
~, Journal of VLSI Signal Processing 27. 55-67. 200 1
J~ @ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

MPEG-4 Systems: Architecting Object-Based Audio- Visual Content

ALEXANDROS ELEFfHERIADIS

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Received July 20. 1999

Abstract. We describe the architecture and key features of the MPEG-4 Systems specification, as well as the
encoding methodology of its various components: scene description and BIFS, animation streams, object descriptors,
object content infonnation, as well as delivery and multiplexing. We also describe the MPEG-4 reference software
as well as our own prototype software for MPEG-4 authoring, streaming, aDd playback. Finally, we briefly compare
MPEG-4 Systems with a number of currently available alternative standards and commercial solutions.

Keywords: MPEG-4 systems, object-based representation, digital audio and video, interactive multimedia

I. Introduction (1994-95), the Internet and the Web started to gain sig-
nificant momentum in the United States and abroad.
This affected MPEG-4 in several ways, although the
focus remained on audiovisual applications. A brief
history of MPEG-4, including a timeline of its deve-
lopment, is provided in [7].

MPEG-4 is building on the proven success of three
fields: digital television, interactive graphics applica-
tions (synthetic content) and the World Wide Web
(distribution of and access to content) and intends to
provide the standardized technological framework ena-
bling the integration of the production, distribution and
content access paradigms of the three fields.

MPEG-4 addresses the "generic coding of audio-
visual objects." In contrast to all other existing audio
or video representation standards, MPEG-4 adopts an
object-basedapproach for content description: the con-
tent is assumed to be constructed out of individual and
independent entities called objects, which are sepa-
rately encoded. These objects include, for example,
arbitrarily shaped natural video, graphics, natUral or
synthetic audio, face or body animation etc. MPEG-4
has defined a number of representationtOOls to address
the coding needs of a large variety of media. These
tools extend much beyond the ones used in MPEG-I
and MPEG-2, which only addressed natural video
and audio at combined bit rates of 1-20 Mbps. For

MPEG-4 [1- 3] is a standardization effort under the aus-
pices ofISO/IEC [4] being developed by MPEG (Mov-
ing Picture Experts Group) [5], the committee that also
developed the Emrny Award-winning standards known
as MPEG-l and MPEG-2 [6]. MPEG-l and MPEG-2
have evolved to be the dominant formats for digital
audio and video compression and distribution, in both
Internet as well as professional applications. For exam-
pie, MPEG-l and 2 Audio Layer III (known as MP3)
is the doQlinant format for music distribution on the
Internet tOday, whereas MPEG-2 video is the basis for
digital broadcast TV, DVDs, as well as satellite TV
(DES systems such as DirecTV etc.).

Following the success of these standards, the MPEG
group embarked on an investigation of the technology
direction required by the digital audio and video con-
tent industry. At the beginning, significant focus was
placed on the coding aspects, and in particular on very
low bit rate coding (below 64 Kbps). It was soon real-
ized, however, that coding improvements could not be
as dramatic as one would hope for. New requirements
for audiovisual applications were also put forward-
interactivity, in particular, became a dominant theme
in the group's work. Interestingly enough, at the time
the foundation of MPEG-4 was being put together

Eleftheriadis56

novel concepts of object descriptors, scene descrip-
tion, delivery and multiplexing, and object content

information.
More detailed information about MPEG-4 can be

found in [7, 10, II], and of course the text of the stan-
dard itself [I]. A high-Ievel overview is available in
[12]. We should point out that Version I of the spec-
ification is already final as of January 1999, while a
number-'of new features are scheduled to be added in
January 2000 in the form of Version 2. The new version
is an incremental update of Version I (in the form of
ammendments} and includes features which were not
fully developed and/or tested by the time Version I was
finalized. A description of these features is provided at

the end of this paper.

The Architecture of MPEG-42.

example, MPEG-4 includes mesh coding tools, scal-
able coding of still images using zero-tree wavelets,
face animation parameter coding, etc.

Coding of such objects, however, is only the first
step into constructing a complete multimedia scene.
Additional information is needed in order to: I) des-
cribe how these objects should be placed in space and
time, 2) how they may interact with each other and
the end-user, 3) how to multiplex all this information
into one or more streams for delivery over a variety of

networks, and 4) ensure proper synchronization among
the various streams. This information is the realm of the
MPEG-4 Systems specification (Part I of the MPEG-4
standard) [I], which is also responsible for the overall

architectural definition of MPEG-4.
Traditional audiovisual coding standards are based

on the use of one stream for video data coupled
with one ore more streams for the associated audio.
These streams are multiplexed together into a single
stream that also carries timing information that allows a
receiver to reconstruct the sender's clock (this informa-
tion is important in broadcast environments where no
other means of sender/receiver flow control are avail-
able). Furthermore, the streams contain buffer control
information that enable management of the receiver's
buffers (e.g., the VBV model in MPEG-2 [6]). Timing .

recovery and multiplexing are the traditional domains

of the 'systems' layer.
The object-based nature of MPEG-4 required a

reengineering of this simple architecture to accommo-
date the many new features targeted by the specifica-
tion. In particular, content representation is separated
into three major entities: objectdescriptors,scene des-
cription, and coded audiovisual data. A fourth category,
object content information, can optionally be used as
well a.'ld is described in more detail later on.

MPEG-4 Systems also uses a syntactic description
language (Flavor [8, 9]) to describe the bitstream syn-
tax, in contrast to the ad-hoc mechanisms used in prior
MPEG and other specifications. Several of the coding
processes use Flavor's particularobject-based features
for maximizing flexibility and conciseness. Flavor pro-
vides for automatic code (C++ and Java) generation
from the description of the bitstream sy~tax, thus sig-
nificantly simplifying the task of codec development

[9].
In the following, \ye first provide an architectural

overview of MPEG-4. we then describe each of its
components, starting from the traditional domain of
synchronization and buffer control, and moving to the

Figure l.shows an architectural overview of MPEG-4.

There are three fundamental components comprising
MPEG-4 content: object descriptors, scene description,
and individual audiovisual object data. The latter cor-
respond to traditional natural digital audio and video
streams, but can also include still images as well as
synthetic content. MPEG-4 has defined a number of
new tools to encode a variety of media types. Most
notable are arbitrarily-shaped digital video, still im-
ages, and synthetic (structured) audio. Parts 2 (Visual)
and 3 (Audio) of the MPEG-4 specifications detail the
bitstream fonnats and the decoding processes for these

tools.
Each entity is conveyed in its own elementary

stream. These streams may have been multiplexed into
one or more streams for transport over a particular net-
work (e.g., a single TCP stream ora setofRTPstreams
for lP-based transport, or a single MPEG-2 Transport
St;ream); if so, we assume here that they have been
already demultiplexed. MPEG-4 is transport agnostic
and does not require or define any particular transport
facility. As we discuss later on, a simple multiplexer is
defined for delivery systems that lack one (e.g., GSM

data channels) but its use is entirely optional.
Object descriptors are used to identify a set of ele-

mentary streams as a single audio-visual object. These
descriptors are associated with identifiers that allow
them to be referenced from the scene description, and
fully characterize the elementary stream(s) that com-
prise the object at hand. More than one stream may
be associated with a given audiovisual object when

Elejtheriadis58

as well as retrieval applications. MPEG-4 further faci-

litates these tasks by providing object content infor-
mation, i.e., tags that provide descriptive information

about the content.
Interaction with the sender is also possible via a re-

turn channel, if available. We should point out that
interactivity is possible and useful even in the absence

of a return channel. Although trasactional applications
cannot be supported without it, added value services
(electronic program guides, movie summaries includ-

ing visuals, etc.) are certainly possible.
In the following sections we describe each of the

MPEG-4 Systems components in more detail.

3. Delivery, Synchronization and Buffer Control

these decoders has its own dedicated decoding buffer.
Also, since composition must take place afterdecod-
ing, the output of a decoder is sent to a composition
buffer. The size of this buffer is not normatively speci-
fied, and is assumed to be large enough to hold at least
one presentation unit. The contents of this buffer are
overwritten when a new presentation unit is decoded

and is ready for composition.
Figure 2 shows the structure of the decoders within

an MPEG-4 terminal, including decoding and composi-
tion buffering. The (non-normative) interface between
the decoding buffers and the decoders is called the
Elementary Stream Interface, and defines the informa-
tion that has to be carried from these buffers to the de-

coders in order to ensure the latter's proper operation.
As mentioned earlier, each object (and thus decoder)
has its own time base, which has to be mapped to the

.,system time base. The system' s clock parameters are

not defined by MPEG-4, since they are application-
dependent. Individual profiles or levels, however, may
impose limitations on these parameters as they did in

the case of the MPEG-2 specification.
As MPEG-4 is designed to operate under a large va-

riety of network transport mechanisms, it does not pro-

vide any particular transport facilities. Transport layers
are referred to as 'TransMux' in the MPEG-4 specifi-
cation, and only the interface to this layer is defined.

In order to isolate the design of MPEG-4 from the
specifics of the various delivery systems, the concepts
of the DMIF (Digital Media Integration Framework)
and DMIF AppJication Interface (DAI) were defined
(see Fig. 2). The DAI defines the process of exchang-
ing information between the terminal and the delivery
layer in a conceptual way, using a number of prim-
itives. It should be pointed out that this interface is

non-nomlative; actual MPEG-4 terminal implementa-
tions do not need to expose such interface. For net-

workS that do not provide appropriate multiplexing
facilities, MPEG-4 defines a simple optional tool called

'FlexMux' that is particularly suitable for low-delay

applications. .
The FlexMux originated from the H.223 Annet A

multiplexer, and uses very small packets (up to 256
bytes). It provides for simple packetization with a small
header that identifies the channel number and the packet
length. It also supports a more complex mode, where
different bytes of a packet can be assigned to different

channels (so-called 'muxcode' mode). Configuration
infomlation must be provided to the receiver in order
to bind different slots to the various channels. In both

Each elementary stream contains a series of access
units of the entity it conveys. Typically, each access unit
encapsulates information that needs to be associated to
a particular time instant (e.g., for video, an access unit
is a "frame"). Each access unit (or fragment thereof) is
encapsulated into a structure that contains timing and
random access information, called the Sync Layer .

For the proper definition of the timing and buffer be-
havior of compliant MPEG-4 terminals, MPEG-4 de-
fines a System Decoder Model. The timing model of
MPEG-4 is designed to allow maximum flexibility for
applications. Both "push" (e.g., broadcast or stream-
ing) and "pull" (receiver-driven) modes of operation

are supported.
For applications t,hat require open-loop flow con-

trol timing recovery can be effected through the use
of object clock references (similar to program clock
references ofMPEG-2). Each object is assumed to have
its own time base, that must be mapped to the system
time base. Each object decoder is further associated
with particular buffer resources which are managed
via decoding and composition time stamps. Notice that

MPEG-4 does not refer to presentation timestamps,
because composition and rendering are not defined by

the standard.
The presence and resolution of all such timing infor-

mation is entirely optional. It is also possible to specify
a particular rate in lieu of time stamps, thus eliminating
the need for lengthy timing information. The configu-
ration of the sync layer packet header is part of the
elementary stream descriptors which are described in

the next section.
Due to its object-based nature, an MPEG-4 terminal

may have to operate several media decoders. Each of

MPEG-4 Systems 59

Elementary
Stream Interface

System decoder model.Figure 2.

Object Descriptors4.

Object descriptors are a fundamentally new concept in
MPEG, and are a key data structure for the operation of
an MPEG-4 terminal. Object descriptors have two pri-
mary purposes. First, they are used to define the set of
elementary streams that carry an object's data, as well
as the properties of these streams (e.g., their Sync Layer
configuration, the fonnat of the data, whether it is au-

dio, video, scene description, object descriptor stream,
etc.). Second, they are assigned unique (within a ses-
sion) identifiers so that they can be referenced by the
scene description. By completely separating the scene
description from the audiovisual data the process of

content creation and editing is considerably simplified.
Object descriptors are carried in their own elemen-

tary stream(s), packaged into Sync Layer packets, with
timestamping infonnation if so desired. In essence,
object descriptors announce to ~~ receiving terminal
the different types of objects that are available in the
current session and also provide all of the configu-
ration infonnation required for their decoding. Given
the object descriptors, the only infonnation missing
from the terminal is when and where to compose each

modes, a stream map table must be provided out of
band in order to define the contents of each channel.

Figure 3 depicts the layering of the sync layer, Flex-
Mux, and TransMux in an MPEG-4 system. Notice that
the use of the FlexMux is optional, and that a large
variety of transport facilities can be used (the list shown
in the figure is not intended to be exhaustive). The en-
tire structure below the Sync Layer is referred to as

:. the "delivery system." The term is meant to encompass
networked as well as mass storage distribution facili-
ties. As we discuss later on, MPEG for the first time is
defining (for Version 2) a file format, called MP4, to be

used for content interchange purposes.
As a result of its network independence, MPEG-4

says very little about how content should be transported
over specific delivery systems such as the Internet. The
intention is that the specifics have to be defined by
the bodies responsible for the design and evolution of
these systems. For example, collaborative work is al-
ready underway with IETF's A VT group in order to de-
fine appopriate facilities for the transport ofMPEG-4
content over RTP. Similarly, work is underway within
MPEG to define mechanisms for transport of MPEG-4
content over MPEG-2 Transport Streams.

~

-
;

60 Eleftheriadis

Displayand
User

Figure 3. Layering of an MPEG-4 system

audiovisual object. This information is provided (as
discussed later on) by the scene description.

Note that more than one stream may be associated
to an object due to scalable coding or due to the use of
multichannel audio coding. Also, an elementary stream
may be associated to more than one object as well.

Each descriptor is associated with a IO-bit identifier
that must be unique within an MPEG-4 session. Object
descriptors can be inserted, del~ted, or updated at any
time using time stamped object descriptor commands
conveyed in the same elementary stream.

Each descriptor contains a set of mandatory and op-
ti9nal sub-descriptors. Most important is the set of
elei;nentary stream descriptors, which identifies the
elementary streams that are part of the object at
hand. These descriptors not only identify the particular
streams, but.also provide information about the config-
uration of their sync layer and initialization information
required by the corresponding decoder. Stream identifi~
cation, similarly to object descriptors, is performed via
a 5-bit identifier. This identifier is resolved to a partic-
ular elementary stream using a stream map table that is
specific to the transport facility used, and hence is not
defined by MPEG. Optional sub-descriptors can pro-

vide information about the Quality of Service (QoS)
required by the stream, language, or intellectual pro-
perty information.

A special object descriptor is required to bootstrap
an MPEG-4 session. This descriptor is called the initial
object descriptor and contains the elementary stream
descriptors for the object descriptor and the scene de-
scription streams. The initial descriptor is assumed
to be delivered out-of-band, via application-specific
means (e.g., a URL).

Figure 4 shows how object descriptors are used to
obtain access to content [13] .The initial object descrip-
tor contains elementary stream descriptors that provide
the location (stream ill) and configuration of the scene
description and object descriptor streams. With this in-
formation, the receiving terminal can access the rele-
vant streams, depacketize them, and decpde their con-
tents. Each object descriptor presumably causes the
instantiation of a decoder for the respective media type.
The terminal then has to process the scene description
information, and apply the composition information on

the composition buffers of the various decoders.
We should note that both object descriptors as well

as elementary stream descriptors can include URLs.

Eleftheriadis62

process.
data typl

ent node

For impr

are also

by speci:
may be

(similar
can refe)

To fac

teractior

,MPEG-l

sources

to a sin~

transitio

scriptio)
the sour

and sin~

TheE

pressior
emulati1

bytes. 11

aoism "

overhea

applical
may be

mechar

These (

ofapa
and fiel

achieve

tive as

To f

pabiliti
cia} 08!

scene c

an eoc,

of scri

plicatic
this cal

MPEG

about the content, and it would be difficult if not im-
possible to predict what types of information may be

needed (or available) in the future.
One drawback of the descriptor framework is that an

initial descriptor is required to bootstrap an MPEG-4
session. Due to the involvement of the delivery sys-
tem, this has resulted in not defining a single bootstrap
mechanism (since delivery of the initial object descrip-
tor will be performed as mandated by the body that-su-

pervises the particular delivery system used). Specific
instances are MP4 files, RTP, DSM-CC, and MPEG-2
TS; mechanisms for session initialization are currently
under design for all these very important environments.

Scene Description

tifier) or a URL. In the latter case, MPEG-4's System
Decoder Model does not apply.

Intermediate nodes perform grouping, translation,
etc., similarly to VRML. In addition to the VRML
nodes, however, MPEG-4 defines a set of 2-D scene
description nodes to enable the implementation oflow-
cost, 2-D only systems. It is also possible to combine
2-D scenes with 3-D scenes, using appropriate layer-
ing nodes. The overall structure of an MPEG-4 scene

is shown in Fig. 6.
In contrast to VRML where the scene description is

static, MPEG-4 provides complete freedom in modify-
ing the scene description via scene update commands.
In particular, nodes can be inserted, updated, or re-
moved; similar operations can be applied to the fields of
the nodes as well. These commands are performed
according to the timing information of the sync layer
that is used to carry scene description information
as any other MPEG-4 data. Scene update commands
become effective at the time directly or indirectly
conveyed in the sync layer packet header.

The binary encoding of scene descriptions is called
Binary Format for Scenes (BIFS). Encoding is per-
formed in a depth-first fashion. Each of the almost
100 nodes defined in the specification is identified by
a number. The fields of each node assume default val-
ues, unless explicitly overridden in the bitstream. Each
.field is itself identified by an ordinal number; the type
of the field (e.g., an integer, a float, or another node) is
implicitly obtained from that number and is defined in
(extensive) node coding tables. To maximize efficiency,
the fact that only particular nodes can be children of a
given node is used to introduce "context" in the coding

The scene description information describes how the
various objects are positioned in space and time, and
also defines dynamic behavior and user interaction. It
does not directly refer to particular media elementary
streams, but rather refers to object descriptors via their
identifier. This completely decouples the scene descrip-
tion from the specifics of the encoding of particular
objects. This allows, for example, changing the con-
tents/encoding of a video object without any need of
modification of the scene description itself.

The scene description is heavily based on the
VRML-97 [14] specification and there is a concerted
effort to completely align the two specifications. The
scene is represented as a tree of nodes. Each node has
an associated number of fields that affect its behavior.
Leaf nodes are media objects, with a field that refers to
either object descriptors (via the object descriptor iden-

root
2DLa~

12DLa--21
I~~~-l\

I 3D Layer-l I , 3D

3D Scen&-l --i 3D Scene-2

~ 3D Obi-t 1--I 2DObj-3 1-

~illObj-4 ;..I

6. O

-13DObj-4 I

..

.-.,

-I 3D Obj-2 I

..
Objecl
with "
associ
catalo
ISBN
authoJ

Pointer to 2D scene ~~~Obj-3 I -4 3D Obi-5 I

2D
-Scene y,rapb

3D

Scene ~ph
La~s
Scene ?;raph

Figure 6. A typical MPEG-4 scene sttucture.

MPEG-4 Systems 63

OCI can be carried in an object descriptor, or be as-
signed its own elementary stream. In the latter case, the
information can change over time to reflect potentially
changing attributes for a given object.

The use of OCI is crucial for the implementation
of content filtering as well as content retrieval ap-
plications. The scene description itself provides sig-
nificant information regarding the scene structure.
Coupled with semantic information that can be carried
within OCI (in the form of textual and other attributes),
the receiver or query engine has a wealth of informa-
tion at its disposal to make informed content seletion
decisions.

The concept of OCI will be further expanded upon
in the next MPEG project (MPEG.:7), which focuses
exclusively on conte~t description interfaces.

MPEG-4 Version 27.

process. Depending on that context, called the node
data type, a different number of bits as well as differ-
ent node codes are used to identify the various nodes.
For improved coding efficiency, quantization facilities
are also provided for field values and are introduced
by special 'QuantizationParameter' nodes. Nodes that
may be updated are associated with a node identifier
(similar to object descriptors), so that later commands
can refer to them.

To facilitate dynamic scene behavior and user in-
teraction, VRML's concept of routes is als<>: used in
MPEG-4. Some fields of a node are categorized as event
sources or sinks. Routes are then used to link a source
to a sink, allowing the implementation of simple state
transition triggers. Routes are coded after the scene de-
scription tree is coded, and use the node identifier of
the source and sink nodes to identify the event source
and sink fields.

The BIFS mechanism provides a quite efficient com-
pression tool for scene descriptions. A simple scene
emulating traditional MPEG-2 video takes only 4
bytes. In some cases, however, the scene update mech-
anism via BIFS access units may present a significant
overhead. This is particularly the case for low bit rate
applications where simple field value modifications
may be desired. For these cases, a light-weight update
mechanism is provided via BIFS animation streams.
These can only provide updates of one or more fields
of a particular node in a way that avoids the node-
and tield-related overhead of regular BIFS updates, and
achieves further compression efficiency using predic-
tive as well as arithmetic coding.

To facilitate complex state behavior, scripting ca-
pabilities are provided using ECMAScript (the offi-
cial.name of JavaScript). Scripts are carried within the
scefle description using a 'Script' node, which contains
an encoded version of the actual script. The inclusion
of scripting provides a poweIfuI mechanism for ap-
plication development. Version 2 will further enhance
this capability through the inclusion of Java support in
MPEG-4 tenninals, as described below.

whIle MPEG-4 contains a significant number of fea-
tures, several iterms were not fully developed or tested
in time to be included in the final version of MPEG-4.
As a result, a comprehensive list of ammendments is
being developed, commonly referred to as Version 2.
We should stress that this represents an incremental
upgrade of the specification, rather than a redesign.

Among the features to be included in Version 2
from the Systems side, the most notable are MPEG-J,
MPEG-4's file format (MP4), and server inter-

activity.
MPEG-J refers to the use of Java within an MPEG-4

terminal. The inte;ntion for the use of Java in MPEG-4
has two basic tenets: first, the implementation of so-

phisticated applications, and, second, providing pro-
grarnmatic means through which a terminal can dyna-
mically adapt the received content to its capabilities.
The latter is particularly important when we consider
that MPEG-4 does not define composition, and hence
does not provide normative reference points in terms
of terminal capabilities.

Figure 7 depicts the architecture through which (at
the time of this writing) Java is being integrated within
MPEG-4. At the bottom of the figure there is the usual
system decodetmodel, where multiple decoders are in-
terfaced to the delivery system via the DAI and decoder
buffers, and to the compositoivla composition buffers.
The Java virtual machine runs9n the terminal, and pro-
cesses MPEG-4 applets (called MPEG-lets). These ap-
plets have access to a run-time environment, comprised
of a set of Java class libraries. This set includes some

Object Content Infonnation6.

Object Content Information (OCI) is the mechanism
with which ancillary identification information can be
associated with an object. Such information includes a
cataloguing number and authority identification (e.g.,
ISBN numbers), keywords in any language, ratings,
author information and date of creation, and so on.

"--~-- C~~,"~~.-".

64 Eleftheriadis

Figure 7. Use of Java within MPEG-4 (MpEG-J).

of the standard Java classes as well as MPEG-specific

libraries.
The MPEG Java libraries provide functionalities for:

.application management;

.scene graph management;

.resource management;

.media decoder control;

.networking and device management; and

.terminal capability management.

distributors, service providers, server operators, even

end-users).
As a result, work on the so-called MP4 file for-

mat was started, using Apple's QuickTime specifica-
tion [15] as the starting point. The objective is to define
an MPEG-4 specific format, but in a way that is com-
patible with existing QuickTime software. The selec-
tion of QuickTime was based, to a large extent, to its
capability to provide streamed versions of data files for
various protocols without duplication of data (via S0-
called hint tracks). This implies that a server can easily
stream MPEG-4 content from an MP4 file by using
a hint track for the transport protocol it is using. The
media data, is referenced from the hint track, rather than

being copied.
Finally, a third major addition in Version 2 is nor-

mative support for server-based interactivity. Version 1
did not define a back channel, and as a result it did not
provide any direct means of Sending messages or com-
mands back to a content server. Version 2 introduces
a 'ServerCommand' node, which allows the server to
be a full and equal participant in the interaction model
of the client terminal. The use of a node allows the
routing of events to it, which then triggers the trans-
mission of an application-defined message back to the
server (with appropriate sync layer packetization). The
server can then respond with a scene update, or with

It is important to note that the MPEG-J architecture
explicitly avoids the use of Java in the media data path.
As we see in Fig. 7, the J ava code has only supervisory
role. This ensures that time-critical and/or computa-
tionally intensive operations are not hindered by the
interpreted and non-reJIl-time (due to garbage collec-
tion) nature of Java. ..

In addition to Java support, another major addition
for Version 2 is the definition of a .file format. In the
past, MPEG relied on the fomiat of its own designs
for multiplexed data (program and transport streams),
which directly served as storage formats. Due to the
significantly expanded flexibility afforded by MPEG-4,
there was a clear need for a more sophisticated content
interchange format that would cater to the needs of the
various components of the industry (content creators,

MPEG-4 Systems 65

DAJ
.

I: r--

: DM

, .
:
.
.
.

I :

DAI

~T~ ~
1/! . ':1 ~Q.

~ e

~ ~! ~6.

l::.-r~

-

Display

I!~-
IMP00-4 Application DMIF

IvIPEG-4 Server

I DMIF MPEG-4 Application -

:MPEG-4 Client

Figure 8. MPEG-4 client-server software.

whatever mechanism provided by the application de-
signer. Note that such functionality can also be par-
tially implemented using URLs. However, URLs are
only triggered when content is being accessed, whereas
server commands can be triggered by any scene event.

In order to verify its specifications and promote their
acceptance in the marketplace, starting from MPEG-4
the MPEG group adopted a policy of publishing source
code that implements each specification. This 'refer-
ence software' is also extremely useful for imp.emen-
tors who are now able to test their designs (and their
interpretation of the specification) against an existing
tool.

This policy has resulted in the so-called IMI soft-
ware, a collaborative development activity that pro-
vides a complete implementation ofMPEG-4 Systems.
(The name indicates implementation l, as in the past
there was a second implementation based exclusively
on Java.) Since composition is outside the scope of
MPEG-4, other parties have contributed compositors
as well as hosting applications for various platforms
(Windows and UNIX). In addition to a player, several
other tools are also available for scene encoding, des-
criptor encoding, as well as multiplexing and MP4 file
creation. More details can be found on the MPEG web
site (5].

In parallel to the main IMl activity, we have de-
veloped a complete MPEG-4 client-server system to
investigate issues of object-based representation, real-
time composition, and object multiplex scheduling.

The system consists of an MPEG-4 client and a
server. The client is based on the IMI reference soft-

---c- c

8. MPEG-4 Software

ware, with DMIF code provided by X bind Inc. and
2-D composItion code provided by CSELT. The client
supports JPEG images, as well as H.261 video and
H.723.1 audio. The server, multiplexer, and original
content were developed at Columbia. The server is de-
signed to deliver objects to the client upon demand
and fully supports server itneractivity. Communication
between the client and the server is performed using
UDP/IP. Figure 8 shows the architecture of the system.

The complete system was dcmonstrated in the
October 1998 MPEG meeting in Atlantic City, New
Jersey, with help from Lockeed Martin Telecom-
munications. The server was located in Sunnyvale,
California, in Lockheed Martin's laboratories, and was
connected to the client via a satellite connection. At
the core of the demonstration is the delivery of audio-
visual objects over an IP network and decoding and
composing them at the receiver The application devel-
oped provided for content selection in an interactive
TV environment.

9. Concluding Remarks

MPEG-4 addresses technological issues that are ex-
tremely relevant today. There is considerable commer-
cial interest in interactive TV and multimedia appli-
cations in general that has provided a number of
alternatives to MPEG-4, in terms of architecture and
functionality. In general, none of the existing solutions
provides a complete toolset with features comparable
to MPEG-4 under a single design.

A number of alternatives 10 MPEG-4 BIFS base
their syntax architecture on an XML [16] syntax, while
MPEG-4 bases its syntax architecture on VRML using
a binary format. The main difference between the two is

"

Eleftheriadis66

4. I:

5. ~

6. f

7. (

8.

in a domain and relevant open technology standards.
However, as soon as a standard appears that solves the
needs of the industries involved, a range of diverse in-
teroperable product offerings and their market deploy-
ment is made possible. Each player may then invest
in its core business, seeking to gain competitive advan-
tage in areas not covered by the standard. It is therefore
very unlikely that a proprietary format for multimedia
representation can compete successfully, in the long
run, with an open standard like MPEG-4 when univer-
sal access is required at both national and international

levels.
A final consideration is that MPEG-4 has been de-

signed from the ground-up to address interactive audio-
visual applications. Most other competing solutions
originate from a Web-centric architecture. As a result,
while they may provide solutions that are appropriate
for the Web, itis not necessarily true that they cater to
the needs of the video and audio content industry. In
the case of interactive TV, for example, several com-
panies are currently making efforts to integrate Web
access to set-top boxes. While this is an interesting and
useful application, it is not the same as providing inter-
active TV content. While the two can share the same
screen (similarly to a word processing and a spread-
sheet program running on the same computer), they are .
not the same application. This is a point that is often
missed when considering architectures that combine

digital video and audio and interactivity.

12.

13. (

14.
15.

16. I

17.
Acknowledgments

The development of an international standard is a group
effort involving a large number of individuals from
all around the world. The author would like to par-
ticularly acknowledge the critical contributions of the
following indiyiduals in the design of MPEG-4 Sys-
tems: Olivier Avaro (France Telecom), Carsten Herpel
(Thomson Multimedia), Julien Signes (France Tele-

corn), Liam Ward (Teltec), and Ganesh Rajan (General

Instrument).

18.

that XML is a general-purpose text-based description
language for tagged data, while VRML with Flavor
provide a binary format for a (heavily visual) scene

description language.
An advantage of an XML-based approach is ease of

authoring; documents can be easily generated using a
text editor. However, for delivery over a limited band-
width medium, a compressed representation of mul-
timedia information is without a doubt the best ap-
proach from a bandwidth efficiency point of view. A
textual representation of the content may still be useful
at the authoring stage. Such (simplified) textual repre-
sentations for MPEG-4 content, based on XML, are un-
der consideration, while text-based tools for compiling
BIFS from VRML-Iike text files are already available.
An important consideration is that VRML has been
designed for scenes that have a strong visual compo-
nent, and thus provides very powerful tools for scene

construction.
At the time the MPEG-4 standard was published,

several specifications were providing semantics with an

XML-compliant syntax for multimedia representation
in specific domains. For example, the W3C HTML-NG
was redesigning HTML to be XML compliant [17],
the W3C SMIL working group has produced a spec-

ification for 20 multimedia scene descriptions [18],
the ATSC/DASE BHTML specifications were work-
ing at providing broadcast extensions to HTML-NG,
the W3DX30 requirements were investigating the use
of XML for 30 scene description, whereas W3C SVG
was standardizing.scalable vector graphics also in an

XML compliant way [19].
MPEG-4 is built on a true 30 scene description,

including the event model, as provided by VRML.
None of the XML-based specifications currently avail-
able reaches the sophistication of MPEG-4 in terms of
composition capabilities and interactivity features. Fur-
thermore, incorporation of the temporal component in
terms of streamed scene descriptions is a non-trivial
matter. MPEG-4 has successfully addressed this is-

sue, as well as the overall timing and synchronizatie~
issues, whereas alternative approaches are lacking i6

this respect.
Finally, the industry is already providing compelling

solutions for the representation of multimedia content.
lrideed, functionalities like those offered by MPEG-4
have already appeared in products such as games and
CO..ROM authoring applications, long before the stan-
dard was even finalized. There is always a time lag be-

tween the functionality of the more advanced products

References

1. ISO/IEC 14496-1, Coding Of Audio-Visual Objects: Systems,
Final Draft International Standard, JTCI/SC29/WGll N2501,

Oct. 1998.
2. ISO/IEC rrcl/sc29/WG11 N2611, MPEG-4 Systems Version

2 WD 5.0, Dec. 1998.

MPEG-4 Systems 67

19. Scalable Vector Graphics (SVG) Specification. W3C Work-

ing Draft, February 11, 1999, http://www.w3.org/TR/
WD-SVG.

s;

e

Alexandros EleCtheriadis was born in Athens. Greece. in 1967. He
received the Diploma in Electrical Engineering and Computer Sci-
ence from ~e National Technical University of Athens. Greece. in

1990. and the M.S., M.Phil.. and Ph.D. degrees in Electrical Engi-
neering from Columbia University. New York, in 1992, 1994, and
1995 respectively. Since 1995 he has been in the faculty of the De-
partment of Electrical Engineering at Columbia University (currently
as an Associate Professor), where he is leading a research team work-
ing on media representation, with emphasis on multimedia software,
video signal processing and compression. video communication
systems (including video-on-demand and Intemet video), and the
mathematical fundamentals of compression. He is also co-principal

investigator of the ADVENT Project (http:llwww.ee.columbia.edu/
advent), an industrial affiliates program at Columbia University that

is performing research on all aspects of digital video representation,
communication, and description. Dr. Eleftheriadis is a member of the

ANSI NC1TS L3.1 Committee and the ISO-IEC JTCI/SC29/WG11
(MPEG) Group. that develop national and international standards for
audio and video coding. He also served as the Editor of the MPEG-4
Systems (ISO/IEC 14496-1) specification. He has authored more
than 60 publications in international journals and conferences and
holdS 6 patents (II pending). His awards include an NSF CAREER
Award. He is in the editorial board of the Multimedia Tools and
Applications Journal, has served as a guest editor, committee
member, and organizer for several international journals and con-
ferences. and Dr. Eleftheriadis is a member of the IEEE. the ACM,

the AAAS, and the Technical Chamber of Greece.

eleft@ee.columbia.edu

3. A. Purl and A. Eleftheriadis, "MPEG-4: An Object-Based
Standard for Multimedia Coding:' in Visual Infonnation
Representation, Communication, and Image Processing, C.-W.
Chen and Y.-Q. Zhang (Eds.), New York: Marcel Dekker, 1999.

4. ISOWebSite,http://www.iso.ch.
5. MPEG Web Site, http: //www.cselt. it/mpeg.
6. B.G. Haskell, A. Purl, and A.N. Netrava1i, Digital VIdeo:

An Introduction to MPEG-2, London: Chapman and Ha1I,

1997.
7. 0. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, and L. Ward,

"MPEG-4 Systems Overview:' Multimedia Sjste1J!S, Standard,
Networks, A. Purl and T. Chen (Eds.), New York: Marcel Dekker,

2000.
8. A. Eleftheriadis, "Flavor: A Language for Media Representa-

tion:' in Proceedings, ACM Multimedia '97 Conference, Seattle,

WA, Nov. 1997.
9. Flavor Web Site, http:llwww.ee.columbia.edu/flavor.

10. C. Herpel, A. Eleftheriadis, and G. Francescini, "MPEG-4 Sys-
tems: Elementary Stream Management and Delivery:' Multime-
dia Systems, Standard, Networks, A. Purl and T. Chen (Eds.),

New York: Marcel Dekker,2000.
II. J. Signes, Y. Fisher, and A. Eleftheriadis, "MPEG-4: SceneRep-

resentation and Interactivity:' Multimedia Systems, Standard,
Networks, A. Purl and T. Chen (Eds.), New York: Marcel Dekker,

2000.
12. R. Koenen, "MPEG-4: Multimedia for our time:' IEEE Spec-

trwn, vol. 36, no.2, 1999, pp. 26-33.
13. C. Herpel and A. Eleftheriadis, "MPEG-4 Systems: Elementary

Stream Management:' Signal Processing: Image Communica-
tion, Tutorial Issue on the MPEG-4 Standard, vol. 15, nos. 4-5,

2000, pp. 299-320.
14. VRML Web Site, http: //www. vrml.org.
15. QuickTime Web Site, http://www.apple:com/

quicktime.
16. Extensible Markup Language (XML) 1.0, T. Bray, J. Paoli,

and C.M. Sperberg-McQueen (Eds.), February 10, 1998,

http://www.w3.org/TR/REC-xml.
17. XHTML TM 1.0: The Extensible HyperText Markup I,.anguage.

A Reformulation of HTML 4.0 in XML 1.0. W3C Work-

ing Draft, February 24, 1999, http: //www .w3 .org/TR/WD-

html-in-xml/.
18. Synchronized Multim~a Integration Language. (SMIL) 1.0

Specification, June I'S, 1998, http://www.w3.org/TR/

REC-smil.

