JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENT
Vol. 9, No. 3, September, pp. 211-222, 1998
ARTICLE No. V(980389

Streaming Video Using Dynamic Rate Shaping and
TCP Congestion Controlt

Stephen Jacobs* and Alexandros Eleftheriadis*

Department of Electrical Engineering and Columbia New Media Technology Center, Columbia University, New York, New York 10027

Received February 9, 1998; accepted May 26, 1998

We present a new technique for streaming real time video
on today’s Internet, based on dynamic rate shaping and TCP
congestion control. Dynamic rate shaping is a signal processing
technique that adapts the rate of compressed video (MPEG-1,
MPEG-2, H.26x) to dynamically varying bandwidth con-
straints. This provides an interface (or filter) between the source
and the network, with which the encoder’s output (either live
or stored) can be perfectly matched to the network’s available
bandwidth. We couple this adaptation capability with the use
of a new semi-reliable protocol that uses the TCP congestion
window to pace the delivery of data into the network, but
without using other TCP algorithms that are poorly suited to
real time media. Use of TCP congestion control ensures that
the protocol competes fairly with all other TCP data and that
it optimally shares the available bandwidth. It also avoids the
latency problems commonly associated with TCP. In addition,
we describe a real application that uses this approach to stream
MPEG video on the Internet. We present several experiments,
performed in both a controlled environment and the wide area
Internet, that were used to evaluate the effectiveness and fair-
ness of the scheme. The results show that the proposed solution
achieves superior video quality while at the same time providing
fairness by sharing bandwidth equally with other non-real-time
connections. © 1998 Academic Press

INTRODUCTION

The transmission of digital audiovisual information
across a communication system is a well-understood prob-
lem. Its core lies in key assumptions made by codec design-
ers about possible networks that may carry the compressed
information and assumptions made by network designers
about the types of traffic their network is intended to carry.
Traditionally, codec design has assumed ideal networks
(constant bandwidth and fixed delay), so that the semantics
of synchronization and clock recovery can be unambigu-

* E-mail: {sejeleft}@ee.columbia.edu.
+ This article is part of a special section devoted to the Image Technol-
ogy for World-Wide-Web Applications.

ously defined. The fixed delay assumption is allowed to be
relaxed in practice, with the addition of extra buffering at
the receiver. It is much more difficult to deviate from the
constant bandwidth requirement; solutions from the codec
side include multiresolution or scalable coding, as well as
built-in robustness measures that aid in error recovery and
concealment. From a networking standpoint, an approxi-
mation to such an ideal communication system can be
provided using quality of service (QoS) guarantees. Such
guarantees can aid in fully or partially characterizing net-
work “imperfections,” and allow the implementation of
proactive measures to work around them.

Our interest in this paper is focused on Internet-based
delivery of real-time digital video, and in particular
MPEG-1 {14, 19] and MPEG-2 video [13, 15]. Both obvi-
ously represent the most pervasive technical solutions in
their respective fields, and a successful solution that caters
to their particular needs can have a significant impact.

The underlying technologies of today’s Internet are not
sufficient to support QoS guarantees which would facilitate
real-time services. The evolution of these technologies
could result in any number of possibilities, including ATM
backbones, IP switching, or fully deployed ATM networks.
Regardless of the specifics, it is likely that the network
infrastructure of the future will have QoS and that users
will be able to request connections with or without QoS.
The exact horizon on when such capabilities will be widely
available is, however, not clear. Connections which reserve
resources will demand a higher cost; users may not always
want to pay this extra cost for a particular real time service
(e.g., watching movies vs video database browsing). In
addition, parts of the network infrastructure may never be
able to provide QoS, such as wireless connections, or may
provide partial QoS, such as ATM-ABR that only provides
a guaranteed minimum QoS. These considerations indicate
that transmission of real-time information without QoS is
not only important today, but is going to remain so even
in networks that can provide QoS.

Lack of QoS translates into potential variation of the
bandwidth available for video (and audio) transmission.

1047-3203/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

212

This variation can be quite unpredictable, both in terms
of its short and long-term behavior. Although techniques
have been developed to employ rate control for live sources
based on network feedback [12, 16], these will not work
with prerecorded material. In addition, MPEG-1 and
MPEG-2 (hereafter referred to simply as MPEG) sources
are typically coded at a fixed bit rate.! It is crucial then to
be able to modify the bit rate of MPEG video, even after
encoding has already taken place.

We refer to this rate manipulation operation as dynamic
rate sharing (DRS) [8, 10, 11]. The term dynamic refers to
the possibility that rate constraints are time-varying, while
shaping is used instead of rate control to: (1) differentiate
from classical encoder rate control in which the variable
rate of an entropy-coded bitstream is matched to a fixed
channel rate and (2) to more accurately capture the poste-
rior (with respect to coding) nature of the operation. Note
that DRS is quite different from traffic shaping (e.g., in
DRS the traffic’s average rate can change). In order for
rate shaping to be viable, it has to be implementable with
reasonable complexity (preferably in software) and yield
‘acceptable visual quality. We present in this paper a sum-
mary of our work in this area 8, 10, 11], in which we
have fully characterized optimal DRS and have identified
extremely fast algorithms (much faster than an MPEG
decoder) that perform within 0.5 dB of the optimal one.

In order to use the DRS approach in the environment
presented by today’s Internet, the key concern is the bit
rate which information should be transmitted. The delay
variation (jitter) can be mitigated by adapting the receiv-
er’s buffering, as we explain in more detail later. We have
designed a transport protocol, based on TCP congestion
control, with the main goal of facilitating unicast real time
services that do not degrade the performance of other data
transfers on the Internet, such as FTP, HTTP, etc. Since the
Internet is a shared medium, there is always competition
among users for its resources. The most important data
transfer protocol is TCP, not only because it is dominant in
sheer traffic volume, but also because it promotes fairness
between different data transfers by sharing the available
bandwidth evenly among users. Many real-time video
streaming software packages that exist today make little
or no effort at maintaining this fairness. We will show that
our system preserves the fairness that the Internet and
TCP originally intended.

Although our protocol was not intended to scale to
multicast, we believe that unicast is a very important class
of applications. There is a large body of work in the area of
Internet streaming with rate controllable sources, although
much of it has focused on multicast [3, 5-7, 16, 23]. Since
unicast can be viewed as a special case of multicast, these

1 All commercial implementations of encoding chips or chip sets that
we know of do not provide VBR output.

JACOBS AND ELEFTHERIADIS

MPEG — MPEG
bitstream DYNAMIC | Dbitstream
y RATE SHAPER | "o
B(t) Mbps | - | B(t) Mbps
Constraint: B(t)
FIG. Operation of a dynamic rate shaper.

protocols are often used for unicast. However, this is not
the most efficient solution. Multicast protocols attempt to
solve a superset of the problems posed by unicast. In this
way, they contain trade-offs which may solve multicast
problems, but at the expense of unicast performance (for
example, they do not provide for fair sharing of bandwidth
with traditional data sources).

In the next section, we present an overview of DRS,
including characteristic performance results. Section 3 de-
scribes the design of our transport protocol. In Section 4,
we demonstrate a real application that uses this protocol
to stream MPEG video, while sharing available bandwidth
fairly. The applications consists of a Unix server and a
Windows 95/NT client developed using the Microsoft Ac-
tiveMovie (recently renamed DirectShow) framework. We
also present experimental results from a controlled envi-
ronment and results from testing in the wide area Internet,
across more than 30 hops. Finally, we present some con-
cluding remarks in Section 5.

2. DYNAMIC RATE SHAPING

We define rate shaping as an operation which, given an
input video bitstream and a set of rate constraints, produces
a video bitstream that complies with these constraints. If
the rate constraints are allowed to vary with time, the
operation will be called dynamic rate shaping. For our
purposes, both bitstreams are assumed to meet the same
syntax specification. In this paper, we focus on MPEG-1
and MPEG-2, but we should point out that the technique
applies to essentially any block-based transform coding
scheme [8] (including H.26x and so-called ‘“motion”
JPEG). We assume that the reader is familiar with MPEG’s
main characteristics; overviews can be found in [13, 19],
while the actual standards are detailed in [14, 15].

2.1. DRS Problem Definition

The rate shaping operation is depicted in Fig. 1. Note
that no communication path exists between the rate shaper
and the source of the input bitstream, which ensures that

DYNAMIC RATE SHAPING AND TCP CONTROL

no access to the encoder is necessary. The source of the
rate constraints Br(¢) for the purposes of this paper is the
bandwidth availability estimate provided by our transport
protocol, as described later on. The objective of a rate
shaping algorithm is to minimize the conversion distor-
tion, i.e.:

min {ly — |} 0

H=Br()

Note that no assumption is made on the rate properties
of the input bitstream, which can indeed be arbitrary. In
practice, it is typically a constant bit rate stream. The attain-
able rate variation (B/B) is limited and depends primarily
on the number of B pictures of the bitstream and the
original rate B(t).

Assuming that MPEG-2 (or, more generally, a motion-
compensated block-based transform coding technique) is
used to generate the input bitstream and decode the output
one, there are two fundamental ways to reduce the rate:
(1) modifying the quantized transform coefficients by em-
ploying coarser quantization and (2) eliminating transform
coefficients. In general, both schemes can be used to per-
form rate shaping; requantization, however, leads to recod-
ing-like algorithms which are not amenable to fast imple-
mentation and do not perform as well as selective-
transmission ones. Consequently, we only consider selec-
tive-transmission-based algorithms, and more specifically
we address the particular case of truncation (a set of DCT
coefficients at the end of each block is eliminated). This
approach will be referred to as constrained dynamic rate
shaping. The more general case of generalized rate shaping
where elimination of arbitrary DCT coefficients is allowed
is discussed in [8, 11], where it is shown that it provides
marginal quality improvement at significant additional
computational complexity.

The number of DCT run-length codes within each block
which will be kept will be called the breakpoint (similar
to the breakpoint used in MPEG-2 data partitioning [12]).
Assuming use of MPEG and avoiding certain syntax com-
plications,2 we require that at least one DCT coefficient
will remain in each block. Consequently, breakpoint values
will range from 1 to 64.

2.2. Rate Shaping of Intra-Coded Pictures

Inintra-picture rate shaping, there is no temporal depen-
dence between pictures. Consequently, the shaping error
will simply consist of the DCT coefficients that are
dropped. It can then be easily shown that the DRS problem
can be expressed as

2 These include recoding the coded block patterns and reexecuting DC
prediction loops.

213

N
: 4 - Soyl
B@O=Er) Iy yll}@zN o {‘“ B 2)

1 Ri(B)=Bg 7
with

Dy(b) = >, [E (k)Y

kzb;

®)

where b; € {1, ..., 64} is the breakpoint value for block i
(run-length codes from b; and up will be eliminated), N is
the number of blocks considered. E‘(k) is the value of the
DCT coefficient of the kth run in the ith block, and R;(b;)
denotes the rate required for coding block i using a
breakpoint value of b;.

This constrained minimization problem can be con-
verted to an unconstrained one using Lagrange multipliers;
instead of minimizing ; D;(b,) given Z; R;(b;), we min-
imize

2

min { D) + A i R;(b) (4
! i=1

1l
—_

Note that the two problems are not equivalent; for some
value of A, however, which our algorithm will have to find,
their solutions become identical [25].

The unconstrained minimization problem can be solved
using an iterative bisection algorithm (on A), which at each
step k separately minimizes D;(b;) + AR, (b;) for each block.
A similar algorithmic approach, but in a different context,
has been used in [9, 24, 25]. A short description of the
complete algorithm is as follows. We denote by Rf(A) and
D¥(X) the optimal rate and distortion respectively for block
i for that particular A (i.e., they minimize D; + AR;). We
also denote by b}(1) the breakpoint value that achieves
this optimum.

LAGRANGIAN OPTIMIZATION ALGORITHM.
Step 1. Initialization
Set A; = 0 and A, = «. If the inequality

N N
Z Rz* ()‘u) = Rbudget = 2 Rt*(Al) (5)
i=1 i=1

holds as an equality for either side, an exact solution has
been found. If the above does not hold at all, then the
problem is infeasible (this can happen if the target rate B
is too small). Otherwise go to Step 2. Note that these
two initial A’s correspond to the minimum and maximum
possible breakpoint values (the former minimizes distor-
tion, while the latter minimizes the rate).

214

Step 2. Bisection and pruning
Compute

_ [Za D) - Dr)
IS RFOWD) - REW)

©®

and find R}(Apext) and Df(Anexs) such that b*(A,) =
bt*(Anext) = bl*(Al)

Step 3. Convergence test

If

N N N N
; R?(Anext) = Z Rz*()‘u) or 21 R?‘()‘next) = 21 Rt*(AI) (7)

then stop; the solution is b*(A,),i =1, ,N.If

N
Zl R;k(/\next) > Rbudget (8)

then A; := Apext, €ls€ A, i = Apex:-

The bisection algorithm operates-on the convex hull of
the R(D) curve of each slice. Consequently, points which
lie above that and, hence, are not R(D) optimal, are not
considered by the algorithm. One can easily verify that
actual R(D) curves from real sequences are to a significant
degree convex (i.e., only a few points are above the convex
hull), particularly for P and B pictures. In some cases, if
the R(D) curve of a slice is sufficiently misbehaved, the
bisection algorithm can be set off track, with a resulting
underutilization of the target bit budget. In order to miti-
gate this effect and, also, to speed up operation, each itera-
tion considers a continuously shrinking interval of possible
breakpoint values (“pruning’’). This will result in conver-
gence of the algorithm to a much smaller set of nonconvex
points. The computational overhead of the algorithm is
small, and convergence is achieved within 8-10 iterations.

The collection of necessary data in (2) requires only
parsing of the bitstream up to inverse quantization of the
DCT coefficients. Since this represents a small fraction of
the complete decoding process, the algorithm has complex-
ity less than that of a decoder. The window N in which
the algorithm operates is a design parameter. Since rate
shaping is performed on top of encoding (although not
necessarily at the same time), it is desirable to minimize
the additional delay introduced by the extra processing
step. A plausible selection is then a single picture (frame
or field). The target bit budget Rpyage: Of €ach picture can
be set to Ryuaget = (Br/B)R — R,, where R is the size (in
bits) of the currently processed picture and R, is the num-
ber of bits spent for coding components of the bitstream
that are not subject to rate shaping. R is immediately avail-
able after the complete picture has been parsed. Allocated

JACOBS AND ELEFTHERIADIS

bits that are leftover from one picture are carried over to
the subsequent picture.

Since a full resolution picture (704 X 480) may contain
up to 15,840 blocks (for a 4:4:4 format), the processing
required within each iteration in order to find the
breakpoint value that minimizes D;(b;) + AR;(b;) can be
significant. Consequently, it is worth examining clustering
approaches in which a common breakpoint value is se-
lected for a set of macroblocks. We refer to such algorithms
as C(n), where n is the number of sequential macroblocks
contained in each cluster. An additional benefit of cluster-
ing is that the distortion can be defined on only the lumi-
nance part of the signal, hence greatly simplifying the
implementation. Clustering, of course, will degrade perfor-
mance; for example, the C(44) algorithm reduces the qual-
ity by about 2 dB, but at a substantial decrease in com-
plexity.

2.3. Mixed-Mode Rate Shaping

When all types of picture coding types are used (I, P,
and B) the problem is significantly more complex. The
decoding process for the original and the rate shaped signal
can be described by P; = #(P;-1) + e and P, =
M (P;-;) + &, where P; denotes the ith decoded picture
(in coding order), P; denotes the rate shaped decoded
picture, .#(-) denotes the motion compensation operator
for picture i, and e; and &; denote the coded original and
rate shaped prediction errors, respectively. The first picture
is assumed to be intra-coded, and hence Py, = e, and
Py = &,. Although, for simplicity a single reference picture
is shown above for motion compensation; the expression
can be trivially extended to cover the general case (which
includes B-pictures).

We can then rewrite (1) as

M
min Elt//{i(Pi—l) — M(Piy) + -8
P

N
2 R(b)=By

)

where M is the number of pictures over which optimization
takes place. Note that in general ./ (P;-,) — A (P,_)) #
M (Piq — Pi_l); i.e., motion compensation is a nonlinear
operation, because it involves integer arithmetic with trun-
cation away from zero.

From (9) we observe that, in contrast with the intra-only
case, optimization involves the accumulated error a; =
M;(P-y) — M(P;_1). Furthermore, due to the error accu-
mulation process, rate shaping decisions made for a given
picture will have an effect in the quality and partitioning
decisions of subsequent pictures. As a result, an optimal
algorithm for (9) would have to examine a complete group
of pictures (I-to-I), since breakpoint decisions at the initial
I-picture may affect even the last B or P picture. Not only

DYNAMIC RATE SHAPING AND TCP CONTROL

the computational overhead would be extremely high, but
the delay would be unacceptable as well.

An attractive alternative algorithm is one that solves (9)
on a picture basis, where only the error accumulated from
past pictures is taken into account; this algorithm will be
referred to as causally optimal. Note that in order to accu-
rately compute g;, two prediction loops have to be main-
tained (one for a decoder that receives the complete signal,
and one for a decoder that receives only partition 0). This
is because of the nonlinearity of motion compensation,
which involves integer arithmetic with truncation away
from zero. With the penalty of some lack in arithmetic
accuracy, these two loops can be collapsed together.

The causally optimal problem can be formulated as

min [: D;(b l!’ (10)
Z RB)<Br | ‘

with

Dib) =3, AkY + 3, 24(FR)E(R) + E'(kY (11)

where N is such that a complete picture is covered, A'(k)
is the kth DCT coefficient (in zig-zag scan order) of the
ith block of the accumulated error a;, and .#(-) maps run/
length positions from the prediction error E'(+) to actual
zig-zag scan positions. This minimization problem can be
solved using the Lagrangian multiplier approach of Section
2.2, with this new definition for the distortion D.

An important issue in mixed-mode coding is the target
bit budget that will be set for each picture. In a typical
situation, I and P picture DCT coding requires a significant
number of bits, while B picture sizes are dominated by
header and motion vector coding bits. Consequently, B
pictures provide much less flexibility for rate shaping. In
order to accommodate this behavior, I and P pictures are
assigned proportional bit budgets as in Section 2.2; for B
pictures the same is done, except when the resulting bit
budget is negative, in which case it is set to 0. The negative
budget, however, is accounted for, so that the bits spent
for the B picture are subtracted from the budget of the
immediately following picture. Note that an optimal bit
allocation for each picture would be a direct by-product
of the optimal (noncausal) algorithm.

The complexity in solving 10 is significant and can be
shown to be between that of a decoder and an encoder.
In order to examine the benefit of error accumulation
tracking, one can apply the intra-only algorithm of Section
2.2 to the mixed-mode case, since the only difference is
the accumulated error term g;. Surprisingly, the results of
this memoryless mixed-mode partitioning algorithm are

215

k-4

(N — ’ s |
{ \
’ —
AN ~ /\\ op !
nt : N/ \{/\""’ {
\ \\/
0+ T~ N memoryless 4
recoding A
A29>
| u
£ | \
Z 28t . e
[4 \ 4 \
F4 - - \ .
e / \ ~ ’~ ’ / t
ar ¢ K ! ’ Vi L
y \
26F
rale-based [
25+ ‘r
L |

24 - - . -
Frame Number

FIG. 2. Results of various rate shaping algorithms on the “Mo-
bile” sequence, MPEG-2 coded at 4 Mbps and rate shaped at 3.2
Mbps.

almost identical. Figure 2 shows the relevant PSNR values
for the “Mobile” sequence; the difference is in general
less than 0.1 dB and the curves can hardly be distinguished.
It turns out that this holds for a wide range of bit rates
(Fig. 3), although the difference increases slightly to 0.2-0.3
dB. This is a very important result, as it implies that we
can dispense completely with the error accumulation calcu-
lation and its associated computational complexity for a
minimal cost in performance; the quality degradation be-
tween the causally optimal and memoryless algorithms will
be perceptually insignificant across the spectrum of cluster
sizes and partition rates.

“o—_

MJ‘
Va
40 /‘ 4[
// '
=351 ~ 4
3 ptimal /
> P
i P memaryless ., 4
z - .
o. 30 / 4
4/‘4 - - 1
recoding e .- ;
25+ o
L - ate-based J
2gL L —
22 24 286 28 3 32 34 36 k¥:]
Bit Rate (Mbps

FIG. 3. Results of various rate shaping algorithms on the “Mo-
bile” sequence, MPEG-2 coded at 4 Mbps and rate shaped at various
different target bitrates.

216

The Protocol

‘ Rate

Control
Media _J

Shaping _m]

Source

Media |YOP
Pump

Congestion
Window

FIG. 4. The Internet-friendly protocol framework.

Client

For comparison purposes, we also examine the perfor-
mance of a purely rate-based optimization algorithm.
Breakpoint selection here is performed proportionally to
the number of bits used to originally code each block.
Figure 2 depicts the results obtained on the “Mobile” se-
quence, coded at 4 Mbps and rate shaped at 3.2 Mbps, while
Fig. 3 shows average PSNR values for a wide spectrum of
rates. Fixed input and output rates have been selected here
for simplicity; similar results can be obtained for more
complex rate characteristics. All algorithms (except from
recoding) are based on C(1) clustering; i.e., breakpoint
selection is performed on a macroblock basis. It is impor-
tant to note that regular recoding gives inferior results to
both the optimal and memoryless algorithms for a wide
range of rates, while the latter two can hardly be distin-
guished.

3. THE PROTOCOL

The protocol as shown in Fig. 4 receives data from a
media-shaping source, in this case, dynamic rate shaping.
This source is responsible for matching the bit rate of
the stream to the estimated available bandwidth in the
network; the protocol provides this estimate. The source
is continually filling the buffer with the media. Meanwhile,
the media pump reads the data from the buffer and sends
it into the network using UDP/IP. The congestion window
is the third part of the server. The media pump only sends
out data when the congestion window indicates that more
data can enter the network. The congestion window uses
feedback from the client, such as acknowledgments of
packets received and explicit retransmission requests for
packets assumed lost.

If the media shaping source is filling the buffer at a rate
R, and the congestion window over time is allowing the
media pump to send data out only at a rate S < R, then
the buffer will begin to fill. The media shaping source
should then decrease the rate entering the buffer. A rate

JACOBS AND ELEFTHERIADIS

control algorithm is responsible for translating the buffer
occupancy dynamics into an adjustment to the media shap-
ing source rate to ensure that the buffer does not underflow
or overflow.

3.1. Internet Friendly Bandwidth Estimation

Although there are many different techniques for finding
the available bandwidth in the Internet, probably the most
important factor is fairness with existing traffic. When a
single network maintains multiple transport protocols,
each using a different congestion control algorithm (or
none at all); it tends to lead to unfairness [21, 28]. This is
because different transport protocols use different defini-
tions of congestion and react differently on detection of
congestion. For this reason, it is important that the band-
width estimation technique does not result in a degradation
in the quality of other data transfers on the network.

As real-time services have become more prevalent over
the last few years, there has been a growing concern that
the current Internet infrastructure may not be able to sup-
port them, leading perhaps, to a “congestion collapse.”
This is a valid concern in general since many real-time
services send their bits through the network without con-
cern for congestion control or avoidance.

For this reason, we have designed a technique which is
optimally Internet-friendly, in the sense that it shares the
available end-to-end bandwidth equally with any other
data transfer using TCP, i.e., FTP, HTTP. For example, if
between any two network endpoints there is a TCP-based
connection and another connection using our protocol, the
average bandwidth that both connections will use will be
equal. This eliminates concerns about “congestion col-
lapse” since the protocol detects and reacts to congestion
in exactly the same way as all other TCP-based non-real-
time Internet traffic.

To determine the available bandwidth in the network
at a given time we use the TCP congestion window [22],
coupled with a rate control algorithm as shown in Fig. 4.
The congestion window indicates the number of allowable
outstanding unacknowledged packets. This is an indirect
indication of the available bandwidth in the network. If
the number of outstanding packets is greater than or equal
to the congestion window size, then the media pump can
send no further data into the network until the situation
changes. The congestion window is what paces the delivery
of data from the media pump into the network.

Pacing according to a TCP congestion window is exactly
what makes the system Internet-friendly. TCP streams
work well together and today’s Internet is proof of that.
They operate according to a greedy but “‘socially-minded”
and cooperative algorithm which attempts to get as much
bandwidth as possible, but backs off substantially during
congestion. Forcing all data to go through the TCP conges-

DYNAMIC RATE SHAPING AND TCP CONTROL

tion window can make real-time traffic look as harmless
as a file transfer to the network and still maintain relatively
low delay [17, 18].

The TCP congestion window is continually changing. It
increases quickly at first during the poorly named slow
start phase and then continues to increase more slowly
during the congestion avoidance phase. When a packet is
lost in the network, TCP assumes this is due to congestion.
A packet is lost when the server does not receive an ac-
knowledgment from the client within a specified timeout
period. The timeout period is related to the round trip
time, the time it takes to send a packet and receive an
acknowledgment. The reader is referred to the RFC 793
[22] for more details on the TCP algorithms.

The maintenance of the congestion window and the asso-
ciated variables are usually kept within the operating sys-
tem. To implement our protocol we have rebuilt the con-
gestion window and its necessary components in user
space. It is important to note that we have not moved all
of TCP into user space, but only the algorithms needed to
determine the congestion window. For example, we have
not included the mandatory retransmissions that TCP nor-
mally implements, since we do not want a completely reli-
able protocol.

Recently, work has been done indicating that Internet-
friendly bandwidth estimation can be achieved without
using congestion windows, but by using a rate-based algo-
rithm based on packet loss rates [20]. However, simplifying
assumptions about the dynamics of TCP are made and the
algorithm functions well only during low loss rates. At
high loss rates, it overestimates the available bandwidth,
defeating the goal of being Internet-friendly. Our protocol
is shown in Section 4 to share available bandwidth equally
with other TCP connections, which corresponds with our
stated goal of being Internet-friendly.

3.2. Rate Control

As mentioned before, the rate control algorithm is an
essential part of bandwidth estimation. During periods of
congestion, the media pump cannot send much data into
the network due to the TCP congestion window. When
this happens, the buffer in Fig. 4 will start to fill. In this
case, a rate control algorithm should force the media shap-
ing source to decrease the rate entering the buffer. If the
buffer subsequently begins to empty, the rate control
should request an increase in the rate entering the buffer
from the source. Clearly, the dynamics of the buffer modu-
late the rate. Therefore, the estimate of the available band-
width comes from the rate control algorithm but is an
indirect result of the dynamics of the TCP congestion
window.

Other work has been done in the design of rate control
algorithms. It has been studied extensively in the context

217

of entire networks, where the buffer occupancy from a
bottleneck router is used to adjust the rate at which data
is injected into the network [1, 2, 4]. Here, the occupancy
information traverses the network and is delayed, adding
complexity to the algorithms. In our case, the buffer occu-
pancy information is available immediately and simpler
models can therefore be used.

Simpler controller models are presented in [2, 16]. In
[16], the authors propose the use of a slightly modified
proportional control system, where the rate change is based
on the distance the current buffer occupancy is away from
a desired occupancy. It is called proportional because the
change in the rate is proportional to this distance. In [2],
the authors show that the pure proportional controller is
less than ideal, yielding nondecaying oscillations in the
buffer occupancy and rate over time.

A more complex proportional plus derivative (PD) con-
troller can be used which will not exhibit such oscillations
[27]. Although these controllers are more effective in time-
invariant systems, we have found them to function quite
well in the time-varying environment, based on the selec-
tion of key tuning parameters. Performance of this algo-
rithm is detailed in Section 4.

The buffer occupancy sampling period for the rate con-
trol algorithm depends on the medium. Since MPEG video
consists of several different frame types whose sizes vary
greatly, estimates of the buffer occupancy must be taken
as averages over no less than a one second interval to avoid
momentary fluctuations in the buffer occupancy. A small
sampling period means that the rate control algorithm can
adapt more quickly to sudden changes in the network.
However, there is a trade-off since a rapid change in quality
is subjectively unpleasant to the user. Larger sampling
periods require larger buffers to absorb changes, since the
algorithm would respond more slowly.

The buffer in Fig. 4 is being emptied, based on the TCP
congestion control window. During interval i, the output
rate of the buffer, y;, is unknown and the input rate which
is controlled entirely by the rate control algorithm is A;.
At the end of interval i, the buffer occupancy, b;, can be
described by

bi=bii=A— (12)

A PD control law would yield a change in the input rate
as given by

At — = op(b; — bd) —oy(b; — bi1), 13)

where b, is the desired buffer occupancy. The weighting

factors oy and «; indicate the relative importance of the

proportional and derivative factors, respectively. Quick

convergence is attained by making o, large, while minimiz-

ing the overshoot can be accomplished by making o, large.

218

In order to minimize the likelihood of buffer overflow,
we chose b; = b /4, where b,,., is the total buffer size.
This encourages the occupancy to stay at about a quarter
full. The choice of b, is based on the original rate of
the compressed media, R bps. To further minimize the
likelihood of buffer overflow, we chose a b, in bits corre-
sponding to 8 s (byax = 8R), although smaller values can
be chosen, with a correspondingly higher probability of
buffer overflow.

The parameter oy was chosen to be 0.005. The reason
has both analytical and empirical roots. If the buffer is at
the maximum and we ignore the derivative term (b; —
b;-1 = 0), then Eq. (13) becomes

— A = —0.005(bnax — brmax/4). (14)
Substituting for by, , we find that the change in the rate
is —3R/100 bps. For example, if R = 100 kbps, then the
change in the rate would be —3 kbps. This may not seem
like much, but if « is too large, there will be too much over-
shoot.

For a; we use 0.1. If in one interval, the buffer increases
by 10% of b,,.x and we ignore the proportional term (b; —
b, = 0), then Eq. (13) becomes

A1 — A = —0.1(8R/10). (15)
This corresponds to a decrease in the rate by 8R/100. In
other words, an increase in the occupancy of 10% yield a
decrease in the rate of 8%. For the same 100 kbps example,
the decrease in the rate would be 8 kbps. As shown by
our choice of parameters, we have placed more emphasis
on the derivative term, since our main goal is to converge
quickly and without much overshoot.

Although using the congestion window with the rate
control algorithm is an indirect way of calculating the avail-
able bandwidth, the only drawback is the need for buff-
ering. But even this is not a major deficit of the protocol, as
most systems operating in non-QoS environment employ
some buffering to absorb fluctuations in the available band-
width in the network anyway. In the case of MPEG, the
total buffering must be at least a few seconds to absorb
the variation in frame sizes, as mentioned earlier. However,
for other codecs that do not use inter-frame prediction,
much smaller buffering can be used. Applications such as
video conferencing are then feasible, since 3 s of latency
would be highly unacceptable for conferencing.

3.3. Retransmissions

Mandatory retransmissions increase delay, as the client
must wait for the retransmitted packet. In general, this is
unacceptable for real-time applications. It is certainly the
case for video, where we would like to trade quality by

JACOBS AND ELEFTHERIADIS

losing some data and possibly frames for a lower probabil-
ity of buffer overflow, which would force the video to stop
and then restart playback.

We have used UDP coupled with the TCP congestion
window in order to build an Internet-friendly, semi-reliable
protocol; TCP is not used for transport. It is semi-reliable
because we have added selective retransmissions. The
server in TCP maintains an estimate of the round trip
time, the time it takes to send a packet and receive an
acknowledgement for that packet. In our system, the server
sends this information to the client in every packet so that
the client has a (somewhat delayed) estimate of the round
trip time.

The client then knows best whether or not to request a
retransmission. If the client detects that a packet has been
lost in the network, it can then determine if there is enough
time to request a retransmission and receive the packet
before it is needed. For example, if the client has 100 ms
of data buffered and knows that the round trip time is 50
ms, then it is likely that the retransmitted packet will arrive
on time. If there is not enough buffering to cover the round
trip time, then the client will accept the loss and not request
a retransmission.

Requesting a retransmission in this case would waste
precious bandwidth and would likely not improve the us-
er’s experience since the packet would likely not arrive in
time. Even if the client requests a retransmission, it is not
forced to wait for it to arrive. Error concealment tech-
niques for packet loss are beyond the scope of this paper,
but an example for video when part of a frame is lost
would be to drop the entire frame.

A retransmission request affects the congestion window
similarly to the Fast Recovery Algorithm [26]. In TCP,
when a server realizes that it needs to retransmit a packet
but that other packets are still arriving at the receiver,
the server implements a less severe congestion avoidance
algorithm. The idea is that since packets are still arriving
at the receiver the network is only moderately loaded and
the congestion back-off should reflect this. For this reason,
TCP enters the congestion avoidance phase rather than the
slow start phase.

Our protocol does the same thing. When a retransmis-
sion request is received and the server is still receiving
acknowledgments, the protocol enters the congestion
avoidance phase, since this indicates that the network is
moderately loaded.

The protocol packet header consists of a 2-byte sequence
number, a 4-byte presentation timestamp, and a 4-byte
round trip time, measured in milliseconds. Since the under-
lying protocol is UDP, there is no need for a size field.
The sequence number is for packet reordering at the re-
ceiver. The timestamp is media dependent, but it is an
indication of the presentation time of that packet. The
actual size of the payload is also media dependent.

DYNAMIC RATE SHAPING AND TCP CONTROL

: ActiveMovie...)

Rl

FIG. 5.
tion.

Screen dump from MPEG video streaming applica-

For example, in MPEG video the payload is a frame of
MPEG data. If a frame is too large to fit in the payload,
it will be fragmented over more than one packet. This
creates a stream of packets that have variable lengths. Since
TCP normally operates on fixed length packets, alterations
were needed. In the case of variable length packets, the
congestion window is the number of allowable outstanding
unacknowledged bytes. The initial size of the congestion
window is defined as 512 bytes, the typical size of a TCP
segment. The maximum payload size is also 512 bytes to
maintain fairness with TCP.

4. PERFORMANCE RESULTS

We have built an application on top of this protocol for
streaming MPEG-1 or MPEG-2 video across the Internet.
This application is quite similar to Fig. 4, except that the
media shaping source of a dynamic rate-shaping source.
Figure 5 is a screen shot of the client window, receiving a
streamed MPEG video.

To evaluate our system, we performed three sets of
experiments using this application. The first set was to
determine if our system was fair in its use of bandwidth,
which is the main stated contribution of this paper. The
next set of experiments consisted of a client and server
with a controllable bottleneck in between, simulating a
bottleneck router. The goal here was to determine how
quickly the rate control converged to a desired rate and
how well it maintained that rate. Finally, since we have a
real system, we examined the behavior in the wide area
Internet (Fig. 6).

4.1. Bandwidth Fairness

The definition of fairness in this environment is that our
protocol can share equally the available bandwidth end-to-
end with a TCP connection. We used the actual throughput
rather than goodput to compare the protocols, since this

219

500

450+

400+

3I50E ‘y
R]

300 4

Throughput (kbps)
n n
8 &

0 ' " e "
0 5 10 15 20 25

Twne (sacs)

FIG. 6. Two TCP streams sent from the same server to the same
client across 19 hops in the Internet, showing that they do in fact
share the available bandwidth.

is where fairness matters most. Also, since TCP requires
mandatory retransmissions and our protocol retransmits
selectively, our protocol would have a higher output. This
is because our protocol uses less throughput on retransmis-
sions than TCP.

We used tcpdump to capture how and when the data
was sent out. We then averaged the throughput over an
interval to calculate the average throughput for each inter-
val. Each test was performed several times. The loss rates
were in the range of 0.8% to 2.3%.

We performed four tests here. The results are summa-
rized in Table 1. The goal is to compare different stream
types and evaluate how well they share the available band-
width. As expected the two TCP streams share the avail-
able bandwidth quite well. When operating with a pure
UDP stream, TCP gets only the bandwidth that the UDP
stream does not take. In contrast, our protocol shares the
available bandwidth evenly with TCP and itself.

4.2. Controlled Bottleneck

Now that we have shown that our protocol competes
fairly with TCP and with itself, the next experiments dem-

TABLE 1
Summarized Results for Bandwidth Fairness
Stream 1 Stream 2 Throughput - Throughput
type type stream 1 stream 2 Difference
TCP TCP 292 kbps 342 kbps 17%
TCP Pure UDP 205 kbps 810 kbps 295%
TCP Our Protocol 112 kbps 129 kbps 15%
Our Protocol Our Protocol 243 kbps 258 kbps 6%

Note. Difference is defined to be the difference between the two
throughputs divided by the reference throughput, Stream 1.

220

n
o
=}

n
o
=]

‘x_,v—-\)_\/\vf "M\/\f'\,,,\r\/‘)\ﬁ\,«\;

o
=]

o
(=3
T

Throughput (kbps) and Buffer Occupancy (Normalized)
w
o

150 200 250 300 350 400 450 500
Tme (secs)

0 n "
0 50 100

FIG. 7. The rate (solid) and buffer occupancy (dotted) for a
stream originally encoded at 250 kbps going through a 200 kbps
bottleneck. The buffer occupancy has been normalized to fit on the
same graph as the rate. The horizontal lines show the desired rate
and buffer occupancy.

onstrate the performance of the rate control algorithm.
They were performed with a controlled bottleneck be-
tween the client and server, used to simulate a bottleneck
router. The bottleneck was set up with a certain bottleneck
rate and a maximum buffer size. It reads in packets des-
tined for the client and adds them to the queue. At the
same time, it sends out packets onto the network as if the
network were operating at the bottleneck rate. It does this
by delaying subsequent packets until the time that it would
take to send a packet at the bottleneck rate. If the incoming
rate is faster than the bottleneck rate, the queue will start
to build. If the buffer size is then exceeded, packets are
dropped.

Figure 7 shows the effects of an MPEG stream originally
encoded at 250 kbps going through a 200 kbps bottleneck
with a buffer depth of 10 packets.> The duration of the
connection is 9 min. The horizontal lines indicate the de-
sired rate and occupancy. The rate moves to a slightly
lower value (180 kbps) within the first 10 s, reflecting the
bottleneck and the corresponding increase in the buffer
occupancy. This is the overshoot period. After the over-
shoot, the rate settles on the bottleneck rate and stays
quite close to it for the remaining 8 min, fluctuating no
more than 15 kbps below. The buffer, too, stays within a
very narrow range around the desired occupancy. This
graph, which is representative of many such tests we per-
formed, demonstrates that the rate control does converge

3 The original and rate shaped streams can be retrieved from ftp:/
wakko.ctr.columbia.edu/share/. The files are fenixc.mpeg and fenixc.200.
mpeg, respectively.

JACOBS AND ELEFTHERIADIS

and varies very little around the converged rate. This is
not surprising because the PD rate control law is conver-
gent with minimal oscillations in the time invariant case
(constant bottleneck rate).

4.3. Wide Area Network

In the previous section we showed the convergence of
the rate control algorithm, but only under time-invariant
conditions: Rather than try to simulate the dynamics of
the Internet with our controlled bottleneck, the next exper-
iment is performed using the Internet itself.

This experiment is shown in Fig. 8. The stream was
sent from a computer in our laboratory in New York to a
computer located 19 hops away in New Jersey, where the
packets were read in and sent back immediately to a client
in our laboratory again, traversing another 19 hops on the
way back. Again the original stream is 250 kbps MPEG.

The experiment was run over a 20-min period, of which
this is a 5-minute excerpt. The rate and the buffer occu-
pancy vary substantially, as one would expect given the
rate fluctuations in the Internet.

Although the rest of the 20-min period (not shown here)
had some buffer overflows, Fig. 8 shows none for the given
5-min period. The goal is to show the advantage of adapting
to network conditions. If the original stream had been
sent without decreasing its rate, based on the available
bandwidth, there would be many more instances of buffer
overflow. Figure 9 shows the buffer occupancy from Fig.
8 and the buffer occupancy of a stream which could not
adapt to the available bandwidth, sending at the originally
encoded rate of 250 kbps. The horizontal line indicates the

g

N
3

‘Fﬁ"\ﬂ |

AN
_ / | f\ ,
\f M&/ H W

y

f
J

n
8

g

Throughpul (kbps) and BuHler Occupancy (Normalized)
8)
T

FIG. 8. The rate (solid) and buffer occupancy (dashed) for a
stream originally encoded at 250 kbps going through the Internet,
traversing 38 hops. The buffer occupancy has been normalized to fit
on the same graph as the rate.

DYNAMIC RATE SHAPING AND TCP CONTROL

1000 - v ‘ :
900(-
800 1
7001
600+ 1

500+

Buffer Occupancy (KB)

300+ 4

200t 1
N
\\
/J w /\ /\/ﬂ w
| | J\)
a¥ L"A . FU— 1
60 80 100 200

J
[N
120 140 162 180
Time (secs)

FIG. 9. The buffer occupancy from the previous graph using our
protocol (solid) and the buffer occupancy of a stream which did not
adapt to the available bandwidth (dotted). Buffer overflow indicates
an interruption in playback. The buffer size is shown as a hori-
zontal line.

size of the buffer at the server. When the curve crosses it,
the user experiences an interruption in playback. The
length of the interruption is the time it takes to refill the
buffering at the client.

From 120 s on, the user would have experienced a series
of buffer overflows at the server, which would translate
into an empty buffer at the client. This is because, although
there was enough bandwidth in the first 120 s, the average
available bandwidth over the remainder appears to be only
180 kbps. By continuing to adapt to the network, we sig-
nificantly reduced the number of interruptions that the
user would have experienced with nonadaptable video.
The protocol does not provide a guaranteed service, but
it does provide a service which is much less prone to inter-
ruptions in playback. Also any sustained file transfer or
web surfing between the same computers would receive
the same bandwidth as the video connection.

5. CONCLUDING REMARKS

We have presented a novel application for streaming
real time video on the Internet. It consists of an innovative
technique for adapting precompressed MPEG video in
real time and a protocol which adapts to the available
bandwidth in an Internet-friendly way. Dynamic rate shap-
ing was shown as an effective way to create a scalable codec
from one which was inherently nonscalable. In addition, a
mixed-mode algorithm was presented which, although not
optimal, performs almost identically with very low com-
plexity.

221

The protocol presented was shown to be as friendly to
the Internet as TCP, while still managing to be semi-reli-
able, providing relatively low delay, and significantly de-
creasing the likelihood of interruptions in playback. It uses
the TCP congestion window, coupled with a rate-control
algorithm to obtain an estimate of the available bandwidth
in the network. It also uses an intelligent selective retrans-
mission scheme, so as not to waste precious bandwidth.

Finally, we performed a variety of tests to experimentally
evaluate our protocol design goals of fairness, quick con-
vergence, and stability. We showed analytically and experi-
mentally that these goals were met in both a controlled
environment and also in tests in the wide area Internet.

REFERENCES

1. E. Altman et al., Discrete-time analysis of adaptive rate control mech-
anisms, in Fifth International Conference on Data Communication
Systems and their Performance, October 26-28, 1993, Vol. C-21,
pp- 121-140.

2. L. Benmohamed and S. Meerkov, Feedback control of congestion
in packet switching networks: The case of the single congested node,
IEEE/ACM Trans. Networking 1(6), 1993, 693-708.

3. R. Bollow, Video Transmission Using the Available Bit Rate Service,
Master’s thesis, Berlin University of Technology.

4. J. Bolot and U. Shankar, Dynamical behavior of rate-based flow
control mechanisms, ACM Comput. Commun. Rev. 20, 1990, 35-49.

5. J. Bolot and T. Turletti, A rate control mechanism for packet video
in the Internet, in IEEE Infocom, Toronto, Canada, June 1994.

6. I. Busse, B. Deffner, and H. Schulzrinne, Dynamic QoS control of
multimedia applications based on RTP, in First International Work-
shop on High Speed Networks and Open Distributed Platforms, St.
Petersburg, Russia, June 1995.

7. Z. Chen, S. M. Tan, R. H. Campbell, and Y. Li, Real time video and
audio in the world wide web, World Wide Web J. 1, 1996.

8. A. Eleftheriadis, Dynamic rate shaping of compressed digital video,
Ph.D. thesis, Columbia University, New York, New York, 1995.

9. A. Eleftheriadis and D. Anastassiou, Optimal data partitioning of
MPEG-2 coded video, in Proceedings, 1st IEEE International Confer-
ence on Image Processing, Austin, Texas, November 1994, p. 1.273~
1.277.

10. A. Eleftheriadis and D. Anastassiou, Meeting arbitrary QoS con-
straints using dynamic rate shaping of coded digital video, in Proceed-
ings, 5th International Workshop on Network and Operating System
Support for Digital Audio and Video, Durham, NH, April 1995,
pp. 95-106.

11. A. Eleftheriadis and D. Anastassiou, Constrained and general dy-
namic rate shaping of compressed digital video, in Proceedings, 2nd
IEEE International Conference on Image Processing, Washington,
DC, October 1995.

12. A. Eleftheriadis, S. Pejhan, and D. Anastassiou, Architecture and
algorithms of the Xphone multimedia communication system, ACM/
Springer-Verlag Multimedia Systems J. 2(2), 1994, 89-100.

13. B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Intro-
duction to MPEG-2, Chapman & Hall, New York, 1997.

14. Information Technology. Coding of moving pictures and associated

audio for digital storage media at up to about 1,5 Mbit/s, ISO/IEC
International Standard 11172 (MPEG-1), 1993.

222

15. Information Technology. Generic coding of moving pictures and asso-
ciated audio, ITU-T Recommendation H.262, ISO/IEC International
Standard 13818 (MPEG-2), 1996.

16. H. Kanakia, P. Mishra, and A. Reibman, An adaptive congestion
control scheme for real-time packet video transport, IEEE/ACM
Trans. Networking 3(6), 1993, 671-682.

17. S.Jacobs and A. Eleftheriadis, Providing video services over networks
without quality of service guarantees, in World Wide Web Consortium
Workshop on Real-Time Multimedia and the Web, Sophia-Antipolis,
France, October 24-25, 1996.

18. S. Jacobs and A. Eleftheriadis, A real time protocol that guarantees
fairness with TCP, IEEE/ACM Trans. Networking, in press.

19. D. LeGall, MPEG: A video compression standard for multimedia
applications, Comm. ACM 34(4), 1991, 46-58.
20. J. Mahdavi and S. Floyd, TCP-Friendly Unicast Rate-Based Flow

Control, Technical note, end2end-interest mailing list, January 8,
1997.

21. M. Marsan, et al., Simulation analysis of TCP and XTP file transfers in
ATM networks, in Proceedings of Protocols for High Speed Networks,
Sophia-Antipolis, France, Oct. 28-30, 1996, pp. 29-47.

22. J. Postel (Ed.), Transmission control protocol, Inform. Sci. Inst.,
Request for Comments 793, September 1981.

23. K. K. Ramakrishnan and R. Jain, A binary feedback scheme for
congestion avoidance in computer networks, ACM Trans. Comput.
Systems 8, 1990, 158-181.

24. K.Ramchandran and M. Vetterli, Rate-distortion optimal fast thresh-
olding with complete JPEG/MPEG decoder compatibility, in Pro-
ceedings, Picture Coding Symposium *93, March 1993.

25. Y. Shoham and A. Gersho, Efficient bit allocation for an arbitrary
set of quantizers, IEEE Trans. Acoust. Speech Signal Process. 36(9),
1988, 1445-1453.

26. W. Stevens, TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms, Request for Comments 2001, January
1997.

27. R. Vaccaro, Digital Control, A State Space Approach, McGraw-Hill,
New York, 1995.
28. R. Wilder, Fairness issues for mixed TCP/OSI internets, in Military

Communications in a Changing World, MILCOM’91, McLean, VA,
pp. 177-181.

JACOBS AND ELEFTHERIADIS

STEPHEN JACOBS received both the B.S. and M.S. in electrical
engineering from Columbia University in 1994 and 1995, respectively.
He also holds a B.A. in physics from Bard College. He is currently a
Ph.D. candidate in the Electrical Engineering Department at Columbia
University and a graduate research assistant in the Image and Advanced
Television Laboratory. His research interests include adaptive multime-
dia protocols and applications for networks without quality of service
guarantees. In 1996, Jacobs was awarded the Kodak Fellowship. He is a
student member of the IEEE.

ALEXANDROS ELEFTHERIADIS was born in Athens, Greece, in
1967 and received his Ph.D. in electrical engineering from Columbia
University in 1995. Since 1995 he has been an assistant professor at
Columbia, where he is leading a research team working on media repre-
sentation and communication as well as multimedia programming, au-
thoring, and playback tools (see http://www.cnmtc.columbia.edu for more
information). Dr. Eleftheriadis is a member of the ANSI NCITS L3.1
Committee and the ISO-IEC JTC1/SC29/WG11 (MPEG) Group, where
he serves as the Editor of the MPEG-4 Systems specification. His awards
include an NSF career award.

