlist sharing, as in
Apple’s iTunes, or interplayer song sharing, as in

Microsoft’s Zune player [22], it is clear the industry sees

music organization and search as a potentially profitable,

opportunity-rich area for interactive technologies. Music

organization and search presents researchers with won-

derfully challenging technical problems.

As music libraries grow, identifying music to listen to

or buy becomes increasingly difficult. Music recommen-
dation services such as Pandora [23] provide a pseudo-

content-based strategy for interactive playlist generation,

but rely on a large collective-labeling project for its aspect

profiles. Over recent years, work from the interactive

content-based perspective has tried to lift this constraint

by envisioning automatic indexing of music files for

recommendation and search [24], [25]. In addition,

analysis and search of information from the audio track
can be used in a general scenario for related or contextual

media delivery [26].

II . GENERAL TECHNICAL PARADIGM

For any of these application domains, it is imperative to

choose a technical paradigm that best fits the general

interactive multimedia search problem. Since we are
seeking to represent, model, and search among large

collections of data interactively, we must draw on principles

from machine learning, data mining, and information

retrieval collectively. To illustrate some subtleties of the

problem, we ask the reader to consider briefly a typical usage

scenario.

Kevin is using an interactive, online image search

system to find images for a class project. In particular,
he is interested in finding images of his favorite golfer,

Tiger Woods. He can either type a text query such as

Btiger woods[ into the system, or provide to it an image

similar to what he is interested in, his query by example
[10]. The system uses information from the example

clip or text query to infer which images in its database

most closely resembles his initial search concept. From

the ranked list of results, Kevin can try to reformulate
the query by interacting with the system. The system

readjusts its understanding of the query concept based

on information gleaned from this interaction and

returns a new set of results. This continues until he

is happy with the results. This paradigm is illustrated

in Fig. 1.

Designers of such systems must take into consideration

the fact that Kevin’s time and effort are at a premium. In
all search and retrieval applications, the user wants to

expend as little effort as possible while being presented

with a large number of relevant results quickly. As a result,

in order to design successful interactive multimedia

retrieval systems, we must balance this constraint across

two interrelated system components: the learning/search
strategy and the interaction strategy.
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A. Learning Strategies
The content-based learning/search algorithms tasked

to solve these problems must operate under three critical

constraints.

The first challenge is tackling the small sample learning
problem [27]. In many practical applications, a user’s

initial query often gives little information to the system.

Algorithms must contend with only a handful of labeled

training examples, often coming from unbalanced data sets
in high-dimensional feature spaces. Consequently, many

potentially discriminating observations go unlabeled.

A second major challenge rises again from the semantic
gap [10]: correlating user-dependent interpretation of mul-

timedia content with low-level audio-visual descriptors.

Finally, the speed at which both training and search

occurs in such systems must be fast. Users do not want to

wait indefinitely for search results, and designers must
take this into account. These considerations motivate the

need for interaction.

B. Interaction Strategy
Though the term implies the learner’s subjugation to

the user, the true nature of interaction for content-based

learners is more self-serving. Interaction will help alleviate

some of the challenges inherent to small-sample learning
through the extra labeling effort of the user. This labor,

however, comes at a cost. The user’s time and effort are at a

premium, so any extra information the learner wants to

gain must be done in the most efficient and useful way. The

interaction must be quick and painless for the user while at

the same time provide the most information to the learner.

As one can see, the selection of these two components

are not mutually exclusive. The learner we choose for
multimedia search motivates our choice for interaction

strategy and vice versa. For the interaction strategy, how-

ever, there is a general paradigm that all approaches fit
into regardless of the learner: active learning. We will

motivate this paradigm in the general context of interac-

tion strategies in the next section.

III . GENERAL INTERACTION
STRATEGIES

Consider again the retrieval scenario. Using the query-by-
example approach, a learning algorithm trains itself on a small

amount of training data. From this result, the system

determines an interaction strategy for the user in order to

further improve its idea about the intended target of the

search. The systemwants to get the best information from the

user in order to better learn the user’s information need. This

is the main goal of the interactive learning strategy.

A. Relevance Feedback
The first interactive learning approach for content-

based search that garnered great attention and success was

relevance feedback [10], [13]–[15]. From the initial re-

turned set of most relevant instances, the user is asked to

give explicit feedback by labeling instances in the returned

set as being either Brelevant[ or Birrelevant.[ This infor-

mation is then used to refine the search strategy typically
by adjusting the notion of similarity between documents in

the database. Each round of feedback is intended to bring

the system closer to finding the user’s implicit target

concept.

Initial work in relevance feedback was based on

heuristic-based feature reweighting schemes [10], [28]

that weighted certain features over others based on the

user’s past preferences. Since then, a plethora of tech-
niques from different fields have been studied. These

include probabilistic frameworks [15], artificial neural

Fig. 1. Interactive multimedia search paradigm. Query-by-example is used to search database of images. System refines its understanding of

search concept from user interaction on this set of results. (Image search results in this figure courtesy of images.google.com.)
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networks [29], and others including those that seek to

combine other modalities such as text into the search

process [30]. In addition, algorithms from the text retrieval

community like query-point-refinement [10] have been
adapted to the problem in conjunction with pattern recog-

nition techniques such as discriminant analysis [27], [31].

As we will see in the next subsection, relevance

feedback and techniques based on this idea fall under the

umbrella of active learning, an approach ideally suited to

the information retrieval problem.

B. Active Learning
Active learning is a paradigm that proposes ways to

incrementally learn from unlabeled data, provided the

system has available to it an oracle, an entity which knows

the correct labeling of all examples [32], [33]. In the case

of multimedia information retrieval, this is the user. Given

an initial weak retrieval learner, the system asks the oracle

to label those points whose correct labeling it deems to be

most informative: the pool query set. The information
provided from the pool-query labeling is then used to

update the learner and this process can be repeated

indefinitely to improve the learning performance of those

points in the returned or resultant set. This paradigm is

illustrated in Fig. 2.

From the perspective of the user, the resultant set is

the list of most relevant multimedia documents (with

respect to the search concept) and the pool-query set is the
set of most informative documents. He must label to

Bhelp[ the system refine the search. Determining what

most informative means and how to choose these points for

labeling is the fundamental challenge in this field and the

main focus of research.

This is active learning in its most general incarnation.

Examples of special cases include when the pool-query-set

is singular (stream-based active learning [34]) or when we

are not restricted to unlabeled instances but can seek to

label arbitrary points in the feature space (membership
query learning [35]), among others. In fact, traditional

relevance feedback can be seen as a degenerate case of
general active learning as the set of top-k returned points

serves both as the returned and pool query sets.

Active learning is the most natural formalism to the

interactive learning problem. Because it is incremental, it

is more similar to boosting or sequential training

algorithms as opposed to the one-shot training of tradi-

tional learning systems. It most closely resembles semi-

supervised learning in that its main goal is to properly
learn from unlabeled data, though its job is a bit easier in

that it has available to it the oracle which can divine the

true labeling of unlabeled instances in the data set, as

opposed to inferring them as in semi-supervised

approaches.1

Active learning techniques are used when we encoun-

ter two types of constraints in an application area. The

first, and historical root of active learning research, arises
from expensive data measurement. When new data is ex-

pensive or slow to obtain, we want to make sure to choose

the most representative, informative training set to model

the system. This can be seen in problems as diverse as

celestial mechanics [36], statistics [37], and economic

theory [38].

The second scenario is when we have a scarcity of

labeled data. This is the case where unlabeled examples
are plentiful to obtain, but data labeling is time consuming

and expensive. This is also referred to as learning with

unbalanced data sets and arises in multimedia information

retrieval applications.

Fig. 2. Active learning paradigm. Learning and interaction strategies collectively make active learning system. System initially starts with

red labeled examples and at each round returns both resultant set (green examples) and to-be-labeled pool-query set (black examples)

which when labeled will be added to training set for next round.

1The distinction between semi-supervised and active learning is
blurred a bit with work in selective sampling for query learning in the
neural network community.
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These two justifications for when to use active learning
correlate closely to the historical evolution of the field.

Active learning, or active-learning like problems, have been

studied in a variety of fields and have a diverse pedigree.

C. Historical Perspective
According to Jaynes [36], the earliest recorded use of

active learning in science is attributed to Laplace who used

them along with Bayesian reasoning techniques to solve
problems in celestial mechanics in the early 19th century.

The active learning-like problem of experimental or

sequential design was explored extensively in the fields of

statistical and economic theory by Lindley [37] and

Federov [38], respectively, in the mid-to-late 20th century.

The field began to mature in the late 20th century as

researchers from the pattern recognition and machine

learning communities began to explore the potential of
these approaches. This was around the same time that

researchers began formalizing the organization of active

learning approaches.

In the neural network community, several works [32],

[35], [39] explored the use of active learning in the con-

text of efficient network training. These techniques fell

under a variety of names including query-learning, active
learning with membership queries, and selective sampling,
though all shared the same underlying approach. In each

round of learning, the system chooses a point in feature

space and requests its label from the oracle (active learn-

ing in which the unlabeled pool of examples consists of all

possible points in the low-level feature space). The tech-

niques rely on choosing the two most extreme learner

hypotheses given the current set of training data and

choosing a point in the feature space where they disagree
most for user labeling.

In the context of stream active learning, the query-by-

committee system of Freund et al. [40] introduced the

concept of a version space for classification problems. A

version space is the set of classifier learners that correctly

partition the feature space with respect to the current set

of labeled data. Active learning takes place by sampling

from this space of consistent hypotheses an even number
of classifiers and classifying points as they stream in by

committee voting, requesting labels only when the voting

results in a tie. The seminal theoretical result of this work

is that sampling from the version space in this way de-

creases its cardinality and that this corresponds to an

exponential reduction of the generalization error for

classification.

At the same time, general pool-based techniques were
making headway with systems that provided firm

probabilistic analysis on how to choose the optimal

unlabeled example(s). In [32], the point(s) with the

minimum expected variance of the learner (with respect

to the data) was chosen for active labeling in closed form.

The work of Roy and McCallum [33] advanced this idea

by noting for many learners, the expected variance could

not be found in closed-form, and advocated a computa-
tionally feasible model to estimate this value using Monte

Carlo techniques.

Another seminal theoretical and practical discovery

was made by [41] in the context of version space reduction

in support vector machine (SVM) classifiers. Exploiting

version space duality for SVMs, it was proven that for

these classifiers, only unlabeled points that fall within the

SVM margin are to be considered for improving classifi-
cation accuracy. They proved the intuitive result that

those unlabeled points closest to the separating hyper-

plane are the optimal choice to most reduce the size of the

version space and thus improve the classification accuracy

at each round.

The first two special cases of active learning serve as

inspiration for, though are not directly applicable to, the

multimedia information retrieval problem. Selective sam-
pling assumes an infinite number of unlabeled points to

chose for labeling, which is not the case for a finite, though

large, database. Stream-based approaches require users to

label unlabeled points at a time, which is impractical from

an interface perspective. For these reasons, active learning

research for multimedia information retrieval lies in the

realm of pool-based approaches.

Applying pool-based active learning techniques to prob-
lems of multimedia information retrieval and mining makes

sense because the amount of high-quality labeled training

data is often dwarfed by the amount of unlabeled data for

these application areas, the so-called small-sample learning
problem. Advances in both textual and visual retrieval

problems [41]–[44], face database mining [45], as well as

robust video annotation for outlier detection [46] have been

made in the recent past using pool-based techniques.
Given these considerations, several interesting questions

arise at this point. What form should the learning algorithm

take? What is our interactive learning strategy? What is our

approach or criterion for best utilizing the user’s effort in

interactive labeling? We will seek to address these questions

and profile active learning research in multimedia retrieval

in the following sections. We first begin by outlining classes

of learning algorithms used for active learning in multi-
media information retrieval applications.

IV. LEARNING ALGORITHM

In general, the learning algorithm chosen for a particular

problem helps to dictate the exact implementation of the

interactive learning strategy. More clearly, each unique

learner will change our definition of most informative
point(s) and how we go about choosing it.

Because of our application considerations (small-

sample learning, semantic gap, and speed) we have to re-

strict our discussion of learning algorithms to those that

are robust to these constraints. We next profile three im-

portant classes of learners from the spectrum of techniques

used in active learning systems.

Huang et al. : Active Learning for Interactive Multimedia Retrieval
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A. Classification-Based Algorithms:
Support Vector Machines

Often multimedia information retrieval applications

can be formulated as classification problems. Whether we

are modeling a scenario as a binary classification problem

(relevant versus irrelevant images [41] or anomalous

versus normal video events [47]) or whether we are look-

ing at multiclass discrimination problems such as the

organization and search of news group messages [32], we
can rely on classifier-based active learning techniques to

help solve our problems. Though many classification algo-

rithms have been explored for active learning, we will

focus on an algorithm that has had great applicability to

multimedia information retrieval applications in recent

years: SVMs.

SVMs: Consider a binary classification problem given a
set of labeled training data fðxi; yiÞgNi¼1 where samples

xi 2 R
d and binary labels are given as y 2 f�1; 1g. In the

case of multimedia information retrieval, we can consider

R
d the d-dimensional space of low-level features so that

each image or video has a unique feature-vector descriptor.

The labels yi are markers indicating whether examples are

either relevant or irrelevant. Our goal is to learn a linear

function that will separate relevant examples from irre-
levant ones. In doing so, we can separate the documents

that are relevant to the user’s search from ones that are not.

Consider also that there is a mapping between the
original input space X to a higher (possibly infinite)

dimensional feature space F given by � : X ! F . (This

is appealing because many problems which are not

linearly separable in X become linearly separable when

mapped to F .)

In their most general form, SVMs are classifiers of

the type

fðxÞ ¼
XN
i¼1

�iKðxi;xÞ (1)

where ŷ ¼ 1 if fðxÞ � 0 and ŷ ¼ �1 if fðxÞ G 0,

f�igNi¼1 2 R
N, and Kðxi;yjÞ is a Mercer kernel satisfying

the property Kðxi;xjÞ ¼ h�ðxiÞ; �ðxjÞi. The use of such

kernels allows for the implicit projection of the input

space X to a higher space F . This is better seen if we

rewrite (1) as

fðxÞ ¼ wT�ðxÞ (2)

where w ¼
PN

i¼1 �i�ðxiÞ and w 2 F . In this form, it is

easy to see that SVMs most simply are hyperplanes in the

Fig. 3. SVM classification problem. Goal is to find classifier with largest margin between closest positive and negatively labeled

examples: support vectors. Normal vector for optimal separating hyperplane wopt is found using a quadratic optimization procedure.
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feature space F . The f�igNi¼1 needed to compute the
normal vector w of this hyperplane are obtained by

maximizing the minimum distance of all labeled points

from the hyperplane. The final value of this distance is

referred to as the margin and those labeled points that lie

on the margin are referred to as the support vectors. This
is illustrated in Fig. 3. The margin can be normalized so

that the absolute value of fðxÞ for support vectors is

always one. This optimal hyperplane is found via a
quadratic optimization procedure. For a more detailed

treatment, the reader is referred to [48].

B. Query-Point Refinement Algorithms: Biased
Discriminant Analysis

Query-point refinement is a pseudo-ranking learning

strategy that is closely coupled with interactive learning.

That is, its greatest usefulness comes through interaction
with a user. Historically, these techniques have been

closely associated with the special case of active learning:

relevance feedback. On its own, it is closest to a weighted

k-nearest neighbor ranker. Though many other query-

point-refinement learners and techniques exist [49]–[51],

for the purposes of this paper, we focus on one ideally
suited for the small-sample learning problem: Biased

Discriminant Analysis (BDA) [27].

BDA was developed to address the inherent problem in

traditional feature reweighting techniques that try to clus-

ter all negatively (irrelevant) labeled examples together.

These approaches do not make intuitive sense because

negative examples can come from many different classes

and many different parts of the feature space. (Irrelevant
Google Image Search returns may, as a group, have nothing

to do with one another.)

Accordingly, BDA casts the problem of relevance

feedback from a two-class (positive and negative) to a

one-to-many class (one positive, multiple negative) prob-

lem. The idea is that positive examples are derived from

one class while negative examples may come from multiple

classes.
The goal, as illustrated in Fig. 4, is to find a feature

space transformation that closely clusters the positive

examples while pushing away the negative ones. In its full

form this becomes a query-point-refinement algorithm.

Each round of user feedback results in a new set of labeled

Fig. 4. BDA problem. Green circles represent positive examples, red circles represent negative examples. BDA seeks to

transform feature space so that positive examples cluster close together and each negative instance is pushed away as far as

possible from positive cluster.

Huang et al. : Active Learning for Interactive Multimedia Retrieval

654 Proceedings of the IEEE | Vol. 96, No. 4, April 2008



points, which in turn yields a new BDA transformation of
the feature space, which results in the centroids of both the

positive and negative examples being moved.2

The BDA problem is characterized by the following

objective function:

W� ¼ argmax
W

WTSPNW

WTSPW

����
���� (3)

where SP is the intraclass scatter matrix for positive

examples and SPN is the interclass scatter matrix between

positive and negative examples. Specifically

SP ¼
X
x2P

ðx� MPÞðx� MPÞ
T

(4)

SPN ¼
X
y2N

ðy� MPÞðy� MPÞ
T (5)

where x and y are feature points from the positive and

negative labeled sets P and N, respectively, and MP is the

mean of the points in P.
As in traditional discriminant analysis techniques

such as Linear Discriminant Analysis (LDA), and its
general form Multiple Discriminant Analysis (MDA), the

solution reduces to solving the generalized eigenvalue

problem for the Rayleigh quotient in (3). The columns of

matrix W correspond to the generalized eigenvectors

corresponding to the largest eigenvalues

SPNwi ¼ �iSWwi: (6)

Once these are found, the discriminating transforma-

tion matrix is computed as

A ¼ %�1=2 (7)

where m is the diagonal eigenvalue matrix and % is the

corresponding eigenvector matrix so that W� ¼ ATA. The
distance between two points then becomes

dðxi;xjÞ ¼ ðxi � xjÞTW�ðxi � xjÞ: (8)

This distance corresponds to the canonical euclidean

distance in the new feature space induced by the
transformation A.

All unlabeled points in the database can be rank sorted
with respect to this distance measure and returned to the

user as the result of the retrieval process.

In the next section, we look to the use of a ranker-

learning framework to the information retrieval problem.

C. Ranker-Based Algorithms: Bipartite Ranking
Though there has been little interest in this direction

until recently, problems of information retrieval, and
particularly relevance feedback-style scenarios, can be

posed in a ranking framework. Consider the case where the

user has a number of multimedia documents that she has

labeled. This labeling induces a ranking on the set of

labeled instances: positively labeled instances being pre-

ferred over the negatively labeled ones. A ranking function

can then be constructed for all the images in the database so

that the images we have labeled as positive are ranked
above those that have been labeled negative, the hope being

that unlabeled images similar to the labeled ones will be

ranked in the same way. An initial work in this regard was

[52]. These ideas can be illustrated in Fig. 5.

Despite the wealth of research into ranking problems,

active ranking is a new area. That is, to the best of our

knowledge, there has been only one work [53] studying

how to choose the most informative unlabeled points with
respect to the ranking scenario.

In this section, we will outline this approach to looking

at active learning in the context of rankers along with a

review of the bipartite ranking scenario.

Bipartite Ranking: Consider the input to a learning

algorithm is a set of training examples S ¼ fðxi; yiÞgNi¼1 2
ðX � YÞN. The learning algorithm should predict if the
new instance is relevant or irrelevant by learning from S a
function h : X ! Y so that given a new instance x 2 X ,

the algorithm would predict the label as hðxÞ. In the case

where Y is {0,1}, the learning algorithm is a standard

binary classification algorithm as before. However, in our

case, we do not need a labeling of the instances as relevant

or irrelevant as in traditional multimedia information re-

trieval techniques. Instead, we desire an ordering of the
instances in such a way that relevant instances are on the

top of the list and the irrelevant ones are at the bottom.

Such an ordering problem corresponds to the bipartite

ranking formulation introduced in [54] and analyzed

further in [55] and [56].

The goal of ranking is to obtain an ordered list of

entities where order is determined by preference or

choice. The preference is either hand-crafted or more
desirably learned from the annotated data. Learning a

ranker amounts to finding an axis in the feature space that

data points are mapped to so that the relative position

between points reflects the desired preference. The ab-

solute value of the projected examples does not have any

particular meaning and this feature distinguishes ranking

from ordinal regression. Further, absolute rankings do not

2The BDA transformation matrix can also be used as a feature space
reduction technique akin to Principal Component Analysis (PCA).
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need to have any particular meaning across disjunctive

data sets. Ranking is solely based on the relative position

of the one dimensional mapping.
Consider again inputing to the learning algorithm a set

of training examples S ¼ fðxi; yiÞgNi¼1 2 ðX � YÞN where
X ¼ R

d and Y ¼ f0; 1g. Formally, we require that the

algorithm learn from S a real-valued ranking function

f : X ! R that assigns scores to instances and thereby

induces an ordering over X : an instance x 2 X is ranked

higher by f than an instance x0 2 X if fðxÞ > fðx0Þ and

lower if fðxÞ G fðx0Þ.
In the bipartite ranking setting [54], the quality of a

ranking function is measured as

R̂ðf ; SÞ ¼ 1

n0n1

X
fi:yi¼0g

X
fj:yj¼1g

I fðxjÞ�fðxiÞf g (9)

where nl¼jfi :yi¼ lgj and If�g denotes the indicator

variable whose value is one if its argument is true and
zero otherwise. The bipartite ranking error effectively

counts an error each time a relevant instance (label 1) is

ranked lower by f than an irrelevant instance (label 0),

represented by IffðxjÞ�fðxiÞg.
In [54], Freund et al. introduced a boosting style algo-

rithm called RankBoost for solving the ranking problem. It

is similar to traditional boosting, except the boosting is

done over rankers, as opposed to classifiers. For the sake of
brevity, we omit this analysis, but we direct interested

readers to [52]–[54] for more information.

V. INTERACTION STRATEGY

Often, in order to properly choose unlabeled points to

form the pool-query set, we must take into consideration

the learning strategy we have adopted. That is, we need to

understand how best to form this set under the constraint
of the learner being considered. In this section, we outline

interactive learning strategies for the selection of points

for inclusion in the pool-query set.

A. Classifier-Based Strategies: SVM Version
Space Reduction

In the case of support vector machines, finding the

optimal set of unlabeled points for the user to label is
motivated by version space reduction. We begin this

analysis by first motivating version spaces.

Version Space: The general problem of classifier

selection boils down choosing the Bbest[ classifier among

all classifiers that correctly classify the training data. This

set of classifiers is known as the Version Space [57].
A subtle point here is that we are implicitly making the

overoptimistic assumption that the Btrue[ classifier for a
particular multimedia search concept exists in the set of

consistent classifiers. This is a necessary assumption, how-

ever, because each unique user and search session can

yield a different target concept and as such will result in

different Btrue[ classifiers that may not always reflect the

underlying distributions inherent in the data.

If we restrict the discussion to linear SVM classifiers

and adapting the naming convention in Section IV-A,

Fig. 5. Queried concept is an elephant in a blue background. Plot shows ranker output on a real line in which squares indicate relevant

instances and circles indicate irrelevant instances. Cross mark refers to unlabeled instance which falls between current labeled set of

relevant and irrelevant instances leading to confusion about its label, an idea that is exploited later to motivate the interactive strategy for

active ranking.
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there exists a one-to-one correspondence between classi-
fiers and their normal vectors w. The version space can

therefore be written as

V ¼ w 2 F : kwk ¼ 1; yi w
T�ðxiÞ

� �
� 0

� �N

i¼1

n o
: (10)

In other words, for optimization we restrict our dis-

cussion to those normal vectors with unit norm that cor-

rectly classify the training data. The version space is more

than a statement of the constraint set for SVM optimiza-

tion. It is the foundation upon which we can build a dual
view of the classification problem.

Consider a potential parameter spaceW wherew 2 W
and kwk ¼ 1. Because of the unit norm constraint, this

corresponds to points on the surface of the unit hyper-

sphere in W. Consider now the (slightly rewritten) set of

labeled data constraints fðyi�ðxiÞÞTw � 0gNi¼1. Since we

are in the parameter spaceW, each vector yi�ðxiÞ can now
be seen as a normal vector of a hyperplane inW (assuming

k�ðxÞk ¼ 1, which for many kernels is the case). This is a

critical step, because now each constraint ðyi�ðxiÞÞTw � 0

corresponds to a half-space in W. The intersection of all

these half-spaces and the unit hypersphere results in a

delineation of the hypersphere surface which corresponds
exactly to the set of points given in (10).

In this dual space, SVM optimization corresponds to

growing the largest hypersphere which can be inscribed

within the delineated space inW, whose center lies on the

version space, i.e., the remaining surface of the unit

hypersphere. The radius of this inscribed hypersphere

corresponds to the SVM margin, and the labeled sample

hyperplanes it touches at the boundaries of the version
space are the support vectors. (A more detailed treatment

can be found in [41].)

The version space is critical for active learning with
SVMs. Each unlabeled sample point corresponds to a hyper-

plane which passes through the unit hypersphere in the

parameter space. Some unlabeled hyperspheres may also

pass through the current version space. A labeling of these

points would decrease the size of the version space, fine

tuning the classification and thus improving performance.

This can be seen in Fig. 6.

Version Space Reduction: Each unlabeled training

example has the potential to reduce version space size

once it has been labeled, thus reducing the number of

possible classifiers that will properly classify the data.

Doing this is not just intuitively attractive. It has been

proven by Sueng et al.’s query by committee (QBC) work

that halving the size of the version space each round

exponentially reduces the classifier’s generalization error
(relative to random sampling) [40].

Despite this result, it is still computationally infeasible

to calculate the reduction in version space size following

the two possible labelings ({�1,1}) of all unlabeled points

which exist in the version space. Instead, an intelligent

approximation is needed. In their seminal paper [41], Tong

and Koller observed the weight vector w found by SVM

optimization approximates the center of mass of the
version space, the so-called Bayes point. They reasoned if at
each round if the active learner chooses those unlabeled

points whose hyperspheres pass closest to the classification

hyperplane, the version space size would be approximately

halved at each round of active learning.

B. Query-Point Refinement-Based Strategies:
Diversity Analysis

Active learning algorithms relying on query-point re-

finement most closely relate to traditional relevance feed-

back. As more unlabeled data is labeled in the relevance

Fig. 6. (a) Version space duality. Surface of hypersphere represents unit weight vectors. Each of the two hyperplanes corresponds to

a labeled training instance. Each hyperplane restricts area on hypersphere in which consistent hypotheses can lie. Here, version space is

surface segment of hypersphere closest to the camera. (b) SVM classifier in version space. Dark embedded sphere is largest radius sphere

whose center lies in version space and whose surface does not intersect with the hyperplanes. Center of embedded sphere corresponds to SVM,

its radius is the margin of the SVM in F , and training points corresponding to the hyperplanes that it touches are the support vectors.

(c) Top down view, dotted lines correspond to unlabeled point hyperplanes. Choosing those points that roughly bisect the version space

(are closest of wopt) help reduce version space size and improve performance.

Huang et al.: Active Learning for Interactive Multimedia Retrieval

Vol. 96, No. 4, April 2008 | Proceedings of the IEEE 657



feedback process, the optimal transformation of the fea-
ture space continues to change, thus allowing for the

refinement of the initial query point with respect to the

original feature space. We can lift query-point refinement

out of the degenerate case of active learning (the relevance

feedback paradigm) and choose for the user to label a

distinct pool-query set as in [44] and [58]. In particular,

we advocate the incorporation of diversity information

into the labeling process.
As motivation, consider that whether a traditional or

active learning-based paradigm is used, the user is often

asked to label examples which are quite similar to one

another, often times as a result of examples clustering in

the same area of the feature space. In a small-sample

setting, especially when we want to minimize both user

and system effort, it makes more sense for the user to

label a diverse set of points for each pool query rather than
many similar points which are, by comparison, much less

informative.

From a purely active learning viewpoint, one of the first

works to incorporate diversity sampling was [43] and sub-

sequently [42], where the notion of angular diversity was

investigated for SVMs and as such using diversity is not

unique to query-point refinement techniques. The idea of

using angular diversity was motivated specifically by the
version-space reduction requirements inherent in SVM ac-

tive learning. Additionally, the use of information-theoretic

diversity sampling has recently been used for a variety of

active learners, including ranker-based [53], SVM-based

[59], and query-point refinement-based [58] techniques.

Incorporating Diversity: A general active learning algo-

rithm chooses both a resultant and pool-query set to pre-
sent to the user at each step. We assume that the algorithm

narrows down the set of all unlabeled points at each round

of feedback to a candidate pool-query set C. In a query-point

refinement algorithm, this set can be localized to a neigh-

borhood of unlabeled examples around the query-centroid

by either heuristic or index-based nearest neighborhood

techniques. Once a candidate pool-query set has been

found, the goal then becomes selecting a diverse, or repre-
sentative, set of points from this larger set C, to include in
our pool-query set, P.

Before we elaborate on diversity measures used to ac-

complish this task, we first address a practical issue.

Assume at each round the cardinality of the candidate-pool

set remains the same and is L. Assume also that we wish

the cardinality of the pool-query set to be K where K � L.
There then becomes L

K

� �
possible representative sets from

which the system must choose the most representative, or

diverse, set of unlabeled instances for the user to label.

Even for moderate sample sizes, however, this number

becomes quickly intractable. Clearly, greedy algorithms

must be used along with our diversity measure. In recent

work, two main diversity measures have been used:

angular and entropic.

Angular Diversity: Angular diversity was first introduced
in the context of active learning for SVMs in [43] and later

used in a query-point-refinement setting in [44]. Given the

set of unlabeled instances in the candidate set C, fxigLi¼1

ðxi 2 R
dÞ, the angular diversity between any two instances

xi and xj can be defined as

cos ffðxi;xjÞ
� �

¼
ðxi � xcÞTðxj � xcÞ
kxi � xckkxj � xck

�����

����� (11)

where xc is the mean of the relevant instances. A diverse
set can then be incrementally constructed in a greedy

fashion by minimizing

max
l2Pn

cos ffðxl;xjÞ
� �

(12)

where Pn is the current pool-query set (greedy-increment

round n) and xj is an instance from the candidate set C
under consideration for addition to the updated pool-query

set Pnþ1. In addition to being angularly diverse, we also

require instances to be sufficiently close to the query
centroid xc. Accordingly, the final cost function for each

instance in the candidate set becomes

FðxiÞ ¼ �dðxi;xcÞ þ ð1� �Þmax
l2Pn

cos ffðxl;xiÞð Þ (13)

where xi 2 C and � denotes a convex mixing parameter
between diversity and centroid proximity. The instance

among all C with the smallest value for the final cost

function is chosen and added to the new increment of the

pool-query set Pnþ1. This process is repeated until all

greedy increment rounds are completed and the final pool-

query set is complete.

Information-Theoretic Diversity Sampling: A drawback of
using the convex cost function as above is knowing how to

set the tradeoff parameter �. To combat this, [53] took a

slightly different approach to forming a cost function and

that is through the use of information-theoretic diversity.

Associating high entropy with diversity is intuitively at-

tractive as entropy is essentially a measure of randomness

in a variable.

As pointed out in [60], two samples are enough to
estimate the entropy of a density. The first sample is used

to estimate the density and the second sample is used to

estimate the entropy. That is, the system must choose K
instances which are diverse and representative of the L
instances in candidate set C. In other words, the problem

reduces to identifying K points which are used to

estimate the density in such a way that the entropy

estimated over the remaining L� K points is maximized.
In practice, density estimation is typically done using
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Parzen windowing techniques and empirical entropies
through numerical integration approaches.

We note again that picking the optimal pool-query set

is computationally infeasible and hence we must resort to a

greedy algorithm that begins by selecting the unlabeled

instance that is closest to the query centroid. Subse-

quently, instances are incrementally added to the pool

query set such that their addition maximizes the entropy

computed with respect to the instances in C n Pn, where Pn
again represents the current pool query set at round n.

C. Ranker-Based Strategies: Ranking Clarity
As we have seen from previous sections, in the case of

SVM active learning, the candidates for the pool-query set

correspond to the unlabeled points which lie in the version

space. In a query refinement algorithm, one can choose

from a large number of points in the neighborhood of the
query centroid. In this section, we look at how best to

choose a collection of points for labeling in the bipartite

ranking scenario.

In general, the pool-query set is chosen as those

instances that are hardest to handle or most confusing for

the current classifier/ranker. We rely on a quantity called

the clarity index for each unlabeled instance in order to

represent this idea.
Let T ¼ ððx1; y1Þ; . . . ; ðxN; yNÞÞ be the complete set of

labeled instances obtained from previous active learning

rounds and f be the current ranker. For every unlabeled

instance xui relevance loss RLðxui ; f ; TÞ is defined as

RL xui ; f ; T
� �

:¼ 1

n0
j : f xui

� �
� fðxjÞ; yj ¼ 0

� ��� �� (14)

and irrelevance loss ILðxui ; f ; TÞ as

IL xui ; f ; T
� �

:¼ 1

n1
j : f xui

� �
> fðxjÞ; yj ¼ 1

� ��� ��: (15)

Relevance loss can be interpreted as the bipartite

ranking loss R̂ðf ; SRÞ [defined in (9)] where the set SR is

given by ððxui ; 1Þ; TIÞ where TI represents the irrelevant

instances present in the set T. Irrelevance loss is given by

the bipartite ranking loss R̂ðf ; SIÞ [defined in (9)] where

the set SI is given by ððxui ; 0Þ; TRÞ where TR represents the

relevant instances present in the set T.
By definition of the bipartite ranking loss, a good

ranking function is expected to have low relevance loss

for relevant instances and low irrelevance loss for

irrelevant instances. The clarity index of an unlabeled

instance xui with respect to a ranking function f and

labeled set T is

CI xui ; f ; T
� �

:¼ RL xui ; f ; T
� �

� IL xui ; f ; T
� ��� ��: (16)

Clearly, the clarity index orders the instances in terms of

their difficulty for the ranking function. The higher the

clarity index, the easier it is to classify an instance. A

simple illustration is presented in Fig. 7.

The clarity index is evaluated for every unlabeled

instance and the instances with the L smallest clarity index

values form the candidate set C for the pool query set.

VI. APPLICATIONS

In this section, we profile a selection of results and

applications based on techniques motivated in previous

sections. These are intended to give the reader a sampling

of results balanced between application domain and the

active learning approach and are by no means an autho-
ritative review. For brevity, we have omitted a specific

profiling of results for query-point refinement instead

choosing to profile them as a component technology in the

ranking-based approach in Section VI-C. The interested

reader is referred to [44] and [58] for an in-depth treat-

ment. We begin by profiling results from the classification

algorithm perspective.

A. SVM Active Learning for Image Search
A straightforward application of active learning tech-

niques in multimedia retrieval is the image search domain.

The SVM active learning approach can be adapted in a

straightforward way, mapping low-level visual features to

high-level semantic search concepts.

To illustrate the learning experience from the user’s

perspective, we present a sample query session to dem-
onstrate how a query concept is learned in the active

learning framework in Fig. 8. The user interface shows

two frames. The frame on the left-hand side is the feed-

back frame, on which the user marks images in the pool

query set as relevant or irrelevant. On the right-hand side,

Fig. 7. Green squares and red circles represent ranking function

evaluatedat relevant and irrelevant instances, respectively. Blue cross

indicates ranking function evaluated on an unlabeled instance.

It is clear that the top-most case is the easiest, followed by the

bottom-most case, and the middle one is hardest. Relevance loss ¼ 1;

Irrelevance loss ¼ 0; Clarity index ¼ 1 (top). Relevance loss ¼ 0;

Irrelevance loss ¼ 0; Clarity index ¼ 0 (center). Relevance loss ¼ 0;

Irrelevance loss ¼ 2=3; Clarity index ¼ 2=3 (bottom). Difficulty in

ranking is captured by clarity index values.
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Fig. 8. Successive rounds of active learning for query ‘‘cat.’’ As can be seen, as images are labeled for the pool-query set from feedback panel,

accuracy of the returns in resultant set, return panel, increases. Screenshots are for Rounds two and six respectively.
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the search engine returns what it considers matching the
concept learned this far from the image database, the

resultant set.

Given an initial labeling of cat images in the feedback

frame, the SVM active learning algorithm refines the clas-

sification boundary between Bcat[ and Bnon-cat[ images

and then returns the second screen in Fig. 8(b). In this

figure, we can see that the results in the (right-hand side)

result frame have been greatly improved.
The performance of this system was evaluated using a

large collection of images using multiresolution low-level

features such as color and texture. The databases inves-

tigated were four, ten, and 15 category image sets from the

COREL image database [61]. Experimental results com-

paring the SVM active learning approach showed its

viability in comparison with traditional query-point refine-

ment techniques for relevance feedback as well as passive
SVM learning. In addition, it was found that incorporating

diversity in SVM active learning resulted in greater im-

provement for conceptually complex datasets. For more

details, the reader is referred to [41] and [42].

In later adaptations of this paper [42], [62], angular

diversity information as well as perceptual concept detec-

tion, disambiguating keywords through active learning
strategies using images, was implemented to improve the

performance of these learners with respect to the initial

results. This work was also adapted into a commercial

offering known as ImageBeagle [63].

B. SVM Active Learning for Music Search
Music information retrieval is another domain well

suited to the use of active learning techniques. Speci-
fically, music search and playlist generation may be cast as

active learning problems. In both of these cases, active

learning maps low-level audio features such as timbre or

spectral shape [64] to higher-level concepts like genre,

mood, and style.

An example of an active learning interface for music

search can be seen in Fig. 9. The pool-query set takes up

the upper left section of the interface along with check
boxes for rating whether or not each song is appropriate to

the query. Any of the songs can be played by clicking on

its name. The right side of the interface shows the re-

sultant set, and the bottom two panes show the labeled

songs. In Fig. 9, the user is in the process of searching for

the genre Bjazz.[

Fig. 9. Graphical user interface for training phase of music playlist generator. User begins by entering a song in query-field on the

upper-left corner of window. Results are returned in vertical panel on right, and to-be-labeled pool-query instances are

listed below search query-field. Running list of previously labeled songs is maintained in panel frames on the bottom of the window.
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An example of an active learning interface for playlist
generation can be seen in Fig. 10. Specifically, relevance

feedback is particularly well suited for playlist generation

in a music player because a single pool of results is gen-

erated. The user’s normal interaction with the player pro-

vides training labels and feedback. For example, if a user

listens to a song in its entirety, it can be given a positive

label. If an inappropriate song comes on, the user can skip

it, assigning it a negative label. Fig. 10 illustrates a user
building a playlist for the genre Brap.[

The performance of the SVM active learning approach

was compared to traditional SVM learning on the classi-

fication of 1210 pop songs from the USPOP dataset [65].

Songs were classified by genre, mood, and style as deter-

mined by the allmusic online music guide [66]. Each genre,

mood, or style was used separately to train and test classi-

fiers and the results were measured in terms of classifica-
tion accuracy for all remaining songs and the precision of

the top 20 songs. Active learning provided significantly

improved results, halving the number of training examples

needed to achieve a given level of accuracy. For the same

number of labeled examples, active learning resulted in a

10% increase in precision-at-20. For more information, the

reader is referred to [24].

C. Active Ranking for Image Search
An experimental setup similar to the application of SVM

active learning to the image search problem was explored for

active ranking [53]. To explore the practical performance of

the diverse active ranking system, extensive experimentation

was performed using a 5000 image subset of the COREL

image database. To appropriately model the small sample

learning scenario, only 1400 images were used for target sets.

The first, second, and third moments in each channel
of the HSV color space, first and second wavelet sub-band

moments at three levels of decomposition, and a Water-

filling algorithm were used for color, texture, and shape

features, respectively. In total, a 47-dimensional feature

vector was extracted from each image.

The system derived its initial ranking function via

RankBoost with BDA as the weak ranker. It returned to the

user both the K similar images and the pool-query set of
images to label for active ranking in each of the following

incarnations:

Random Active Ranking Bipartite Ranking: with one

set of labeled data, and no further user labeling;

Plain Active Ranking: active ranking without using

diversity information (asking the user to label those

instances with lowest Clarity Index);

Fig. 10. Screenshot of SVM active learning playlist generator. Song with a blue background is currently playing, and songs play down the list,

with the user able to skip any song she does not want to hear. Green text indicates suggestions from playlist generator that have been

accepted, red text indicates suggestions that have been rejected, and grey text indicates suggestions that have not yet been rated.

This particular playlist was created by a user in the mood for music in the ‘‘rap’’ genre.
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Angularly Diverse Active Ranking: diverse active
ranking using an angular diversity algorithm similar to that

in Section V-B to choose a diverse set of instance from the

lowest Clarity Index indexes for labeling by the user;

Information-Theoretic Diverse Active Ranking:

diverse active ranking using an information-theoretic di-

versity algorithm similar to that in Section V-B to choose a

diverse set of instance from the lowest Clarity Index

indexes for labeling by the user.
Comparative testing among these approaches can be

seen in Fig. 11. Each of the these bar plots [Fig. 11(a)–(c)]

shows the relative percentage increase in precision for

using information-theoretic diverse active ranking versus

random active ranking, plain active ranking, and angularly

diverse active ranking, respectively. The percentage

increase is plotted with respect to increasing number of

returned images, and the cluster of bars for each returned
image size corresponds to performance during six rounds

of feedback. (The absolute precision values for these

experiments were between 0.70–0.85.)

It was observed that information-theoretic diverse

active ranking clearly outperformed both random active

ranking and plain active ranking, by roughly 80%–100%

and 8%–10%, respectively. Additionally, using the

parameter-free information-theoretic diversity measure
is on-par or better than the angular-diversity technique.

More interestingly, these results point toward an

empirical property of diverse active ranking algorithms,

namely their tendency towards improvement at lower

rounds and lower numbers of returned images. This has

practical significance in an information retrieval scenario.

Users tend not to spend much time giving feedback or

exploring many pages of returns to find what they are
looking for. The low-end performance bias of this diverse

active ranking system helps users find what they are

looking for quickly and without scanning multiple pages of

results. For more information, the interested reader is

referred to [53].

VII. FUTURE OF ACTIVE LEARNING IN
MULTIMEDIA INFORMATION
RETRIEVAL

The future of interactive multimedia information retrieval
systems should ideally exist online. In the past several
years, we have seen a convergence-in-scale of internet
infrastructure and content as well as human ability and
effort. As a result, a vast amount of both data and human
potential is waiting for the right problem and interactive
algorithm to be applied to it. This, in turn, presents a
wonderful opportunity for a re-imagining of the field of
active learning for multimedia search and retrieval.

One will observe a steady trickle of works in this regard
emerging from the research community. Recent work has
sought to develop stand-alone interactive multimedia docu-
ment search technologies [18], [63], organize a large image

Fig. 11. Comparison of percentage increase in precision obtained

when using the information-theoretic diversity with active ranking

(a) as compared to random active ranking, (b) plain active ranking,

and (c) angularly diverse active ranking.
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collection of news images via person-clustering [67], collab-
oratively annotate large collections of images [68], [69], as
well as look for automatic techniques to find iconic views of
image queries for the online image sharing site Flickr [70].

The potential of such technologies lies not only in

creating value for the user (as in the previous examples) but

for the content-provider as well. Interactive multimedia

information retrieval technologies can be used, for exam-

ple, identifying duplication in text-indexed image and video

databases thus providing more efficient indexing, as well

as advertisement placement for multimedia documents.

There are a variety of reasons to focus on the eventual

development of interactive technologies for multimedia in

this space. The primary reason is that these real-world

problems, though difficult and high-risk, have a high-

reward potential. There is room for technologies that add

great value to both the consumer and provider experience,

and as such a successful application in this vein can stim-

ulate funding for continued advances. Secondly, and more

interesting from a research perspective, the vast amount of

web data carries the potential to help with both

generalization and discrimination problems. There is little

work that looks at indexing and search with multimedia at

such large scales.

There are many open questions in this regard: How do

we adopt our interactive learning algorithms to work with

such large scales? In addition, how will we resolve, from a

fundamental research perspective, the large performance

gain for even the simplest algorithms for all this data?

Finally, when considering interactive technologies, how do
we best utilize the effort of large numbers of users through

either active (or passive) feedback? In addition to the tra-

ditional user-in-the-loop scenario, can we envision new

paradigms that incorporate user-interaction holistically
into the system? For example, can we use the implicit

feedback within a social-networking structure to gain in-

sights about the multimedia content it refers to?

The progress made within the last decade in interactive
multimedia information retrieval given somewhat con-

strained application scenarios is very heartening. At this
current juncture (lots of data and ready users), the field is

standing at the base of a mountain of possibility. The

opportunity exists to realize previously impossible-to-

implement visions of automatic search, organization, and

interaction with multimedia information. The challenges

lie not only in determining what these new ideas will be,

but also fostering interdisciplinary collaboration between

industry, computer vision, data mining, user-interaction,
and information retrieval researchers to help turn them

into reality.

VIII . CONCLUSION

Aristotle has been credited for saying, BLearning is not

child’s play, we cannot learn without pain.[ Though the

pain of the user can be considered a necessary evil in many

interactive pattern recognition problems, the goal of active

learning strategies since the time of Laplace has been to

reduce this pain. Whether through careful experimental

design, or more recently through thoughtful sample

labeling strategies, active learning seeks to close the gap
between human interpretation and machine understanding

of real-world phenomena.

Much effort has been expended on investigating

strategies for active learning that have applications in the

multimedia information retrieval domain. A natural fit for

these problems, recent work has shown the potential of

active learning approaches can make real headway towards

the automatic understanding of multimedia information.
As the first decade of the new century draws to a close,

multimedia information retrieval is entering a new era. A

unique confluence of media production, consumption, and

economics has the potential to create new research and

commercial opportunities for interactive technologies. In

this space, active learning has the potential to be at the

forefront of this technological movement, reducing the

pain of learning for a brand new generation of interactive
applications. h
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