

Modeling and optimization techniques for

digital video communication

Pankaj Batra

Submitted in partial fulfillment of the

Requirements for the degree of

Doctor of Philosophy

In the Graduate School of Arts and Sciences

Columbia University

2004

© 2004

Pankaj Batra

All Rights Reserved

ABSTRACT

Modeling and optimization techniques for digital video

communication

Pankaj Batra

This dissertation investigates the modeling and optimization of several problems that arise

during compression or adaptation of both frame-based and object-based (structured)

multimedia content. In particular, we address:

(a) The optimal dynamic rate shaping (DRS) of Markov-1 sources.

We present the first extensive experimental study on the various DRS algorithms (causally

optimal, memoryless, and rate-based) both in their constrained and generalized forms. The

study proves the computational viability of the DRS approach to transcoding and identifies a

range of rate shaping ratios for which it is better than requantization, both complexity-wise as

well as in performance. We substantiate the almost-optimal experimental performance of the

memoryless algorithm by analyzing the behavior of the DRS problem assuming a first order

Markovian source. By deriving the statistical and rate-distortion characteristics of different

components of the inter-frame rate shaping problem, we offer an explanation as to why the set

of optimal breakpoint values for any frame is somewhat invariant to the accumulated motion

compensated shaping error from past frames. This result is significant as it opens up the way to

construct much simpler memoryless algorithms that give minimal penalty in achieved quality,

not just for this, but possibly other types of algorithms. Of equal, if not more, importance is the

very first use of matrix perturbation theory for tracking the spectral behavior of the auto-

correlation matrix of the source signal and the motion residual it yields.

(b) The modeling of object based audio-visual communication systems, such as MPEG-4, both

at the server (proxy) side for transcoding purposes and at the client end for adaptive play-out

control.

For the server-side problem, we suggest a way of modeling object-based scalability and some

functionalities that it brings with it. Our goal in this study is to find algorithms that aid in semi-

automating the selective addition/dropping of objects from a scene to provide content

scalability. The 'multiple choice knapsack problem (MCKP)' is used to model objects encoded

at different target bit rates. We discuss several efficient ways to choose objects optimally at the

transcoded rate, and build on the above integer problem to impose logical inter-dependencies

among objects. Experimental results are presented validating the efficiency and performance

of these linear programming based algorithms.

For the client-side problem, we discuss the use of an early-tardy penalization framework for

implicitly modeling limited client resources and for scheduling of play-out under relaxed

temporal constraints. This model and suggested algorithms would be useful to control the

selective playout of content that a low-end client (for instance a PDA) does not have enough

resources to consume. The problem is studied by classifying it into the 'composition' and

'stream-based' model. Our main contribution in this work is in introducing a hitherto un-

noticed way of formulating the playout problem, and in giving an analysis of optimal

algorithms and simplifying heuristics to solve it.

(c) The best possible intra and inter-frame quantization.

We use the MCKP formulation to study the intra-frame bit allocation problem as well, and

suggest how to use the linear relaxation instead of the Lagrangian relaxation, dynamic

programming or the marginal analysis approach. This method leads to a provable reduction in

algorithmic complexity, is slightly more generic than the other ones and provides an alternate

linear-programming duality based approach for a vast array of problems formulated in an

Operational Rate-Distortion context. For the inter-frame quantization problem, we study the

incremental improvement obtained by relaxing a so-called causality assumption and

incorporate for dependencies explicitly in the model. As a way to solve the problem

approximately, we discuss the usage of linear and Lagrange relaxations followed by

randomized rounding. Our experimental results show an improvement of about 0.5 dB over the

causally optimal solution, thus justifying the usage of the causality assumption as a very

practical one for reducing problem complexity for a marginal loss of quality.

The unifying thread in all the above studies is the extensive use of known mathematical

programming tools for modeling and analysis. Although some of these have been fairly well

known in other research communities, the application and introduction of each of these to video

compression researchers is novel. Further, all the studies conducted led to either an

improvement over the best known algorithm or offered substantial insight into the problem

structure and ways to simplify it.

Contents

1. Introduction ... 1

1.1 Historical background ... 1
1.2 Outline and contributions of the Thesis ... 3

1.2.1 Modeling MPEG-4 systems and contributions to operational R-D theory .. 3
1.2.2 Playout control in MPEG-4 based systems .. 4

 1.2.3 Content based video transmission over wireless channels 5
 1.2.4 Dependent quantization and its extensions... 6
 1.2.5 Optimal dynamic rate shaping of Markov-1 sources 7

2. Modeling and efficient optimization for object-based scalability and some related
problems.. 9

2.1 Introduction .. 10
2.1.1 Results .. 11
2.1.2 Related work ... 14

2.2 Preliminaries... 16
2.2.1 Mathematical background ... 16
 2.2.1.1 Linear programming ... 16
 2.2.1.2 Integer programming .. 18
2.2.2 A simplistic formulation.. 19
 2.2.2.1 Finding optimal solution ... 20
 2.2.2.2 Finding approximate solution .. 22
 2.2.2.3 Extensions .. 23

2.3 Modeling scalable objects ... 23
2.3.1 Formulation and review... 23
2.3.2 Intuition behind linear relaxations ... 24

ii

 2.3.2.1 Connecting Lagrange and LP relaxations 25
 2.3.2.2 Outline for solving LP relaxations.. 27
2.3.3 Searching for the optimal LP-dual variable .. 29
 2.3.3.1 Initialization... 29
 2.3.3.2 Search for optimal dual variable... 30
 2.3.3.3 Solution to the primal problem... 32
2.3.4 Features and limitations of LP relaxations ... 33

2.4 Inter-dependencies and non-linearities .. 35
2.4.1 If-Then constructs ... 36
2.4.2 Either-Or constructs .. 36
2.4.3 Non-linearities in the objective function .. 39

2.5 Object aggregation.. 40
2.6 Online heuristics ... 42
2.6 Experimental comparison.. 44

2.6.1 Without dependencies ... 44
2.6.2 With dependencies .. 45

2.7 Concluding Remarks... 47

3. A framework for optimal scheduling of structured and streaming media 49

3.1 Introduction .. 50
3.1.1 Approach... 51
3.1.2 Related work ... 53
3.1.3 Outline .. 54

3.2 Modeling .. 55
3.2.1 Earliness-lateness costs ... 56
 3.2.1.1 Lateness penalty .. 57
 3.2.1.2 Earliness penalty.. 60
 3.2.1.3 Estimating parameters.. 60
3.2.2 Scheduling for composition... 62
3.2.3 Scheduling for streaming... 63

3.3 Solution to stream-based model... 65
3.3.1 Algorithm.. 65
3.3.2 Observations ... 66

3.4 Solution to composition model.. 67
3.4.1 A brute force optimal algorithm... 68
3.4.2 Heuristics .. 69
 3.4.2.1 Approximate dynamic programming.. 70

iii

 3.4.2.2 Dispatching rules ... 73
 3.4.2.3 Tabu search ... 75
 3.4.2.4 Genetic algorithm .. 76

3.5 Variants .. 77
3.5.1 Using both the models together ... 77
3.5.2 Inter-dependent objects ... 79

3.6 Summary of the chapter and concluding remarks ... 79

4. Content based schemes for video transmission over wireless channels 81

4.1 Introduction .. 82
4.2 Related work... 83

4.2.1 Data partitioning and layered coding ... 84
4.2.2 ARQ/FEC schemes ... 85
4.2.3 Concealment options and robust codecs... 85

4.3 An approach based on sub-stream segmentation.. 86
4.4 FEC based schemes... 87

4.4.1 Segmentation based on extent of intra-coding.. 87
4.4.2 Motion based segmentation ... 89
4.4.3 FEC based resource allocation... 90
4.4.4 FEC results.. 91

4.5 Retransmission based schemes .. 101
4.5.1 Model.. 101
4.5.2 Segmentation... 103
4.5.3 Adaptive decoder buffer control .. 104
 4.5.3.1 Issues... 104
 4.5.3.2 Analysis and algorithm .. 105
4.5.4 ARQ results... 109

4.6 Summary of the chapter .. 116

5. Alternative formulations for bit allocation with dependent quantization 118

5.1 Introduction .. 118
5.1.1 Related work ... 119
5.1.2 Results .. 120

5.2 Problem formulation and analysis ... 121
5.2.1 A disaggregated formulation ... 122
5.2.2 A typical run over an image sequence.. 126

iv

5.2.3 The rounding algorithms ... 128
 5.2.3.1 LP-based dependent rounding ... 128
 5.2.3.2 LR-based dependent rounding ... 131

5.3 Experimental results.. 133
5.4 Summary of the chapter .. 146

6. Optimal Dynamic Rate Shaping of Markov-1 Sources 147

6.1 Introduction .. 148

6.1.1 Related work ... 149
6.1.2 Results .. 150

6.2 Dynamic Rate Shaping Problem Formulation.. 151
6.2.1 Constrained DRS Problem Definition.. 151
6.2.2 Constrained DRS of Intra-Coded Pictures.. 154
6.2.3 Constrained DRS of Inter-Coded Pictures.. 155
6.2.4 Unconstrained Rate Shaping.. 171

6.3 Problem Analysis for Rate Shaping of Markov-1 Sources 178
6.3.1 Source Model .. 178
6.3.2 MCFD Model.. 178
6.3.3 Rate-Distortion Model... 181
6.3.4 Current Frame-Only Shaping Error.. 187
6.3.5 Accumulation Error... 188
6.3.6 Properties of the Optimal Solution... 189

6.4 Summary of the chapter .. 191

7. Conclusions and Future Work ... 192

7.1 Approximately optimal bit allocation .. 193
7.2 Scheduling objects .. 193
7.3 Memoryless algorithms and dependent allocation ... 194

Appendices .. 195

A.1. Branch and bound method... 195
A.2. Dynamic programming for MCKP .. 198
A.3. Proof of propositions in Chapter 3 .. 199

References ... 200

v

vi

List of Figures

Chapter 2.

Figure 2.1. Forward dynamic program. .. 22
Figure 2.2. Illustration of dominance lemma .. 28

Chapter 3.

Figure 3.1. System model (a) Server architecture (b) Client architecture.. 51
Figure 3.2. Structure of FlexMux packet in Simple mode... 55
Figure 3.3. Structure of FlexMux packet in MuxCode mode. 55
Figure 3.4. Lateness penalty... 58
Figure 3.5. Earliness and lateness penalties. ... 59
Figure 3.6. Dynamic programming when used on a relaxed problem can be used

to get seed solution. .. 72
Figure 3.7. Combination of WSPT first and WLPT first dispatching rules. 75

Chapter 4.

Figure 4.1. Logical level diagram of the system. ... 84
Figure 4.2. Percentage of intra coded macroblocks in a typical H.263 sequence.......... 89
Figure 4.3. Template assignment for error robustness ... 91
Figure 4.4 Results from different FEC allocation schemes. Channel BER without

any FEC = 5.1 x 10
-3

 on the average (a) Original sequence (b) no data
segmentation (c) headers + P1 + P2 +P3 and (d) headers + P1 + P2 + P3 +
motion.. .. 98

Figure 4.5. Incremental effects of various attributes .. 100
Figure 4.6. System diagram of the proposed ARQ-based schemes. The buffers

shown are ARQ buffers... 101
Figure 4.7. Error distribution before retransmissions (a) No interleaving (b)

interleaving degree = 20, and (c) interleaving degree = 40................................ 111
Figure 4.8. The number of frame errors after retransmissions. Channel BER

(without FEC) = 5.1 x 10
-3

 (a) No interleaving (b) interleaving degree = 20,
and (c) interleaving degree = 40. ... 113

Figure 4.9. Arrival and display deadlines. .. 115

vii

Chapter 5.

Figure 5.1. Dependent quantization framework.. 123

Chapter 6.

Figure 6.1. Operation of a dynamic rate shaper. ... 153
Figure 6.2. Breakpoint definition for constrained and unconstrained DRS................ 154
Figure 6.3. Motion compensated transform encoder... 156
Figure 6.4. Results of various rate-shaping algorithms ... 158
Figure 6.5. PSNR (Y only) for the “Flower” sequence, coded at 10 Mbps and

shaped to 6.5 and 6 Mbps using DRS with causally optimal, memoryless and
rate-based algorithms .. 161

Figure 6.6. PSNR (Y only) for the “Table Tennis” sequence, coded at 10 Mbps
and shaped to 6.5 and 6 Mbps using DRS with causally optimal, memoryless
and rate-based algorithms.. 163

Figure 6.7. Results of various rate-shaping algorithms on different MPEG-2
Sequences encoded at 10 Mbps and transcoded to different target rates............. 166

Figure 6.8. Comparison of PSNR performance of C(44) and C(1) DRS for
different MPEG-2 Sequences encoded at 10 Mbps and transcoded to
different target rates. .. 169

Figure 6.9. Comparison of PSNR performance of constrained and un-constrained
DRS for different MPEG-2 Sequences encoded at 10 Mbps and transcoded
to different target rates. .. 175

Figure 6.10. A(a) as a function of the inaccuracy (a) in motion estimation. 180
Figure 6.11. Spectral density function.. ... 183
Figure 6.12. Rate distortion function for small distortion. .. 184
Figure 6.13. Rate (for a given distortion) of the MCFD signal as a function of the

inaccuracy in motion estimation (a) and the source correlation coefficient. 185
Figure 6.14. Rate distortion function for large distortion. ... 187

Appendices.

Figure 8.1. The branch and bound method. .. 197
Figure 8.2. The target display time should coincide with the completion (end of
decoding) time of some object. ... 199

viii

List of Tables

Chapter 2.

Table 2.1. Performance without dependencies .. 46
Table 2.2. Performance with dependencies. .. 47

Chapter 3.

Table 3.1. Scheduling terminology vs. genetics terminology...................................... 77

Chapter 4.

Table 4.1. Wireless parameters used in the simulation ... 92
Table 4.2. Video parameters. ... 93
Table 4.3. Simulation conditions for FEC .. 96
Table 4.4. Video parameters for ARQ simulations. .. 102
Table 4.5. Classes for ARQ. .. 104

Chapter 5.

Table 5.1. Variables used... 123

Chapter 6.

Table 6.1. Comparison of the complexity of various stages of C(1) and C(44)
algorithms for the “Cactus and Comb sequence”. .. 170

Table 6.2. Comparison of the complexity of various stages of C(1) and C(44)
algorithms for the “Flower sequence”. .. 170

Table 6.3. Comparison of the complexity of various stages of C(1) and C(44)
algorithms for the “Mobile sequence”. .. 171

Table 6.4. Comparison of the complexity of various stages of C(1) and C(44)
algorithms for the “Susie sequence”. ... 171

Table 6.5. Comparison of the complexity of various stages of C(1) and C(44)
algorithms for the “Table tennis sequence”. .. 171

Table 6.6. Comparison of the complexity of various stages of CDRS and GDRS
algorithms for the “Cactus and Comb sequence”. .. 176

Table 6.7. Comparison of the complexity of various stages of CDRS and GDRS
algorithms for the “Flower sequence”. .. 177

Table 6.8. Comparison of the complexity of various stages of CDRS and GDRS
algorithms for the “Mobile sequence”. .. 177

ix

Table 6.9. Comparison of the complexity of various stages of CDRS and GDRS
algorithms for the “Susie sequence”. ... 177

Table 6.10. Comparison of the complexity of various stages of CDRS and GDRS
algorithms for the “Table tennis sequence”. .. 177

x

Acknowledgements

This work has benefited from interactions with a number of people over the course of

past few years. First and foremost, I wish to express my deep gratitude to my advisor Prof.

Alexandros Eleftheriadis for his continuing technical guidance and friendship. Alex had

always been available for sound advice and much needed confidence at times when it mattered

most. I will always be grateful to him for encouraging me to pursue my multi-disciplinary

research interests. It was a pleasure to hear and learn from his criticism, suggestions, and a

very practical way of looking at problems – hopefully some of this has eroded on to me.

Special thanks are due to the other members of the thesis committee, Professors Jay

Sethuraman, Dan Ellis, Dan Rubenstein and Dr. Amy Reibman. I am thankful for their

constructive suggestions to improve this work, for accommodating for the defense in their tight

schedules, and most of all for their signatures!

I wish to thank the many Professors in the IEOR Department at Columbia for letting me

sit in their classes. That interaction has given me much wider spectrum and has affected many

portions of this thesis.

Throughout my stay in school, I benefited from (far too many) internships at nearby

research labs. I thank Dr. Li-Fung Chang and Dr. M-T Sun for hosting me at Bellcore during

my Masters, and for letting me use the wireless channel simulator for the experiments reported

in Chapter 4. A couple of years later, I swam across the Hudson and spent a summer at David

Sarnoff Research Center. That brief stay got me interested in MPEG-4 and subsequently led to

the work in Chapters 2 and 3. I thank all the members of that group, in particular Dr. Iraj

Sodagar, Dr. Ya-Qin Zhang, Dr. Tihao Chiang, and Dr. Sassan Pejhan, for a most enjoyable

summer. In the summer of 1999, I visited Bell Labs to work on 3D audio - an area completely

new to me. Although that project had somewhat mixed results, I hope to work in the area

sometime in future. A “Two famous papers” paper that I read during that stay will always be

an inspiration. In early 2000, I visited AT&T Research for a short-term project on MPEG-4

systems. I thank Bob Schmidt for clarifying several doubts about the IM1 player and for his

xi

help with the implementation. If all this was not enough, I decided to swim the Hudson yet

again, and beware, this time against the tide - and so began my first job at SMARTS. I have

learnt a lot about real-world problems while at SMARTS and still continue to enjoy this very

fast paced company.

Finally, my love goes to my parents, sister and brother in law for years of

understanding, love, and faith. They are undoubtedly the cruise ship all this swimming

happens on!

xii

1

CHAPTER 1

Introduction

Contents

1.1 Historical background ...1
1.2 Outline and contributions of the Thesis..3

1.2.1 Modeling MPEG-4 systems and contributions to operational R-D theory...3
1.2.2 Playout control in MPEG-4 based systems...4

 1.2.3 Content based video transmission over wireless channels5
 1.2.4 Dependent quantization and its extensions ...6
 1.2.5 Optimal dynamic rate shaping of Markov-1 sources...................................7

1.1 Historical Background

The last decade has seen a dramatic growth in the prevalence and widespread acceptance of

multimedia services and related electronic consumer gadgets. This has been possible largely due

to the interoperability achieved by adhering to standardized compression techniques. Most

notable among these are the MPEG-1 and MPEG-2 developed by ISO and the H.26x series of

standards of the ITU. While the first two triggered an explosion in digital television, DVD,

Video CD, video recording, and broadcasting industries, the last one catalyzed the use of voice

2

and video over IP.

MPEG-1, MPEG-2, H.261 and H.263 had done their job for the bit rates and fairly limited level

of interactivity for which they had been designed. However, as these standards were getting

frozen, the Internet revolution took over and offered people alternative modes for receiving and

interacting with audio-visual content. This led the ISO, in early 1993, to begin the MPEG-4

project that was to come up with a compression standard which glued together object based

audio-visual content, while concurrently providing state-of-the-art compression efficiency

ranging from very low to fairly high bit rates supporting a wide array of applications from

mobile video telephony to high-end ones like professional video editing. Such ambitious goals

did indeed at times diffuse the focus and direction of the project. However, it also led to the

development of fairly new concepts of shape encoding, synthetic compression, facial and body

animation, and scene description for defining the spatio-temporal layout and ways to interact

with dynamic aspects of content along with a more flexible way of multiplexing and

synchronizing it.

While standards make technologies interoperable and accessible to the general pubic, they also

leave considerable room for optimization, system modeling and improvement. This thesis deals

with several optimization problems addressing: (a) the best possible intra as well as inter-frame

video compression efficiency achievable, (b) the optimal dynamic rate shaping of sources with a

known distribution, and (c) the modeling of object based audio-visual communication systems

such as MPEG-4, both at the server (proxy) side as well as the client end for adaptive play-out

control. The unifying thread in all these studies will be the extensive use of known mathematical

programming tools for modeling and analysis. Although some of these tools have been fairly

well known in other research communities, their application and introduction to video

compression researchers in novel. These tools include, (a) the use of linear relaxations instead

of the Lagrangian, dynamic programming or marginal analysis approach for solving the

somewhat traditional bit-allocation problem, (b) the use of rounding algorithms to approximate

integer programming solutions, (c) the use of an early-tardy penalization framework for

implicitly modeling client side resources and for scheduling of play-out control, and (d) the use

of matrix perturbation theory for tracking the spectral behavior of the auto-correlation matrix of

3

an AR(1) signal and the motion residual signal it yields. Each of the above leads to either an

improvement over the best known algorithm or offers substantial novel insight into the problem

structure and ways to simplify it. We discuss these issues in more detail in the following section

and subsequent chapters.

The material contained in this thesis appears in the following papers: [11][12][13][14][15]

[16][17][45][46].

1.2 Outline and contributions of the thesis

1.2.1 Modeling MPEG-4 Systems and contributions to operational R-D theory

MPEG-4 is the first visual coding standard that allows coding of scenes as a collection of

individual audio-visual objects. A large portion of this thesis deals with abstracting and building

models for analyzing problems related to MPEG-4 systems. We start in Chapter 2 with

formulations for modeling object-based scalability and some functionalities that it brings with it.

Our goal in this study is to find algorithms that aid in semi-automating the selective

addition/dropping of objects from a scene to provide content scalability. Objects are assumed to

have been pre-assigned preferences (priorities) and weights (bit-rates), and our objective

thereafter is to find the optimal set of objects to composed the scene. We begin with a simplistic

model for object-based scalability using the “knapsack problem” – a problem for which the

optimal object set can be found using known schemes such as dynamic programming, the branch

and bound method and approximation algorithms. The above formulation is then generalized to

model authoring or multiplexing of scalable objects (e.g., objects encoded at various target bit-

rates) using the “multiple choice knapsack problem”. We relate this model to several problems

that arise in video coding; the most prominent of these being the bit allocation problem. Unlike

previous approaches to solve the operational bit-allocation problem using Lagrangian relaxation,

we suggest to use the linear programming (LP) relaxation of this problem. We show that for this

problem the duality gap for Lagrange and LP relaxations is exactly the same. The LP relaxation

is solved using strong duality with dual descent – a procedure that can be completed in linear

time. We show that there can be at most two fractional variables in the optimal primal solution

4

and therefore this relaxation can be justified for many practical applications. This work reduces

problem complexity, guarantees similar performance, is slightly more generic, and provides an

alternate LP-duality based proof for earlier work by Shoham and Gersho [144].

Next we show how additional constraints may be added to impose logical inter-dependencies

among objects in a presentation and discuss how object aggregation can be exploited in reducing

problem complexity. The marginal analysis approach of Fox is suggested as a method to do re-

allocation with incremental inputs. It helps in efficiently re-optimizing the allocation when a

system has user interactivity, appearing or disappearing objects, time driven events etc. (features

that are all an integral part of MPEG-4 systems). Finally, we present a brief experimental study

to analyze the performance of some of the algorithms discussed above. Using rate-distortion

data collected from encoded images, we compare the complexity and solution qualities of exact

methods and LP relaxations, both for problems with and without extra dependencies.

We close this chapter by suggesting that approximation algorithms for the multiple choice

knapsack problem, although a theoretical nicety for the most part, can be used to quantify the

complexity vs. quality tradeoff at the encoder in a tunable and universal way.

Chapter 2 deals with modeling issues related to MPEG-4 systems. These may aid in transcoding

(structured) content once it has been authored. Most of these algorithms are likely to reside at

the content server or an intermediate proxy. The next chapter explores flexibilities that exist at

the client side. We will present models and algorithms for adaptive playout control and discuss

an alternative (implicit) way of modeling resource constraints.

1.2.2 Playout control in MPEG-4 based systems

In Chapter 3, we investigate algorithms to schedule the playout or retrieval of audio-visual

objects under relaxed temporal restrictions. These algorithms control the selective playout of

content that the client-side (for instance a PDA) does not have enough resources to consume.

Unlike Chapter 2, we present an implicit way of modeling resource contention and use an early-

tardy (ET) penalization framework to analyze the problem. In an ET framework, events that

5

happen both before and after their ideal due times get penalized. For the playout problem, the

earliness penalty comes from decoding and buffering early objects; and the lateness penalty from

the loss in correlation that results by skipping some video object instances. We discuss the

justification for using an ET framework for the playout scenario and present ways to estimate

parameters of this model.

Two sub-parts are used to analyze the ET problem. The first (called composition problem)

involves scheduling the decoding and playout of objects having a common display time, e.g.,

while doing a pull-based display in a web browser. The second (called streaming problem)

discusses scheduling issues with isochronous media. We present a brute force optimal scheme

and several heuristics to solve the composition model. These heuristics use a preliminary fast

sub-optimal scheme to get seed solutions and subsequently use a local neighborhood search

procedure to improve the seed solution by giving it a minor perturbation. The streaming problem

leads to a non-work-conserving scheduling discipline for transmission or play-out control. A

method to optimally insert idle time in the bitstream, or equivalently, a way to add optimal

slippage in displaying frames is given. The algorithm can be viewed as a way to reduce potential

burstiness in traffic at a minimal cost. Our main contributions in this work are in introducing a

hitherto un-noticed way of formulating the playout problem, usage of this framework, and

analysis of heuristics.

1.2.3 Content-based video transmission over wireless channels.

As a byproduct of our study in Chapter 3, we find how spatio-temporal variance in visual content

affects our scheduling decisions. Chapter 4 explores the flexibilities one gets due to visual cues

in further detail. We present content-based approaches for visual segmentation and resource

allocation for transmission over wireless channels. Unlike earlier chapters in this thesis, most of

the work discussed in Chapter 4 predates the MPEG-4 and later MPEG-7 standards. While we

use a frame-based codec (H.263), nothing prevents us from using similar ideas in object-based

standards.

6

We discuss content dependent FEC and ARQ schemes to do adaptive resource allocation for

video transmission over wireless channels. The material in this chapter may be best interpreted

in the context of the MPEG-7 standard, by which the visual information will soon be

supplemented with metadata representative of its content. FEC based schemes are used to

provide class-dependent error robustness and a modified ARQ technique for giving constrained

delay and loss. We use frame-type (extent of intra coding), scene changes, and motion-based

procedures to provide finer level of control for data segmentation in addition to standard headers

and data-type (motion vectors, low and high frequency DCTs) based segmentation. An

experimental simulation platform is used to test the objective (SNR) and subjective effectiveness

of proposed algorithms. The FEC schemes improve both objective and subjective video quality

significantly. An experimental study on the usage of selective repeat ARQ for one-way real time

video applications is presented. We discuss the constraints of using ARQ under display

deadlines, limited buffering requirements and small initial startups. The proposed ARQ scheme

greatly reduces the packet errors, when used along with decoder buffer control and source

interleaving. The common theme integrating the study of our FEC and ARQ algorithms is the

use of visual content in deciding the resource allocation.

1.2.4 Dependent quantization and its extensions

Early in Chapter 2 of this thesis we discuss how to represent logical inter-dependencies among

objects that compose a presentation. Although this can be done easily, the resulting integer

problem could become extremely difficult to solve. As a way around it, Chapter 2 proposes to

use LP relaxations and after solving this relaxation we freeze the variables that satisfy integrality

in the optimal LP solution at their respective values. This is followed by an exhaustive search

for the best solution over fractionally assigned variables. The limited experiments that we

conduct in Chapter 2 gave very encouraging results for the dependency structure considered.

However, as an approach, this is certainly not generic, and may never even lead to a feasible

integral solution.

In Chapter 5, we revisit this issue by restricting our attention to a special dependency structure.

We present multiple choice knapsack problem (MCKP)-like formulations to model predictive

7

inter-dependencies in motion-compensated coders, a problem that has been researched by earlier

authors also. Our formulation lets us relax a so called causality assumption made by these

authors and allows us to study the incremental improvement thus obtained. A rounding

procedure is used to generate heuristic solutions after solving linear relaxation of the proposed

formulation. This approach has less complexity than earlier work in the area based on the usage

of dynamic programming. Experimental results show an improvement of about 0.5 dB over the

causally optimal solution. From a practical standpoint, this validates that the causality

assumption is a very justified one to reduce problem complexity for a marginal loss of

optimality.

1.2.5 Optimal dynamic rate shaping of Markov-1 sources

Yet another problem where the affects of dependency are known to have negligible affect on the

optimal point selection is dynamic rate shaping. In this problem, one attempts to selectively drop

a sequence of DCT coefficients so as to meet a rate constraint while minimizing the overall

distortion due to shaping. Even if we make the causality assumption for this problem and

optimize assuming given optimal decisions from the past, one needs to keep track of motion

residual signal trickling from earlier frames. However, our earlier experimental results suggested

that the optimal breakpoint stays pretty much the same even if we drop the accumulated motion

compensated shaping error. Note that this memoryless assumption, on top of the causality

assumption, greatly simplifies the practical use of (almost optimal) dynamic rate shaping. A

desire to better understand this somewhat non-intuitive behavior led us to rigorously investigate

the optimal DRS problem with a known source distribution.

In Chapter 6 we derive the statistical and rate distortion characteristics of the different

components of the inter-frame DRS problem assuming an AR(1) source. By using results from

Matrix Perturbation Theory along with the above facts, we show that the spectral characteristics

of the source signal alone and the source along with the motion residual signal track each other.

Therefore, the set of optimal breakpoints for any frame is somewhat invariant to the accumulated

motion compensated shaping error from past frames and may be very reasonably approximated

using the current frame shaping error alone. This result is very significant since it opens up the

8

way to construct much simpler memoryless algorithms that give minimal penalty in achieved

picture quality.

9

CHAPTER 2

Modeling and efficient optimization for object-based scalability and
some related problems

Contents

2.1 Introduction... 10
2.1.1 Results... 11
2.1.2 Related work ... 14

2.2 Preliminaries ... 16
2.2.1 Mathematical background.. 16
 2.2.1.1 Linear programming .. 16
 2.2.1.2 Integer programming ... 18
2.2.2 A simplistic formulation .. 19
 2.2.2.1 Finding optimal solution ... 20
 2.2.2.2 Finding approximate solution .. 22
 2.2.2.3 Extensions ... 23

2.3 Modeling scalable objects.. 23
2.3.1 Formulation and review ... 23
2.3.2 Intuition behind linear relaxations.. 24
2.3.3 Searching for the optimal LP-dual variable .. 29
2.3.4 Features and limitations of LP relaxations.. 33

2.4 Inter-dependencies and non-linearities... 35
2.4.1 If-Then constructs.. 36
2.4.2 Either-Or constructs... 36

10

2.4.3 Non-linearities in the objective function .. 39
2.5 Object aggregation .. 40
2.6 Online heuristics.. 42
2.6 Experimental comparison .. 44

2.6.1 Without dependencies.. 44
2.6.2 With dependencies... 45

2.7 Concluding Remarks ... 47

2.1 Introduction

MPEG-4 [76][77][146], the latest in the series of multimedia compression standards being

developed by the ISO, is the first object-based visual coding standard. Unlike the H.261/3/3+

and the MPEG-1/2 standards, which were intended primarily for compression, in MPEG-4,

scenes are coded as an aggregation of synthetic and natural audio-visual objects, text and

graphics. These are supplemented with a flexible scene description. This brings in a lot more

flexibility in the way content is created, distributed, and consumed. At the authoring end, users

will soon have tools to create rich multimedia presentations on their low-end PCs.

Functionalities similar to those in text-document creation and editing will be supported for

images, audio and video. On the transmission side, the compression standard is much more

robust to channel errors. At the consumption end, users will be able to interact with the scene

and change its behavior. MPEG-4 features such as scene updates, routes, events etc. [7][147]

provide the ability to change content quality by changing fields of some nodes, or by adding or

removing locally stored objects from the scene. This also helps in filtering content so that it fits

the end-terminal’s capabilities and adapts well to changing network conditions. To complete the

loop, it is also expected that there will be a back channel signaling capability (an upstream

channel) between the client and server to do content manipulation at the source.

Not only does MPEG-4 provide tools for coding arbitrarily shaped objects, it also has the facility

to flexibly compose the scene and to interact with it. The main strength of the standard comes

from this object-oriented approach that lets a user interact with audio visual content in ways

11

more creative than traditional VCR modes like stop, rewind, play etc. The composition

information for the scene is carried as a separate elementary stream called Binary Format for

Scenes (BIFS) [147]. BIFS follows a Virtual Reality Modeling Language (VRML) [78] like

syntax. It describes a scene as a hierarchy of nodes. Audio-visual objects are leafs of this tree

and higher up in the tree are transforms that control rendering of objects in space and time. BIFS

commands can be used to add/delete objects, to activate or de-activate enhancement information

for scaleable coding, or to change attribute values of some objects without actually interacting

with the compressed object. This way, multimedia content can be made to adjust itself to suit the

transmission rate and quality. Below, we give a brief outline of supported features in MPEG-4

that are relevant in the context of this work. These are:

• Tools for encoding objects. Objects could be still images (textures), video (arbitrarily

shaped or frame based), synthetic or natural audio, speech, 2D and 3D graphics, text, face

and body animation, etc.

• A facility to flexibly compose the scene. As mentioned earlier, the composition information

for a scene is carried as a separate elementary stream called BIFS.

• Local user interaction with audio-visual content. BIFS-Commands can be used to

add/delete objects, to activate or de-activate enhancement information for scaleable coding,

or to change attribute values of some objects without actually interacting with the

compressed object. In addition BIFS-Anim may also be used to continuously animate a

scene.

• Remote interaction with the server. An ability to interact with the server using back-channel

signaling will be supported.

• MPEG-J. The work done under MPEG-Java (MPEG-J) provides a set of platform

independent application program interfaces (APIs) to be used for terminal control,

processing, and resource management. These APIs include – scene graph, network, decoder,

devices, and system capabilities API.

2.1.1 Results

MPEG-4 provides a structured mode of content representation, distribution and consumption.

Thus, the more traditional forms of spatio-temporal scalability [76][77][146], bit allocation

12

[115][131][140][144], and rate control [37][115][140], are likely to be soon supplemented by

object-based ones. In this work, we present formulations for modeling object-based scalability

and some functionalities that it brings with it. We assume that objects have been compressed

beforehand using scalable or non-scalable formats. The primary focus thereafter will be on

optimal object selection and bitrate distribution among the objects. We discuss optimal and

asymptotically optimal algorithms and heuristics for admission control of objects given their

nominal operational R-D point. We also discuss ways for authoring using scalable objects that

have been constant bit-rate (CBR) encoded at various candidate target bit rates. Furthermore, we

present generalizations for imposing inter-dependencies among objects, re-optimizing with

incremental (user) inputs and suggest some simple linearization schemes.

We start with an overly simplistic formulation in Section 2.2.2 and model object based

scalability as a “knapsack problem (KP)”, an extensively researched problem in Operations

Research (OR) literature. This is used to model a value-added service in which richer content is

made available for higher price or with an increase in resources. For sake of completeness, we

outline some known ways to do optimal object selection (or, admission control) based on

dynamic programming and the branch and bound method. Multimedia documents nowadays

may consist of a large number (easily around 100-1000s) of objects. Therefore, in order to

reduce the complexity involved in finding the optimal object set for large problems, some

heuristics are suggested.

In Section 2.3, we generalize the simplistic formulation of Section 2.2.2 to model authoring or

multiplexing using scalable objects (e.g., objects encoded at various target bit-rates). This is done

using the so-called “multiple choice knapsack problem (MCKP)”. This problem may also be

solved optimally using a dynamic programming approach. Unfortunately this avenue is

impractical due to a pseudo-polynomial space and time complexity. Instead, the primary focus

in this chapter will be on solving the linear programming (LP) relaxation of the above problem.

Almost all earlier work on the bit-allocation problem (which can be considered a special case of

MCKP) is based on Lagrangian relaxation (LR). Unlike Lagrange relaxations (where certain

hard constraints are relaxed into the objective function), in an LP relaxation we relax integrality

constraints on the variables. Note that integrality constraints are retained in Lagrange

13

relaxations. Since both LP and LR are relaxations, both give an infeasible optimal point that is

an upper bound on the objective function; but each can be used to find a heuristic solution by a

trivial rounding operation. We further go on to prove that both these relaxations lead to exactly

the same duality gaps (or approximation errors) for the problem under consideration. However,

an LP relaxation leads to a somewhat faster (linear time) algorithm that exploits strong duality

with dual descent. This gives a slight computational improvement and an alternate proof of

earlier work by Shoham and Gersho [144].

In Section 2.4, we give modifications to enforce inter-dependencies among objects in a

presentation. In particular, we explain how logical implications like if-then and either-or

constraints among objects can be imposed. We discuss how simple transformations can be used

to linearize certain forms of non-linearities. In Section 2.5, we suggest another transformation

that exploits object aggregation and helps in reducing problem complexity. The marginal

analysis approach of Fox [56] is suggested as a way to do online re-allocation in Section 2.6. It

is efficient to re-optimize the allocation when the system has provisions for user interactivity,

scene updates, on-the-fly changes like object transcoding, or other time driven events.

In summary, the main contributions of this work are the following:

1. We present a framework useful for modeling object-based scalability. It is easily extensible

to incorporate several practical enhancements such as logical inter-dependencies among

objects, simple non-linearities in the model, online implementations, and simplifications

obtained by object aggregation.

2. The MCKP formulation used for modeling scalable objects leads to a much faster (linear

time) algorithm for the much researched bit-allocation problem. The solution procedure is

based on solving the LP relaxation using dual descent. This work reduces problem

complexity, guarantees similar performance, is slightly more generic, and provides an

alternate LP-duality based proof for earlier work by Shoham and Gersho [144].

3. We briefly suggest that approximation algorithms may be used to quantify complexity vs.

quality tradeoff at the encoder in a tunable way. These algorithms lead to lossy universal

quantization (compression) schemes.

14

For publications related to this chapter, see [15].

2.1.2 Related work

MCKP is similar to a number of problems researchers have studied in the video coding literature.

Most of these have been formulated in an operational rate-distortion framework. The allocation

of bits to a discrete set of quantizers is the most prominent one among these. In this problem, we

try to assign quantizers to independent sets of macroblocks (or source frames) in order to

minimize the total distortion without violating a bitrate constraint. This problem has been

attacked in two ways. The first approach is based on building a stochastic model for the R-D

behavior of quantizers. Such a model helps to predict the average distortion (averaged over

source ensembles) for encoding at a given rate. This regression step is normally done off-line.

Once a stable model has been built, optimization is done assuming similar R-D behavior.

Typically, non-linear programming tools (e.g., steepest descent or quasi-Newton methods) are

used to find the optimal allocation after converting the problem to an unconstrained one. Note

that the bottleneck complexity of the first approach comes from the model building stage. On

the contrary, the second avenue to address this problem skips the offline model building step and

the optimization is done directly on operational (gathered) data points. Therefore, there are no

residual errors that would have been introduced during the modeling step. This approach,

however, requires a lot of data to be continuously gathered. Moreover, a further (combinatorial)

hardness of the second approach arises from the fact that quantization matrices may be scaled up

or down using only a discrete set of values. We will focus primarily on the latter approach in

this work. However, nothing prevents using this approach in conjunction with a predictive

model that helps to ease the burden of gathering data points.

There has been a lot of work in, and generalizations of, the bit-allocation problem. With these, a

wealth of new applications has emerged applying these results. Some recent ones include R-D

optimal shape coding [140], optimal breakpoint selection for data-partitioning [45], server

retrieval scheduling [117], selecting best wavelet packet [129], jointly R-D optimal

segmentation, optimal displacement vector field (DVF) and displaced frame difference (DFD)

encoding, quad-tree decomposition and scanning etc. We refer the interested reader to [140] for

15

an extensive survey. Despite a flood of recent applications, some of the original work in this

problem dates as far back as the 1960s [71]. To the best of our knowledge, the primary

contributions are due to the following:

• Segall [141] – This work assumed a convex and functional R-D curve, for example an

exponential one. Since continuous functions were assumed, this method is closer to

traditional rate distortion theory as opposed to an operational one.

• Fox [56] – Fox’s solution was based on a so-called marginal analysis method applied on

distinct and discrete quantizer functions. Although this method generally gives good error

gaps, it assumes convexity of the R-D function; or at the very least requires that one

identifies the convex hull for each quantizer set.

• Trushkin [158] – Presented how to use dynamic programming to solve this problem.

Although optimal, it was noted to have an impractically high complexity. For the sake of

completeness, a similar dynamic program is outlined in Appendix A.2.

• Shoham and Gersho [144] – Considered an arbitrary set of quantizers and made no

assumptions on convexity or monotonicity. They suggest that convexity assumptions are

usually violated due to non-linearities in coding standards and through the use of small block

sizes that do not get us close to convex R-D bounds. The analysis was based on Lagrangian

relaxation as applied to integer programs using Everett’s result and its extensions [52][53]

[55].

• Ramchandran, Ortega, Vetterli [115][131] – Suggest allocation schemes with dependencies

among the quantizers. An optimal buffer control strategy was also found using dynamic

programming. However, we believe that complexity considerations in using dynamic

programming were not rigorously addressed in these papers.

• Schuster and Katsaggelos [140] – Review developments in operational R-D theory, and

suggest recent applications to shape coding etc.

Despite the above developments, complexity considerations in solving this problem have still not

been addressed adequately. The marginal analysis approach of Fox assumes convexity of R-D

curves. If convexity is not guaranteed, we have to find the convex hull of the operating points

before using the algorithm. This needs a minimal O(nlogn) complexity if there are n operating

points. Even after this, the solution lies on the convex hull of the operating points, and so it can

16

be sub-optimal. Dynamic programming [158], on the other hand, gives the optimal solution and

does not make any assumptions of convexity and monotonicity. However, it leads to a pseudo-

polynomial time algorithm whose complexity blows up very rapidly. Finally, Shoham and

Gersho’s approach, although almost there, did not rigorously discuss how pruning helps reduce a

worst-case search over the 2()O n singular points.

The primary focus in this work will be on solving the LP relaxation of an integer problem

(instead of its Lagrangian relaxation). Using strong-duality we will solve the LP-dual problem

instead. Finally, exploiting complementary slackness, we will construct the optimal solution to

the primal problem. The overall complexity of the procedure will be shown to be linear in the

size of the problem. This improves on the celebrated work of Shoham and Gersho by an O(n)

factor.

2.2 Preliminaries

2.2.1 Mathematical background

The problem addressed in this Chapter is solved using several mathematical programming tools.

Since video communication researchers may not be well versed in these techniques, this section

will introduce them at an elementary level. For a more complete treatment, the interested reader

may refer to [18][20][41].

2.1.1.1 Linear Programming

A linear programming problem has the following general structure:

max{ | , 0} or min{ | , 0} with , , and .
: 1, : 1, : 1, () : .

T T

ij

c x Ax b x d x Bx h x b h c d A B
c n x n b m A a m n

≤ ≥ ≥ ≥ = − = − = −
× × × = ×

It is often convenient to convert the above to an equivalent equality constrained problem:

~ ~

~max{(,0) | and , 0}T
x

c Ax I x b x x
x

 + = ≥

The extra variables introduced to ensure equality are also known as slack variables. The feasible

region R of either of the two problems is a convex polyhedron given by the intersection of (n+m)

17

half-spaces. Let (1,..,)lx l s= be the vertices of R. Note that
n m

s
m
+

≤

. Since the feasible

region is the convex hull of these vertices, any point x in R may be written as the convex

combination
1

 with
s

l
i

i

xλ
=
∑

1

0 and 1
s

l l
i

λ λ
=

≥ =∑ . The above linear programming problem, which

aims to maximize Tc x , therefore, reduces to the determination of the vertices of R. One of these

vertices is guaranteed to be the optimal one.

The Simplex method of G.B. Dantzig gives an algebraic characterization of these vertices. It is a

generic technique that solves any linear programming problem in a finite number of steps and is

based on the idea of improving the cost while moving from one vertex of the feasible region to

another, and terminating only when certain optimality criteria are met. Several refinements have

led to many variations of the Simplex algorithm. With the computational power available today,

this method is usually regarded as fairly efficient, and is routinely used to solve problems with

several thousands of variables or constraints.

Additional linear programming facts that would be useful later are as follows:

1. Basic feasible solution: Any vector x having exactly m positive components that belong to m

linearly independent columns of the matrix A is called a basic feasible solution.

2. Dual problem: The problem - min{ | , 0}T Tb y A y c y≥ ≥ - is called the dual problem for the

problem - max{ | , 0}Tc x Ax b x≤ ≥ . The latter is also known as the primal problem.

3. Weak and strong duality: If x and y are primal and dual feasible, respectively,

then () ()T T T T T Tc x A y x y A x y b b y≤ = ≤ = . Further if * * and x y are feasible and * *T Tc x b y= ,

then * * and x y are optimal for the primal and dual problems. In fact, it has also been shown that

*x is a solution of the primal problem if and only if there exists a dual feasible *y such

that * *T Tc x b y= ; *y is a solution of the dual problem if and only if there exists a primal feasible

*x such that * *T Tc x b y= .

18

2.1.1.2 Integer Programming

Integer programming addresses optimization problems with the following format:

max{ | , 0, integer} with : 1, : 1, : 1, () : .T
ijc x Ax b x x c n x n b m A a m n≤ ≥ × × × = ×

One searches for the maximum of the objective function no longer among all the points of the

feasible region R, but only among the integer or lattice points contained in R. The need for

formulating and solving integer problems comes from the fact that in certain applications of LP,

fractional solutions tend to be practically meaningless. In the context of this Thesis, integer

indicator variables would be used to characterize discrete selection choices in certain resource

allocation problems. Enlisted below are the methods that we shall use to solve integer problems,

along with the places where they get used:

• Optimal methods:

o Dynamic programming:

§ Section 2.2.2.1 illustrates this enumerative technique for the Knapsack

problem, while Appendix A.2 shows how to exploit it for MCKP.

§ Chapter 3 uses this method for solving the early-tardy playout scheduling

problem.

o Branch and bound:

§ Appendix A.1 outlines this generic (though combinatorial) technique for

solving any linear integer problem.

§ In Section 2.6, we shall utilize this method to benchmark the performance

of sub-optimal heuristics for the Multiple Choice Knapsack Problem.

• Approximate methods:

o Greedy heuristics:

§ Section 2.2.2.2 illustrates the basic idea behind greed using the Knapsack

problem.

§ A sequence of greedy heuristics would be used for constraint satisfaction

in dependent quantization problems of Chapter 5.

o Linear relaxation (with or without deterministic and/or randomized rounding):

19

§ A deterministic technique for rounding the possibly fractional LP optimal

solution to MCKP is suggested in this Chapter.

§ Randomized techniques, which treat the fractional LP optimal points as

probabilities while rounding, would be used for tackling quantization

problems with dependencies in Chapter 5.

o Lagrangian relaxation (with or without deterministic and/or randomized

rounding):

§ Lagrangian relaxation is perhaps the most popular optimization method

amongst video communications researchers. In this Chapter we will

discuss certain key differences between Linear and Lagrangian relaxations

for MCKP.

§ Chapter 5 uses Lagrangian relaxation as an escape mechanism if the

resource constraint becomes difficult to satisfy while rounding based

solely on the LP relaxation.

§ Finally, Chapter 6 would use Lagrangian techniques once more, this time

for solving the causally optimal dynamic rate shaping problem.

The following section continues our tutorial introduction to Integer Programming while

presenting the techniques using a problem pertinent to and a precursor for the more realistic

models starting in Section 2.3.

2.2.2 A simplistic formulation

We want to design algorithms that aid in authoring and customization of multimedia documents

by semi-automating the selective addition/dropping of objects from a scene to provide content

scalability. We will use MPEG-4 systems to present the case for value added services. The

approach and modeling, however, are applicable in other scenarios such as with documents

having structured HTML or XML content. Assume that there are n objects O1,..,On with average

bit-rate/buffer requirements s1,..,sn that may be included in the presentation. There is a pre-

specified aggregate buffer or bandwidth constraint, B, that must not be exceeded. The inclusion

of an object to the presentation increases the overall quality by pi and decreases the available

20

resource by an amount si. The coefficients pi (i=1,..,n) are in a common normalized unit, and

we start by assuming that there are no inter-dependencies among objects, e.g., from a

synchronization, compression, or inclusion point of view. We assume that objects have been

pre-compressed at a constant bit-rate. Thus, si corresponds to the target bit-rate at which Oi is

encoded, while pi is a measure of its average quality (average peak signal to noise ratio (PSNR),

a quality metric based on visual perception, a priority listing or user perceived utility). The

objective is to find a subset of objects to include so as to maximize the overall quality. Since we

may also view the problem as an admission control one, the coefficients pi and si indicate

nominal or minimal operating points for an object. Using the above assumptions and notation,

the problem may be formulated as:

KP: Maximize ∑
=

n

i 1

 piXi

 Subject to: ∑
=

n

i 1

siXi ≤ B; with Xi ∈ {0,1} for i=1,...,n

Note that Xi is an indicator variable that is 1 if and only if Oi is included in the presentation. The

above is the famous 0-1 knapsack problem (KP) that has been extensively researched in the OR

literature. It is an NP-hard problem, which means that no known algorithm solves it in

polynomial time for all instances of the problem. However, some generic methods such as

branch and bound and dynamic programming may be used to solve KP. Unfortunately, both of

these have very bad worst-case complexities (exponential for Branch and Bound and pseudo-

polynomial for dynamic programming). Therefore, it is unlikely that either of these methods can

be used in practice.

2.2.2.1 Finding Optimal Solution

The forward version of dynamic programming (DP) is one of the most intuitive (although

somewhat impractical) ways to solve KP. Dynamic programming, originally due to Bellman

[20], is an enumerative procedure for solving certain optimization problems. It solves a large

(separable) problem by dividing it into a series of simpler ones (see Figure 2.1). There are n+1

stages in the illustrated DP algorithm. Each stage corresponds to an object added to the

presentation. Each stage has at most B states. Each state corresponds to a given available

bandwidth. Let us use the following notation:

21

fk(m) = maximum objective function value if m units of bandwidth are available and we may use

only objects 1,..,k

m = bandwidth for the current stage, m ≤ B

The program starts from the first stage and moves forward stage by stage. In the end we find the

optimal stage n decision, and the solution is traced out by backtracking the algorithm. More

formally, the dynamic program is,

STEP 1: f1(m) = 0 for m=0,1,…,s1-1 [Object 1 is not included]

 = p1 for m=s1,…,B [Object 1 is included]

STEP 2: fk(m) = fk-1(m) for m=0,1,…,sk-1 [Object k is not included]

 = Max{ fk-1(m), pk + fk-1(m-sk)} for m=sk,,…,B

 [Object k is not or is included, respectively]

The above program may be followed using hints given on right hand side. We proceed by

calculating fk(1), fk(2), fk(3) … until we obtain fk(B) for all k=1,..,n. The optimal objective value

is given by fn(B), and we can trace out the solution (i.e., Xi s) by backtracking the optimal path.

Note that step 2 requires O(B) time and has to be run n times, once for each stage. Thus, the

overall time and space complexity of DP is O(nB). This complexity is polynomial in n if B

increases as a polynomial with n. Note that the term in B is not logarithmic. Hence this

algorithm is said to be pseudo-polynomial as it needs time that is exponential in the binary

representation of its input data. This complexity blows up very fast since the granularity in

which B has to be represented is usually very small. In order to reduce complexity, we may

prune out some states that can never be part of an optimal solution. Consider stage k of the

algorithm with a current state S1 and a previous state S2. In case we find that (a) the sum of

bandwidth requirements for objects in S1 is more than that in S2, and (b) the aggregate utility of

objects in S1 is less than or equal to that in S2; then S1 may never be part of an optimal object set.

If a subset from first k objects includes S1, then we could trivially do better by replacing this

22

subset with S2, leaving everything else unchanged. Hence, we may prune out state S1 from the

search.

A branch and bound method is another generic method that may be used to solve KP. This

procedure is fairly general and can be used to find solutions for any pure or mixed (linear)

integer-programming problem. Since we will refer to it several times, we outline the procedure

in Appendix A.1. It must, however, be noted that both branch and bound and DP are not practical

and give solutions in reasonable time only if the number of objects is small. Due to complexity

considerations, we need to resort to heuristics instead.

Figure 2.1 Forward version of dynamic program

2.2.2.2 Finding Approximate Solution

A greedy algorithm (GA) [110] is perhaps the most intuitive heuristic to solve this problem. GA

may be summarized as follows:

STEP 1. Reorder the objects in decreasing order of pi/si.

STEP 2. Add objects to the scene in this order so long as the bitrate bound (B) is not

exceeded.

23

We admit objects in order of decreasing quality densities. Although simple, the algorithm can

lead to a solution that is arbitrarily far from the optimal one for certain problem instances. We

can assure that the solution is within a multiplicative factor of 2 from the optimal if we choose

the better of the following two solutions: (a) That obtained using GA, and (b) that of allowing in

only the critical object (i.e., the last object in GA adding which just violates bandwidth bound).

The interested reader may find a proof in [110] and references therein.

2.2.2.3 Extensions

The assumptions we made in Section 2.2 are oversimplified in several aspects. In this Section,

we relax some of these assumptions from a video coding/communication perspective, and

discuss ways to find optimal and approximate solutions. Some of the issues we will address are:

a. A binary formulation for inclusion or exclusion of objects has been presented. Can we

extend the approach to allow for including scaled or transcoded versions of objects? Can the

problem be solved faster than earlier approaches under some relaxations?

b. How can we impose inter-dependencies that may exist among objects that compose a

presentation? How do we deal with simple non-linearities in the objective function or in the

constraints?

c. Can aggregating objects (i.e., treating them in a similar way) help in reducing complexity?

d. Can we re-optimize faster (and online) when the scene has on-the-fly or time driven events,

user interactivity, appearing or disappearing objects, etc.?

e. How is the problem related to some know problems in video coding literature, and can some

of them be solved using the approaches given here?

2.3 Modeling scalable objects

2.3.1 Formulation

At the cost of poorer quality, smaller spatial size or worse temporal continuity, an image

sequence can be encoded at various target bit rates [76][77][140][146][157]. Several forms of

scalability may be used to compress video at the desired target bit rate [37][149] or to give

layered representations for it [77][157]. The typical motivation for scalability is to have a base

24

layer that gives a coarse signal representation; and as more bandwidth becomes available,

progressive enhancements may be added. Many online schemes for extracting scaled or

transcoded versions from a pre-compressed video stream are also known. Examples of these

include schemes like dynamic rate shaping [45], requantization, frame dropping, etc. In addition,

many compression schemes (e.g., wavelet or sub-band based) are inherently scalable. Therefore,

while aggregating objects during authoring or multiplexing, it may be worthwhile to have some

additional freedom with their bit-rates and quality perception at chosen bit-rates. We incorporate

this into the model by using a generalization of the knapsack problem, called the “Multiple

Choice Knapsack Problem (MCKP)”. Unlike the simple problem, in MCKP, we have some

disjoint sets of objects. Objects in each of these sets have utilities and weights associated with

them. At most one object from each set may be added to the presentation. As before, the idea is

to select one version from each set so as to maximize the overall quality, while not exceeding the

bitrate bound. In our context, this is similar to having candidate sets of transcoded versions of

audio-visual-objects (or alternative presentations), and we would like to select one version for

each object. Let pij be the average PSNR of the jth version of object i and sij the target bitrate at

which it is encoded. Let there be ni candidate bitrates for the ith object, one of which must be

chosen. Therefore, we wish to:

(MCKP): Maximize ij

N

i

n

j

X
i

∑∑
= =1 1

ijp

Subject to: ij

N

i

n

j

X
i

∑∑
= =1 1

ijs ≤B (C1)

 ∑
=

in

j

ijX
1

 = 1 for i=1,2,…,N (C2)

 Xij ∈ {0,1} i=1,2,…,N and j=1,2,…,ni (C3)

The solution is a binary set {Xij | i=1,2,…,N and j=1,2,…,ni } that specifies which objects are

selected. Like the knapsack problem, MCKP is also known to be NP-hard.

2.3.2 Intuition behind the Linear Programming (LP) relaxation

The primary focus in this work will be on solving the LP relaxation of an integer problem

(instead of its Lagrangian relaxation). Using strong-duality we will solve the LP-dual problem

25

instead. Finally, exploiting complementary slackness, we will construct the optimal solution to

the primal problem. The overall complexity of the procedure will be shown to be linear in the

size of the problem. This improves on the celebrated work of Shoham and Gersho by an O(n)

factor. The algorithmic framework used here to search for the optimal dual variable is originally

due to Dyer and Zemel [44][165]. However, we are not aware of prior use of LP relaxation of

this problem for signal compression. Before proceeding with the outline of the algorithm, we

contrast LP and Lagrange relaxations. In particular, for MCKP, we will show that both these

relaxations give exactly the same duality gaps.

2.3.2.1 Connecting Lagrange and LP relaxations

The LP relaxation of an integer program is obtained by relaxing integrality constraints on integer

variables (here, Xi,j). Due to the constraint C2 in MCKP we can go ahead and remove upper

bounds on these variables as well. Thus, we get

Maximize ji

N

i

n

j

X
i

,

1 1

ji,p∑∑
= =

Subject to: ji

N

i

n

j

X
i

,

1 1

ji,s∑∑
= =

 ≤ B

 ∑
=

in

j

jiX
1

, = 1 for i=1,2,…,N

 Xi,j ≥ 0 i=1,2,…,N and j=1,2,…,ni

Although it may not be feasible for the integer program, a solution to the above certainly gives

an upper bound on the objective function of the integral MCKP. Unlike an LP relaxation, in

Lagrangian relaxation (as applied to integer problems), we relax certain hard constraints into the

objective function using Lagrange multipliers. Since some constraints are removed from the

problem, a solution to LR also gives an upper bound on the objective function (for max

problems). Unlike LP relaxations, however, integrality constraints on the variables are retained

in LR. The resulting relaxed integer problem is solved exactly. The trick one usually exploits is

that certain integer problems are very easy to solve. If the resulting IP can be easily solved, the

problem boils down to searching over Lagrange variables to find the set of multipliers that

26

satisfy the relaxed constraints most closely. We may define three LRs for MCKP; i.e., those

obtained by relaxing constraints C1, C2, and both C1 and C2. These are:

, , , , ,0
1 1 1

, , , , ,unconstrained
i=1 1 1 1 1

1:

min{ max{ () } s.t. 1 and {0,1} }

2 :

min { max{ () } s.t. and {0,1} }

3:

mi

i i

i i

i

N n n

i j i j i j i j i j
i j j

N n N N n

i j i i j i i j i j i j
j i i j

LR

p s X B X i X

LR

p X s X B X

LR

δ

λ

δ δ

λ λ

≥
= = =

= = = =

− + = ∀ ∈

− + ≤ ∈

∑∑ ∑

∑∑ ∑ ∑∑

, , , ,unconstrained, 0

1 1 1

n { max{ () } s.t. {0,1}}
i

i

N n N

i j i i j i j i i j
i j i

p s X B X
λ δ

λ δ λ δ
≥

= = =

− − + + ∈∑∑ ∑

For a given δ , the solution to the max part of LR1 is to set for each i all Xi,j = 0 except for the

variable corresponding to ji* = arg max , ,()i j i jp sδ− , which is set to 1. Notice that if we were

to solve the LP relaxation of the max part in LR1, there would be n constraints in it. By linear

programming [18] we know that an optimal solution to a linear program is a basic feasible

solution. The number of positive valued variables in a basic feasible solution is at most the

number of constraints in the LP. Hence there may be at most n positive Xi,j’s for the problem

under consideration. But, at least one Xi,j must be positive for each i in order to satisfy each

constraint; and so an easy counting argument tells us that exactly n Xi,j ’s will be 1 and the rest

will be zero in the LP relaxed max problem. Since this solution is integral, it means that

integrality constraints in max part of LR1 could have been be dropped (to start with) without any

loss of optimality. After dropping integrality constraints from LR1, we could equivalently

consider the LP-dual for the expression inside max part. This would lead to a problem identical

to the LP-dual of the original MCKP. Hence, both the LP relaxation and LR1 will have exactly

the same duality gap. Consider next LR2 and LR3. For a given set of Lagrange multipliers

i(0, and unconstrained)δ λ≥ , the solution to max part in LR3 will be to set Xi,j=1 if

, , 0i j i i jp sλ δ− − > and zero otherwise. Again, since integrality constraints would have been met

in the LP relaxed (max) problem, the duality gaps of LR3 and LP relaxation are the same. For a

given iλ (unconstrained) in LR2, the problem inside the max part is a knapsack problem. Hence,

integrality cannot be dropped without a potential loss of optimality. It must further be noted that

the complexity of an LR comes both from solving exactly the relaxed problem and searching for

27

the best multipliers. In both LR2 and LR3, we need to search in higher dimensional spaces (N

and N+1, respectively) that are even unconstrained in many dimensions. This complexity is not

likely to be less than that of LR1, which in turn, guarantees a gap no better than LP relaxation.

Therefore, it makes sense to explore LP techniques directly to see if they lead to faster

algorithms than LR.

2.3.2.2 Outline for solving the LP relaxation

Consider the LP relaxation that we defined before. Using strong-duality theory of linear

programming, the strategy will be to formulate and solve an alternative problem called the LP-

dual. The dual of a max problem is a min problem, and is constructed by associating a dual

variable for each constraint in the primal and a dual constraint for each variable in the primal

problem. Based on whether the primal constraint is equality or inequality, the corresponding dual

variable is either free or sign constrained. Further, based on whether a primal variable is free or

sign constrained, we have equality or inequality constraints in the dual. There is a close

connection between the primal problem and its dual. By weak duality theorem [18], we know

that the value of a dual is always more than the value of any feasible primal solution. Strong

duality further asserts that at optimality, the values of primal and dual problems are the same.

The formal statement is as follows:

Strong Duality Theorem [18]: If either the primal LP or the dual LP has a finite optimal

solution, then so does the other, and the max of primal problem equals the min of the dual

problem. If either problem has an unbounded solution, then the other has no feasible solution.

Let the dual variables corresponding to primal constraints C1 and C2 be w and vi, respectively.

The dual of LP relaxed MCKP (call it DL-MCKP) is then given by:

(DL-MCKP) Min. Bw + ∑
=

N

i

iv
1

s.t. : wsi,j + vi ≥ pi,j or vi ≥ pi,j –wsi,j ; w ≥ 0; vi are not sign constrained

28

Define, for a fixed w, fi(w)= }{max ,,
1

jiji
nj

wsp
i

−
≤≤

. Notice that since it is the point-wise maximum of

linear (convex) functions, the function fi is also convex in w. With this change of notation, we

get:

(DL-MCKP) Min. F(w) = Bw +)(
1

wf
N

i

i∑
=

s.t.: w ≥ 0; vi are not sign constrained

Obviously, the most time consuming part in solving the above problem is the search for LP-dual

variable w. This will be discussed in the next section where an O(n=∑
=

N

i

in
1

) algorithm due to

Dyer and Zemel [44][165] is outlined. This may well be the best possible complexity

achievable for this problem considering that there are n choices to start with. A critical part in the

search for w* is the use of “Dominance Lemma” which lets us eliminate some j’s in the search

for fi(w)= }{max
1

ijij
nj

wsp
i

−
≤≤

in each iteration of the algorithm. The Lemma states that:

Dominance Lemma [44]: If we know that for a certain range of w, 2211 ,,,, jijijiji wspwsp −≥− ,

then we can eliminate j2 in the search for fi(w) in this range of w (see Figure 2.2).

Figure 2.2 Illustration of dominance lemma. Modified from [44].

29

Assume for now that we have somehow found the optimal w = w* that solves the dual problem.

We will then construct the solution to the primal problem in O(n) time using complementary

slackness. Complementary slackness conditions relate the primal and dual optimal solutions in a

compact way. They state that:

Complementary slackness [18]: Feasible solutions to primal and dual problems are optimal if

and only if (i) a variable is zero in one of the problems whenever the corresponding slack

variable is strictly positive (i.e., the corresponding inequality constraint is strictly satisfied) in

the other problem, and (ii) a slack variable is zero (i.e., the inequality constraint is satisfied as

an equality) in one of the problems whenever the corresponding variable is positive in the other

problem.

2.3.3 Searching for the optimal LP-dual variable (Dyer [44], Zemel [165])

We now go back to the dual problem and outline a scheme for finding the optimal LP dual

variable. The treatment given here follows closely from the one in Dyer [44]. The complete

algorithm consists of three parts: initialization, searching for the optimal dual variable, and

constructing the optimal primal solution.

2.3.3.1 (STEP 1) Initialization

The min or max of a function in a single variable either lies at one of the boundary points or in

the interior (in the latter case first and second order optimality conditions must be satisfied). In

the initialization step, we check if the optimal 0w ≥ lies at one of the extreme values,

0 or w w= = ∞ .

1. Check if w* = ∞ . This will be so if the right gradient (GR) of F(w) for large w is negative.

Intuitively, this means that the bandwidth constraint does not allow accommodating even the

least acceptable version of each object. Hence, if GR(w ∞→) = B-∑
=

≤≤

N

i
nj

ji
i

s
1

1
}{min , < 0, there is

no feasible solution to DL-MCKP.

30

2. Check if w*=0. The optimal w=0 if the right gradient of F(w) 0=w is positive. Thus, if

GR(w=0)= B- 0})0({min
1

1
,, ≥=∑

=
≤≤

N

i

i
nj

jiji
i

pfs , then w*=0. In this case, we can go directly to Step

3 to find the primal solution. Intuitively, this case means that the bandwidth constraint allows

accommodating the most acceptable version of each object.

2.3.3.2 (STEP 2) Search for the optimal w

The fundamental theorem of linear programming [18] states that the optimal solution to a linear

program, if one exists, lies on a vertex (extreme point) of the polytope defined by the constraints.

In the above problem, the objective function is not linear. In fact, it is a piecewise linear and

convex function defined by the intersection points of lines (in variable w) of the form pi,j - wsi,j .

Therefore, using an argument similar to the one used to prove the fundamental theorem of LP,

one can argue that the minima of the above piecewise-linear objective function will also lie on an

intersection point. There are ni lines in each set. These lines can intersect in a maximum of

2()
2

i
i

n
O n

=

possible ways. Thus, a brute force approach would have to search over

2 2() (())i i
i i

O n O n=∑ ∑ possibilities.

Instead, Dyer’s approach [44] is based on a clever usage of linear time median finding

algorithms with pruning. There are three steps to search for the optimal w: (i) forming pairs of

lines of the form pi,j - wsi,j and finding the median of intersection points of these lines, (ii)

finding the gradient of the aggregate function ()F w at the median point, (iii) exploiting

convexity of ()F w to eliminate some intersection points. In every iteration of these three steps

about ¼th of j’s are eliminated using the dominance lemma. This will eventually lead to a

combined O(n) complexity of search over all iterations. We initialize the two components (a

constant part, C and a linear part, L) of F as C=0 and L=B. The following three steps are then

repeated forever:

31

1. Form Pairs:

For i=1,...,N

• If ni = 1, update C = C + pi,j and L = L – si,j. This line need not be considered in any future

iteration.

• If ni > 1, form pairs of lines (pi,j - wsi,j1) and (pi,j2 – wsi,j2). Find the intersection point wi,j of

these two lines. There can be at most 0.5ni such pairs for each i. Overall there are

 nn
N

i

i 5.00.5
1

<∑
=

 wi,j ’s.

After iterating over all i find the median of these wi,j ’s. Call this w
_

.

2. Find the gradient of F at w
_

, and using convexity of F, find the side of w
_

 that has w*

For every i, the component-wise left and right gradients at w
_

 are:

gi
L(w

_
) = -)}({max

_
,,, wfwsps ijijiji

j
=− and gi

R(w
_

)= -)}({min
_

,,, wfwsps ijijiji
j

=−

The value of F at w
_

 is: F(w
_

) = ∑
=

−−
++

N

i

i wfLwC
1

)(

And using the above gradients, the slopes of F at w
_

are:

GL (w
_

) = L + ∑
=

N

i

i
L wg

1

_

)(and GR (w
_

) = L + ∑
=

N

i

i
R wg

1

_

)(

3. Prune out some j’s

F is a convex (U) function in w. Hence, based on the sign of GL (w
_

) and GR (w
_

), one can

narrow down the range of w that contains the optimal value w*. If we are to the left of w* then

GL (w
_

) ≤ GR (w
_

) <0 . Similarly, towards the right of w*, 0 < GL (w
_

) ≤ GR (w
_

). Summarizing

these ideas, we get:

32

• If GL (w
_

) ≤ 0 ≤ GR (w
_

), then w
_

= w*. We can go to Step 3 to find the optimal primal

solution.

• If GR(w
_

) < 0, then w* > w
_

. Therefore, from each pair of lines which intersect at wi,j ≤ w
_

<

w*, we may prune out the line with bigger si,j . (See Figure 2.2, case B).

• If GL (w
_

) > 0, then w* < w
_

. Using the Dominance Lemma, from each pair of lines which

intersect at wi,j ≥ w
_

> w*, we may prune out the line with smaller si,j. (See Figure 2.2, case

A).

Notice that in all at least 6/5.05.0
1

nn
N

i

i ≥

 ∑
=

 j’s will get pruned out in each iteration. Thus,

the overall complexity is ∑
∞

=

=
1

)())6/5((
i

i nOnO .

2.3.3.3 (STEP 3) Solution to the primal

The relation between the optimal solution to the primal and dual programs is specified by

complementary slackness conditions given above. The dual variables corresponding to primal

constraints C1 and C2 are w and vi, respectively. Likewise, corresponding to dual constraint wsi,j

+ vi ≥ pi,j we have primal variables Xi,j. From complementary slackness, we know that if a dual

variable is not zero, there should be no slack in the corresponding primal constraint. Similarly, if

there is any slack in a dual constraint, the corresponding primal variable is zero. For each i, the

optimal dual variables * *

1
max{ }

i
ij iji j n

p w sυ −
≤ ≤

= . Therefore the recipe to construct optimal primal

solution is the following:

• For all i except for the set that determines the optimal dual variable w* , find the j that

determines the max in * *

1
max{ }

i
ij iji j n

p w sυ −
≤ ≤

= . For the corresponding Xi,j , there is no slack in

the dual constraint, i.e., wsi,j + vi = pi,j. Hence this Xi,j = 1, and Xi,j ’s corresponding to other

j’s in this set are 0.

• For the set that determines the optimal dual variable w*, there are two lines that attain the

max in * *

1
max{ }

i
ij iji j n

p w sυ −
≤ ≤

= . Thus there can be two fractional variables for this set. To find

33

these fractional values, we apply complementary slackness to the dual variable w, and its

primal constraint C1. If w*=0, then there is slack in constraint C1. We set Xi,j = 1 for the

line having higher pi,j. Recollect that this is the scenario where the most preferred version of

each object can be included in the presentation. If, on the other hand, w*>0 there are exactly

two fractional Xi,j ’s, and we wish to find values they attain. Denote by i* the set under

consideration and by j1 and j2 are the lines that attain *
*
i

υ . Thus,

* *
1 21 1*

2
*

*
1

* *
1 2

* *
2 1

, , , , *, *,, ,
1 1 11,

, , *,
11,

,
, ,

, ,

(1)

Solving, , and

1

i i

i

n nN N

i j i j i j i j i j i ji j i j
i j ji i i

nN

i j i j i j
ji i i

i j
i j i j

i j i j

s X s X s X s X B

B s X s
X

s s

X X

= = == ≠

== ≠

= + + − =

− −
=

−

= −

∑∑ ∑ ∑

∑ ∑

2.3.4 Features and limitations of LP relaxations

Let us reminisce the basic features and limitations of the approach taken. These are:

• The numbers pij and sij are arbitrary. We make no assumptions about convexity of R-D

curves for each i. There is no need to obtain or estimate the entire rate-distortion curve. The

solution we obtain gives the best possible selection from data points that have been collected.

• PSNR’s and rates are usually considered to form a continuum. But, a typical motivation for

an MCKP-like formulation could be when the objects have been pre-encoded at various

quality levels and there is an inventory of candidate objects.

• The LP-dual approach can be used if the objective function and the constraints are linear.

Otherwise, the objective function and the constraints must be linearized (if possible).

Alternatively said, solving the LP relaxation (of an IP) is useful to approximate a non-linear

R-D function using piecewise linear segments between points on the curve.

• The LP relaxation (like LR) does not require finding convex hull of the R-D points. This

circumvents an obligatory O(∑nilog(ni)) complexity for calculating the hull.

• It must be noted that an LP relaxation (again, like Lagrange relaxations) gives an upper

bound on the objective function. Hence, it is not a heuristic in the real sense of the word. A

heuristic gives a solution that is feasible, but sub-optimal. Thus, heuristics provide a lower

34

bound on the optimal objective function value for a max problem. A particularly attractive

feature about MCKP is that its LP relaxation can have at most two fractional variables in the

optimal solution. The proof of the above statement follows a counting argument like the one

used before. Firstly, in LP relaxed MCKP, the size of the basis is N+1 since there are a total

of N+1 constraints. Therefore, at most N+1 variables can be non-negative in the basic

feasible solution. Secondly, the second constraint (in MCKP) implies that at least one

version of an object must be selected from each set. Each fractional variable implies that

there exists at least one more fractional variable in the same constraint. Therefore, at most

one set can have two fractional values in an optimal basic feasible solution (BFS). This can

be exploited to generate heuristics from upper bounds. In order to generate a lower bound

(and hence a heuristic), we deterministically set one of the two fractional values to one, and

the other to zero. The selection is done so that constraint C1 is not violated.

• There are some key similarities and differences between the approach here and that in

Shoham’s paper [144]. First, Shoham’s approach was based on LR as applied to integer

programs. As shown above, for the problem under consideration, the LR solution has the

same duality gap as the one obtained with LP relaxation. Second, although the approach in

[144] used continuous quantizer functions, they were defined over discrete variables. Thus,

the problem considered here and in Shoham’s work is the same if one considers a fine

discretization of the quantizer function for each quantizer and linearizes the resulting

problem. Needless to say, the approach here does not assume any specific discretization

structure or bounds on parameters si,j or pi,j. Third, Shoham’s solution scheme uses singular

points to search for the optimal Lagrange multiplier. These singular points correspond

exactly to intersection points of lines considered above. Hence, the base algorithm of [144]

has to look over 2 2() (())i i
i i

O n O n=∑ ∑ points. Variant 1 in [144] does indeed consider

pruning to reduce complexity, as is done above also. But, dominance considerations were

not systematically exploited to attain a linear-time bound. Another key difference here is the

usage of (linear time) median finding algorithms that avoid any sorting steps.

35

This concludes the treatment for modeling of scalable objects. In the next section, we discuss

how to impose logical inter-dependencies among objects and show how certain non-linearities

can be easily linearized.

2.4 Inter-dependencies and non-linearities

Inter-dependencies usually exist between objects that are to be included in a presentation. These

dependencies may arise due to synchronization or compression constraints, or be entirely

perceptual user preferences. We address two types of logical dependencies here, namely those

due to (a) If-then, and (b) Either-Or constraints1. Integer programming is well equipped to handle

both these types of logical implications. It is also interesting to note that MCKP is essentially a

very special form of inter-dependency among objects – one in which exactly one version from a

candidate set of objects is selected.

Several inter-object dependencies may be modeled as if-then constructs. For example, imagine a

scene with a weatherman, a map, a caption, and some scrolling text. In such a scenario, it may

be imperative that if the weatherman is included in the scene, the map is too. As another

example, a user may be interested in seeing both a video with associated caption or none.

Furthermore, if we include a video stream it may be imperative to multiplex the associated audio.

All of the above can be written as if-then relations among some Boolean variables. Several other

kinds of dependencies can be modeled as either-or constraints among objects. For example, in

his/her personalized presentation, a user may be interested in hearing at least one of two audio

tracks or in seeing a caption in at least one of many possible languages. Next, we discuss how to

specify the above forms of logical implications by adding constraints to the above optimization

framework.

1 In principle, we can express any Boolean relation using AND and OR operations. An AND is equivalent to two if-
then statements and an OR to one either-or construct. Although we focus on these two constructs exclusively, we
observe that many relationships among objects (e.g., those due to spatial or temporal layout) are better not expressed
as logical constraints. Which formulations to express these relationships are more intuitive, which are easier to
solve, which do a better job of modeling etc. are certainly open questions.

36

2.4.1 If-Then constructs

Assume that the pair under consideration is (Oi, Oj) and it is required that if Oi is included, so is

Oj. Notice that the above relation is non-commutative. Thus it is not equivalent to solve a

modified problem with a joint (Oi,Oj) object having a combined quality of (pi+pj) and bit-rate of

(si+sj). However, we can enforce this logical requirement by adding the following constraint:

 Xj - Xi ≥ 0

By adding this constraint the only valid (Xi, Xj) combinations are (0,0), (0,1), and (1,1) and the

combination (1,0) is ruled out. Consider another example in which we require that if Oi is

included then Oj may not be included. Adding the following constraint can satisfy this:

 Xj + Xi ≤ 1

Note that () is equivalent to ()i j j iO Not O O Not O⇒ ⇒ . The allowed (Xi, Xj) combinations for

either of these expressions or the above constraint are (0,0), (0,1), and (1,0) and the combination

(1,1) is ruled out. In general, if ψ(X1,X2,…,Xn) > 0 implies Φ(X1,X2,…,Xn)≥0, we may add

 -Φ(X1,X2,…,Xn) ≤ My

 Ψ(X1,X2,…,Xn) ≤ M(1-y)

 y∈{0,1}

to the problem. Here M is a large enough number such that Ψ(X1,X2,…,Xn) ≤M and -

Φ(X1,X2,…,Xn)≤ M is true for all possible X1,X2,…,Xn. It is easy to see the proof. If Ψ > 0,

then from the second inequality we have y=0; which from the first one implies that Φ≥0. Next,

if Ψ≤0, we can have both y=0 and y=1. If we let y=1, we make sure that we do not restrict Φ in

any way.

2.4.2 Either-Or constructs

Like in (1) above, we may have situations where certain either-or type of logical implications

must be satisfied. Consider an example where we have the pair (Oi,Oj) and require that at least

one of Oi or Oj be included in the presentation. We may impose this by adding the constraint Xi

+ Xj ≥ 1. In general, we may want that at least one of the following two inequalities be true:

 Φ(X1,X2,…,Xn) ≤0

37

Ψ(X1,X2,…,Xn)≤0

For this we could add

 Φ(X1,X2,…,Xn) ≤ M(1-y)

 Ψ(X1,X2,…,Xn) ≤ My

 y∈{0,1}

to the problem. Again, M is a large enough number such that Ψ(X1,X2,…,Xn) ≤ M and

Φ(X1,X2,…,Xn) ≤ M is true for all possible X1,X2,…,Xn. The proof here is in line with the one we

gave for (2.4.1).

The functions Φ and Ψ above are functions in Boolean variables X1,X2,…,Xn. An OR operation

among Boolean variables can be represented as a linear constraint. However, an AND operation

in these variables (or their negations) will lead to non-linear terms. A typical non-linear term

could be of the form: 1 2 ... nX X X• • • . A term like this (either in the objective function or in one

of the constraints) can be easily linearized by adding extra variables and constraints. We present

two such linearization schemes2. To discuss the first one let 1 2 ...n nW X X X= • • • . Since

1,..,i i nX = are binary, so is nW . But, we must ensure that nW =1 only when all 1,..,i i nX = =1 and is

zero otherwise. For this, we add constraints:

1

1

1
n

n i
i

n

i
i

n

W X n

X
W

n

=

=

≥ − +

≤

∑

∑

If all 1,..,i i nX = =1, then the first constraint implies that 1nW ≥ ; while the second says that 1nW ≤ .

Together they both imply that 1.nW = If any of 1,.., 1i i nX = ≠ , then the first constraint is not

2 Both the transformations we discuss linearize polynomial non-linearities. They cannot be applied if Φ and Ψ have
non-polynomial non-linearities. There do exist direct schemes (such as generalized penalty and interior penalty
methods) that may be used for solving such non-linear integer programs without linearization. A discussion of these
and their computational efficiency is beyond the scope of this work.

38

restrictive in any way. But, the second one implies that 1nW < , or that 0.nW = Together, the two

constraints imply that that nW =1 only when all 1,..,i i nX = =1 and is zero otherwise.

We can linearize polynomial non-linearities of the form above using an alternate method. Let us

define a sequence of variables Z0,Z1,…,Zn as follows:

1 -1 2 1 1 0 1 0

1 2 1

1

1

, ,, , 1
It is obvious that Also since , we must add the following
constraints for 1,..., :

1

{0,1}
Of

n n n n n n

n n i i i

i i

i i

i i i

i

Z Z X Z Z X Z Z X Z

Z X X X Z Z X linear
i n

Z Z
Z X
Z X Z

Z

− − −

−

−

−

= • = • = • =
= • • • = •

=
≤
≤
+ ≥ +

∈

0course, we also add: 1.Z =

The first two constraints enforce that Zi is not 1 unless both Xi and Zi-1 are 1. The third constraint

ensures that Zi=1 if Xi=1 and Zi-1=1 and does not restrict any of the other possibilities. All the

above constraints are linear, and the entire non-linearity gets captured in Zn.

Note that the second transformation needs many more constraints and variables as compared to

the first one. This is not entirely wasteful. By deriving the constraints for the first

transformation using the inequalities for the second one, we can easily show that if there is a

point in the second polyhedron it also lies inside the first one. In other words, the second

polyhedron is smaller and hence packs the integral points more tightly. Thus, if we use an

iterative scheme such as branch and bound, the second problem is expected to converge much

faster.

After we do the aforementioned modifications in (2.4.1) or (2.4.2) above and remove any non-

linearities that may arise, the new problem is still a (linear) IP. Therefore, at least in theory, we

may find the optimal solution using the branch and bound method described in Appendix A.1.

Unfortunately, branch and bound is very computationally intensive3. We give a brief

3 We believe that it will be challenging to find fast approximations after adding the discussed logical constraints. It
is unlikely that polynomial time approximations can be found for very generic functions ψ and Φ.

39

computational experience in Section 2.7. An interesting point to note here is that additional

constraints (e.g., those due to if-then and either-or constructs) actually reduce the search space of

the problem. Hence, from an enumeration perspective, the complexity of the problem gets

reduced.

2.4.3 Non-linearities in the objective function

As another usage of linearization, this section discusses two common non-linearities in objective

functions, both of which can be easily linearized. Sum of distortions (or PSNR’s) has been the

most popular criterion for solving bit allocation problems. Despite having a nice separable

structure to it, the criterion in itself is not the most appropriate one for image and video

processing applications. This is because min-sum or max-sum measures can lead to an optimal

solution that has regions of large localized distortion. One could also get a solution having sharp

changes in quality across various parts of a scene. Although both these may make small

statistical contributions, the human visual system is very sensitive in picking them up. Having a

fairness measure is one way to avoid these problems. We discuss below two fairness measures

for an MCKP-like problem – ABS_DEV and Maxmin. Both of these introduce easily linearizable

non-linearities. The first criterion tries to find an allocation for which there is least absolute

deviation in quality around the mean PSNR. The second one imposes fairness by trying to

maximize the minimal PSNR in a frame. More formally, the two problems are:
_

, ,
1 1

_

, ,
1 1

, ,
,

_ : Min ()

 s.t. (1), (2), (3)

1 where

: Max Min { }

 s.t. : (1), (2), (

i

i

N n

i j i j
i j

nN

i j i j
i j

i j i j
i j

Abs Dev p p X

C C C

p p XN

MaxMin p X

C C C

= =

= =

−

=

∑∑

∑∑

3)

Both the above have non-linear objective functions that can be easily linearized. For the former,

we introduce extra variables defined as follows:

40

_

, , , ,

, , ,
1 1

_

, , , , , , , ,

max{ ,0} and max{ ,0}

Thus, _ becomes,

Min ()

s.t. : (C1), (C2), (C3), and

 (-) and , 0 and real

i

i j i j i j i j

nN

i j i j i j
i j

i j i j i j i j i j i j i j i j

p p p p

Abs Dev

X

p p X X X

ε ε

ε ε

ε ε ε ε

−
+ −

+ −

= =

+ − + −

= − = −

+

= − ≥ ∀

∑∑

, i j

Note that we are trying to minimize the sum of two deviation terms , , ,()i j i j i jXε ε+ −+ , both of

which are non-negative. This fact together with the added constraints implies that exactly one of

these two variables is non-zero for a given i, j. Hence, we need not add non-linear constraints of

the form , , 0 ,i j i j i jε ε+ −× = ∀ .

The latter problem (MaxMin) is even easier to linearize. Let,

, ,,
min{ }. Thus, MaxMin becomes,i j i ji j

J p X=

, ,

Max
s.t. : (1), (2), (3), and
 , and 0 real.i j i j

J
C C C

p X J i j J≥ ∀ ≥

One could also combine the above two criteria to come up with other fairness measures that are

easily linearizable. An obvious one is: , ,i,j
Min Max i j i jp X p

−

− . After the above-suggested

linearizations one could resort to a branch and bound method to find the optimal solution.

This concludes the treatment for dependent objects and some linearizable non-linearities. In the

next section, we suggest a transformation that exploits object aggregation and helps to reduce

problem complexity.

2.5 Object aggregation

Several applications benefit from grouping, aggregating or multiplexing objects [76].

Application level multiplexing allows one to guarantee integrated QoS for streams multiplexed

in a common channel, and differentiated quality to different groups of users based on a pricing

41

model. Multiplexing objects helps to reduce the number of transport channels that need to be

managed. The overhead in packet headers is also usually lower with multiplexed streams than

with headers for each separate stream. Grouping or multiplexing content is again important if

content from different sources needs to be delivered to a common destination (or vice-versa, as

in a multicast scenario). To address some of the above issues, MPEG-4 provides a flexible

multiplexing facility at the application layer. In MPEG-4, audio-visual objects are encoded in

separate elementary streams. The content creator multiplexes elementary streams along with

scene description information. Each object is associated with an object descriptor (OD) that

specifies the elementary streams from which this object gets its data. Elementary streams, in

turn, are divided into multiple Access Unit Layer (or, AL) PDUs. Below the AL-PDU layer, two

levels of multiplexing, called TransMux and FlexMux are identified. The former is not

specified by MPEG-4, and it is assumed that the underlying transport protocols provide it.

Unlike TransMux, FlexMux lies much closer to the application and therefore one can use content

properties to make better decisions about object selection, dropping and scheduling. FlexMux

has two modes to flexibly multiplex objects -- a Simple Mode and a MuxCode Mode. The basic

unit of the FlexMux layer is a FlexMux-PDU, and a sequence of FlexMux PDUs is called a

FlexMux stream. In the Simple Mode, data from only one object may be included in a FlexMux-

PDU. In the MuxCode Mode, however, data from multiple objects can be encapsulated in a

single FlexMux-PDU.

From an optimization perspective, in this section, we suggest a transformation that exploits

object aggregation and helps in reducing the complexity of optimal object selection. It is easy to

see that we can still solve the problem using a separate variable for each of the (say, bi) objects

that have same pi vs. si tradeoff. However, by treating all objects having same R-D tradeoff as a

single object (an aggregation procedure), we can decrease the number of variables and reduce

problem complexity. Instead of the constraint Xi ∈ {0,1} (as in the original problem), we shall

now use a constraint Xi ∈ {0,1,…,bi} for i=1,2,..n. In essence, we treat all similar objects as a

single object and allow multiple copies of this object. For each aggregate object Xi with an upper

bound bi, we can use a transformation that adds only log2 bi variables per aggregation. The

new objects (variables) are assumed to have PSNRs of pi, 2pi, 4pi … and bitrates of si, 2si, 4si

… etc. A last object is added to ensure that total quality is bipi and total bitrate is bisi. Since we

42

can represent any number between 0,...,bi using log2 bi bits, only log2 bi (and not bi)

variables are needed. The optimal solution with these new objects will give the binary

representation of the number of objects of type Xi that should be selected.

2.6 An online heuristic

Until now, we have described a form of problem where the entire input is available to start with.

Given the entire input set, we discussed ways to solve the problem optimally and approximately.

However, in several applications, the input is made available in “increments” only. For example,

in a multiplexing scenario, we could have a set of N streams that have been optimally allocated

resources to suit their QoS. Next, if a new stream enters service with its own R-D tradeoff, and

we wish to do allocation, can we do something better than re-solving the size N+1 problem?

Another application could be post-authoring editing of a multimedia presentation. We assume

that the original scene has been authored with resources optimally partitioned among objects.

Due to editing alterations, these resources may need to be re-assigned with minor changes. Yet

another application could be an MPEG-4 based system in which user interaction alters scene

rendition. Objects may be made to appear or disappear, their enhancement layers could be

activated or deactivated, etc. Here also, a minor modification to the solution set {Xi,j} could yield

good approximations.

As we discussed above, a brute force approach would be to solve the larger problem without any

prior knowledge. However, we know the best solution for size N problem to start with.

Therefore, it makes more sense to use the “marginal analysis” approach of Fox [56]. For an

alternative way to model and incrementally solve problems such as the one discussed here, see

[86][87]. The performance of marginal analysis approach depends on starting with a good

feasible solution. In the worst case, its complexity is similar to that of dynamic programming,

but is usually much better if the initial feasible solution guess is good. Assume that the solution

to the size N problem is {(pi,ji*, si,ji*) | i=1,2,..,N} 4. To find solution to the problem with another

added object (pN+1,j, sN+1,j) j=1,...,nN+1 , re-index (or eliminate some) j’s such that the following

two hold:

4 We give an illustration for object addition. It is easy to modify it for object removal.

43

(a) If pi,j1 < pi,j2 then si,j1 < si,j2 for all j1, j2=1,2,..,ni and i=1,..,N+1

(b) For each i=1,2,...,N+1, if si,j1 < si,j2< si,j3, then
2,3,

2,3,

1,2,

1,2,

jiji

jiji

jiji

jiji

ss
pp

ss
pp

−

−

−

−
≥ for any

j1,j2,j3∈{1,2,..,ni}. Note that marginal utility decreases after re-indexing, and we have effectively

identified the convex hull for each set i. This is a computationally intensive procedure requiring

a minimum workload of
1

1

(log())
N

i i
i

O n n
+

=
∑ . However, one can do this in the idle time between

successive object additions or deletions. Note that we need not re-index all objects each time the

online algorithm is run. Since convex hulls for earlier objects should already be available, we

have to identify the convex hull for each new object only.

After making above-mentioned changes, we apply a marginal allocation algorithm. The

algorithm is expected to run fast since it starts with the optimal size N solution. We expect that

these objects will not be perturbed too much around their starting allocations. Yet another way

to visualize this is as an increase in the number of stages of the trellis by 1. To accommodate the

new stage, current allocations for first N stages are decreased. Initialize pN+1,j*=sN+1,j*=0. The

other objects start with their size N optimal solution, i.e., {(pi,ji*, si,ji*) | i=1,2,..,N}. Obviously,

this is a feasible solution to the size N+1 problem. There are nN+1 iterations in the procedure.

The algorithm decreases in each iteration the allocation for one of the objects from i∈{1,2,..,N}.

Assume that i* is the index for this object. The allocation of the i*th object is reduced (by

decreasing its index j) and that of object N+1 is increased incrementally (i.e., to next higher j).

The index i* is selected from the set {1,2,...,N} such that it gives the smallest decrease in

marginal quality per unit increase in bandwidth. Due to a discrete nature of the problem, we

must ensure that re-allocation does not cause bound B to be exceeded. Any residual bandwidth

after re-allocation is kept for future iterations. If, however, the resource bound B will get

exceeded if we do re-allocation using index i*, we relinquish this index and continue our search

for another index (a new i*) in decreasing order of marginal utility until a choice is found that

leaves some non-negative residual bitrate after re-allocation. The method terminates if one of

the following two hold: (a) the current increase in marginal quality for object N+1 is less than

any possible decrease in marginal utility among objects i∈{1,2,...,N}, or (b) if no change can be

done without violating the bandwidth bound B.

44

2.7 Experimental Comparison

In this section we discuss a brief experimental study on some of the formulations presented

above. First, we consider scalable objects without any extra dependencies. We will compare the

complexity and solution qualities obtained by exact schemes (like Branch and Bound) with

approximate ones (e.g., by solving the LP-relaxation of the IP). Second, we consider more

general dependency structures. We will discuss if a combinatorial scheme like Branch and

Bound is a practical one; and if for problems with more general dependency structure, the

solutions obtained by an LP relaxation is a reasonable approximation.

The scalable texture coding [149] used for synthetic and natural objects in MPEG-4 is used to

construct the R-D data set. The underlying algorithm in this codec is based on a multi-scale

zero-tree wavelet entropy coding technique. This gives many scalability layers in terms of both

spatial resolutions and SNR (or quality). A total of 37 objects are assumed to compose the

scene. These objects include instances from standard test sequences like Akiyo, Stefan, birth,

coastguard, dance etc. Each of these was encoded into 13 distinct scalability levels, one of

which must be chosen for each object. Thus, an exhaustive search for the optimal solution would

need to look at a staggering 1337 combinations. This is clearly impractical. Below, we tabulate

the performance of some of the algorithms described above and show substantial improvements.

We ran simulations on 5 problem instances, both for standard modeling of scalable objects and

the problem with extra inter-object dependencies. We used LP and Mixed IP solutions of IBM’s

optimization solutions software package (OSL). The LP product comprises routines for solving

linear programs using Simplex (primal and dual) and interior point methods. The mixed IP

product uses branch and bound method to solve linear integer programs. The simulations were

conducted on a Pentium© 233 MHz PC with 64MB RAM running the Windows 98© operating

system.

2.7.1 Without Dependencies

The problem without dependencies is one that has an MCKP formulation. Let G1 be defined as

the percentage difference between the optimal IP solution and the LP heuristic solution obtained

45

by the rounding scheme described in Section 2.3.4. G2 is the normally used duality gap and is

defined as the percentage difference between the optimal IP solution and its LP relaxation. Our

results are summarized in Table 2.1 below. In this table, the (P) and (D) for branch and bound

refer to primal and dual Simplex methods, respectively, that are used to solve intermediate LP

relaxations in branch and bound. The LP relaxation was solved using the OSL product. It was

set to solve the LP-dual of the integer problem (using dual simplex method). From the results we

note that:

• LP relaxations usually give very small duality gaps. Both the LP solution and the heuristic

generated from it are very close to the optimal IP solution. The marginal analysis has higher

complexity but give similar gaps similar to the LP-dual approach.

• Solving the LP dual problem leads to a tremendous decrease in computational complexity

relative to an exhaustive search scheme like branch and bound. The corresponding loss in

optimality is very small.

2.7.2 With Dependencies

We modified the above problem by adding if-then constraints to create a problem with

dependencies. The dependency constraints were added to ensure there are no sharp quality

gradations among closely related objects. We did this by dividing alternate versions of some of

the objects into two sets: a low quality set and a higher quality set. Each of these sets can have

several versions (or scales) of the same object. The added if-then dependency constraints ensure

that (all) related objects be chosen from the same respective set. I.e., the selected version of all

inter-related objects comes from either their lower quality set or from their higher quality set. To

some extent this would ensure that closely related objects have similar quality scales. In all, a

total of 32 extra constraints were added to the problem. The results are summarized in Table 2.2

below. From this table we note that:

• Although Branch and Bound is exponentially complex, for the problem sizes under

consideration, it always completed in less than 30 seconds. Note further that (typically) the

46

time taken with extra inter-object dependencies is lower than the corresponding time without

dependencies. This could be because by adding some additional constraints, one could

shrink down the feasible polyhedron, and make the problem simpler from an enumeration

point of view.

• For the problem sizes under consideration, solving the linear relaxation using the Simplex

method of OSL is extremely quick5. The resulting duality gap G2 is usually very small.

• The number of fractional variables in the optimal LP solution is typically very small. Out of

a total of 497 variables, (normally) only 8-11 were fractional in the optimal LP solution. For

very general dependency structures, we were not able to devise a systematic way (such as

deterministic or randomized rounding) to find sub-optimal feasible IP solutions using the

fractional solution obtained. However, we were able to exhaustively search through all

possible ways of rounding the fractional variables after the variables that attained a 0 or 1 in

the LP solution were frozen at their respective values. In all the cases considered, this could

find feasible (but slightly sub-optimal) IP solutions with minimal extra computational effort.

 Algorithm Time Taken (sec) Duality Gap (%)
Branch and Bound 26.682 (P) and 30.826 (D) 0

Instance 1 LP relaxation (LP dual) 1.184 0.5462 (G1) and 0.0527 (G2)
Branch and Bound 30.924 (P) and 17.928 (D) 0

Instance 2 LP relaxation (LP dual) 1.232 0.3239 (G1) and 0.0288 (G2)
Branch and Bound 8.944 (P) and 7.952 (D) 0

Instance 3 LP relaxation (LP dual) 1.228 0.1062 (G1) and 0.0843 (G2)
Branch and Bound 6.07 (P) and 5.821 (D) 0

Instance 4 LP relaxation (LP dual) 1.264 0.0496 (G1) and 0.0550 (G2)
Branch and Bound 1.548 (P) and 2.24 (D) 0

Instance 5 LP relaxation (LP dual) 1.236 0 (G1) and 0 (G2)

 Table 2.1: Performance without dependencies

5 This software was set to choose between the primal and dual Simplex approaches internally.

47

 Algorithm Time Taken (sec.) Duality Gap (%) # Fractional
Vars.

Branch and Bound 7.162 (P) and 4.19 (D) 0 0
Instance 1 Simplex method (OSL) 1.125 0.058 (G2) 11

Branch and Bound 10.356 (P) and 25.97 (D) 0 0
Instance 2 Simplex method (OSL) 1.232 0.139 (G2) 9

Branch and Bound 9.418 (P) and 6.682 (D) 0 0
Instance 3 Simplex method (OSL) 1.12 0.114 (G2) 11

Branch and Bound 6.82 (P) and 4.49 (D) 0 0
Instance 4 Simplex method (OSL) 1.108 0.055 (G2) 10

Branch and Bound 1.582 (P) and 2.778 (D) 0 0
Instance 5 Simplex method (OSL) 1.367 0 (G2) 8

Table 2.2: Performance with dependencies

2.8 Concluding Remarks

In this chapter, we proposed mathematical formulations for modeling object-based scalability

and some functionalities that it brings with it. Some of the techniques discussed in this work

have been known in the OR literature for some time. But, we believe that this framework applies

quite well for modeling in MPEG-4 and other structured multimedia systems. It also helps us

improve our understanding of the kinds of problems that are likely to arise in multiplexing,

authoring and content filtering systems based on structured content. This may help to better

design and semi-automate tools that users will use to create and interact with media. On a more

rigorous front, the MCKP approach to model scalability helped us identify a faster algorithm for

the much-researched operational bit-allocation problem. This was based on solving the LP

relaxation using dual descent.

Recollecting, we discussed the following issues in this chapter:

• We modeled object-based scalability as a “knapsack problem” and discussed some known

schemes to find optimal and approximately optimal object selections. This formulation is

useful for modeling value-added services.

• We generalized the above to model authoring or multiplexing of scalable objects (e.g.,

objects encoded at various target bit-rates) using the “multiple choice knapsack problem”.

48

This problem was related to many known problems in video coding literature – the most

prominent one being the bit-allocation problem.

• Almost all earlier work to solve the bit-allocation problem is based on Lagrangian relaxation.

Instead, we discussed how one could alternatively solve the linear relaxation to give similar

duality gaps. The LP relaxation was solved using strong duality with dual descent – a linear

time process. We showed that there can be at most two fractional variables in the optimal

primal solution. Therefore this relaxation can be justified for many practical applications and

could also be used to generate good lower bounds (feasible solutions or heuristics). This

work reduces problem complexity, guarantees similar performance, is slightly more generic,

and provides an alternate LP-duality based proof for earlier work by Shoham and Gersho

[144].

• We gave additional constraints that may be added to enforce logical inter-dependencies

among objects in a presentation. Some simple linearization schemes to remove polynomial

non-linearities and make the problem amenable to generic linear-IP schemes were suggested.

• A transformation that exploits object aggregation and helps in reducing problem complexity

was discussed. Finally, we suggested the marginal analysis approach of Fox as a method to

do re-allocation with incremental inputs. It is efficient in re-optimizing the allocation when a

system has online user interactivity, appearing or disappearing objects, time driven events

etc.

We believe that fairly general scenarios may be envisaged using combinations of the basic

blocks that we outline above. Further, we hope that some of the optimization techniques used

here will be used extensively to solve other problems in signal compression.

This chapter dealt with modeling issues related to MPEG-4 systems. These may aid in

transcoding (structured) content once it has been authored. Most of these algorithms are likely to

reside at the content server or an intermediate proxy. The next chapter deals with flexibilities

that exist at the client side. We will present models and algorithms for adaptive playout control

and discuss an alternative (implicit) way of modeling resource constraints.

49

CHAPTER 3

A framework for optimal scheduling of structured and streaming
media

Contents

3.1 Introduction... 50
3.1.1 Approach... 51
3.1.2 Related work ... 53
3.1.3 Outline .. 54

3.2 Modeling... 55
3.2.1 Earliness-lateness costs.. 56
3.2.2 Scheduling for composition ... 62
3.2.3 Scheduling for streaming ... 63

3.3 Solution to stream-based model... 65
3.3.1 Algorithm.. 65
3.3.2 Observations.. 66

3.4 Solution to composition model .. 67
3.4.1 A brute force optimal algorithm... 68
3.4.2 Heuristics .. 69

3.5 Variants... 77
3.5.1 Using both the models together.. 77
3.5.2 Inter-dependent objects.. 79

3.6 Summary of the chapter and concluding remarks .. 79

50

3.1 Introduction

Future multimedia services are envisioned to run in distributed environments, involving

collaborative content creation and editing, intelligent transport mechanisms, and subsequent

presentation (composition) of structured multimedia information. The migration from a stream-

based compression and manipulation scenario to a structured object-based one has opened new

challenges for research in resource-constrained retrieval, temporal synchronization, real-time

playback and creation of multi-modal composite documents. Structured multimedia documents

comprise both continuous and non-isochronous media. Although scheduling and retrieval of both

of these forms of content are challenging tasks, their service requirements are somewhat different

and need to be specified and satisfied in different ways. Moreover, the transmission of

documents introduces delays due to buffering, packet losses, error recovery schemes,

segmentation and re-assembly etc. These delays are fairly unpredictable and introduce skew or

jitter in the presentation. Skews and inter-object jitter occur in almost every form of content

delivery and consumption; however, most temporal specification and modeling schemes tend to

be somewhat rigid in their requirements. An effort therefore is also needed in relating the

closely coupled multiplex and playout scheduling issues with a relaxed temporal specification.

Both client and server side decisions have an effect on media scheduling. The server side
problem may be summarized as:
Objective: To find a selection and ordering of objects to be multiplexed in the bitstream.
Constraints: Interface buffer bounds, channel capacity, interdependencies among objects, and
intended deadlines at which objects need to be displayed.
Freedoms: Due to different media modalities and pre-specified deadlines, the perception of
missed deadlines for objects differ.

Unlike the server, scheduling issues at a client (see Figure 3.1(b)) relate to (a) media rendering,

processor sharing for decoding multiple objects and its playout control, and (b) finding optimal

retrieval schedules. The constraints and freedoms stay the same as with the server side. Note

further that if we ignore channel variations, any multiplexing operations done at the server are

replicated at the client end. Therefore, it is intuitive that a common modeling and decision

framework works at both ends.

51

Figure 3.1 (a) System Model: Server architecture

Figure 3.1 (b) Client architecture (figures used from [85] with author’s permission).

3.1.1 Approach

We discuss algorithms to schedule the playout, authoring (multiplexing) or retrieval of audio-

visual objects under relaxed temporal synchronization restrictions. While all these happen at

different stages in content creation and delivery, we try to relate the underlying service

requirements and provide a common framework for modeling and optimizing them. An early-

tardy (E-T) penalization framework is used to analyze these issues. The E-T problem has been

52

studied extensively in the operations research literature (see, for example, Baker and Scudder [8]

or Cheng and Gupta [35] for excellent reviews). However, we are not aware of any applications

of this to multimedia communication and networking. Besides studying the ET problem in a

particular application domain, we augment earlier optimization schemes as well. We discuss

how fast sub-optimal schemes can be used along with a subsequent neighborhood search

mechanism to yield heuristics that perform well in practice.

We recognize two sub-parts to our problem. Although this classification distinguishes scheduling

for composition (composition model) and scheduling for streaming (stream-based model), both

the schemes are closely related. The composition model involves scheduling the playout (or

transmission) of objects having a common display time, e.g., while doing display in a web

browser. Using the algorithmic framework based on [8], we present a brute force optimal

scheme and several heuristics to find the optimal playout schedule. To capture temporal

elasticity in the content, we assume that objects require different tardiness and earliness

constraints. Typically, this elastic penalty depends on the visual content of objects and their

modality. This observation can be further substantiated based on earlier experimental studies

(see for e.g., Steinmetz in [73]) which have evaluated the tolerance of users to skews among

audio/video streams. These works suggest three tolerance regions for jitter in playback of audio-

video streams: (a) The in-synch region ranges from 80 ms and lower (b) The out of synch region

ranges from 160 ms and higher (c) It is also observed that video ahead of audio is more tolerable

than audio ahead of video. Similar results, obviously with different tolerance bands, have also

been identified for remote teleconferencing applications. Our work extends and formally models

the results in these studies and tries to relate these tolerance levels with the underlying

scheduling mechanisms. The second subpart, i.e., the stream based model, discusses scheduling

of isochronous media. It leads to a non-work-conserving scheduling discipline for the

transmission and/or play-out of video or audio. A method to optimally insert idle time in the

bitstream, or equivalently, a way to add optimal slippage in displaying frames is presented. The

scheme is optimal in the sense that it jointly (a) minimizes the perception of motion

discontinuities or gaps seen in displaying late frames, and (b) implicitly minimizes buffering

requirements for storing early frames. Thus, the algorithm reduces potential burstiness in traffic

at a minimal cost.

53

3.1.2 Related Work

We are not aware of any prior work on object scheduling, playout control or synchronization that

has analyzed the problem using an earliness-lateness penalization framework. But, a significant

amount of work has been done for specifying inter-media synchronization and temporal

requirements [73][98]. The most well known methods (Blakowski et.al. in [73]) for this are

interval-based specification, axes-based methods (e.g., by using global timers, virtual axes),

control flow based specification (using reference points or Petri-nets), and event and script based

methods. The issues addressed in this chapter have also been part of standardization efforts like

the Multimedia and Hypermedia information coding Experts Group (MHEG) and the

Hypermedia/Time Based Synchronization Language (HYTIME). Several independently

developed structured authoring systems like HyOctane, Nsync, CMIFed, FireFly, and “temporal-

glue” [120], too, have visited similar issues.

Perhaps the closest to our approach is that of Buchanan and Zellweger [26]. In their study of the

FireFly system, the authors associated durations with the presentation of multimedia objects. A

duration was given by a tuple of the form <minDuration, optDuration, maxDuration>. Costs

were associated if media objects were stretched or shrunk away from optDuration. Shrinking and

stretching can be achieved by altering the rendition speed, skipping or repeating frames, showing

only key frames, etc. However, their system did not incorporate network level delays and

constraints due to client or network resources. Kim and Song [93] extended Buchanan’s concept

of temporal elasticity. An elastic document has an additional freedom while being authored and

browsed, and this can be used to satisfy synchronization requirements or to meet inter-media

constraints. Kim and Song, however, did not give a thorough mathematical analysis of the

problem and suggest using the Simplex Method after linearizing the problem. Their model falls

out as a special case of the stream-based model with the appropriate interpretation of parameters.

Consequently, using the analysis we discuss later, one can get much faster heuristics to solve

their problem. Some recent work [26][73] has looked at a number of hooks for temporal

specification schemes to incorporate on-the-fly changes due to interactivity and network

variations. Again, there still seems to be a lack of systematic framework with a rigorous

54

justification. Yet another body of work (K. Naik in [73]) discusses handling synchronization in

the event of faults and incomplete timing information. This is in line with our philosophy of a

relaxed temporal specification. More on the specification side of temporal requirements, the

authors of the CHIMP project [28] show how several forms of inter-object temporal

requirements can be specified using prioritized difference constraints. The authors propose

algorithms to incrementally solve the difference-constrained problem and to optimally relax

constraints in case the problem becomes infeasible. The primary focus in that work was on

collaborative multimedia systems in which several cooperating authors jointly create a

document. In our earlier work in [15], we presented algorithms to do resource constrained object

selection and transcoding when doing authoring. That approach used explicit constraints and

was easily extensible to incorporate several enhancements such as logical inter-dependencies

among objects, simple non-linearities, online implementations, and simplifications obtained by

object aggregation. In this work, instead of focusing on the use of explicit constraints, we give

an implicit way of modeling resource limitations along with temporal requirements. Display

deadlines are modeled explicitly, while buffer size variations are included implicitly in the

objective function.

3.1.3 Outline

This chapter is structured as follows. In Section 3.2, we introduce and formulate the problem by

partitioning it into a composition and a stream-based model. We discuss how to

calculate/estimate earliness and lateness cost parameters for applying these models. Section 3.3

presents a way to find an optimal non-work-conserving schedule to solve the stream-based case.

Section 3.4 details properties that must be satisfied by an optimal solution to the composition

model. Based on these, a brute force algorithm and several heuristics for finding the optimal

solution are outlined in Sections 3.4.1 and 3.4.2, respectively. In Section 3.5, we present an

algorithm that uses results from both composition and streaming models together. We also

discuss extensions and some related applications of the ET penalization framework. Finally, we

conclude in Section 3.6 with suggestions for future work.

For publications related to this chapter, see [11].

55

3.2 Modeling

MPEG-4 Systems [76][77][124][146] is used as the architecture that we use to build and explain

our models. The ideas, however, apply to any structured multimedia format. MPEG-4

encompasses most of the functions that we need to present algorithms for. Figure 3.1(a) shows

MPEG-4 System components at the server side. Audio-visual objects are encoded in separate

elementary streams. While compressing, the encoder assumes knowledge of the terminals’

buffering and composition memory capabilities. The content creator multiplexes elementary

streams along with the scene description information. All multiplexing and scheduling operations

considered in this chapter are at the FlexMux level. FlexMux has two modes to flexibly

multiplex objects -- a Simple Mode and a MuxCode Mode. Both of these are geared towards

low-bitrate and low-delay applications. The basic unit of the FlexMux layer is a FlexMux-PDU,

and a sequence of FlexMux PDUs is called a FlexMux stream. As we see in Figures 3.2 and 3.3,

in the Simple Mode, only data from one object may be included in a FlexMux-PDU. In the

MuxCode Mode, however, data from multiple objects can be encapsulated in a single FlexMux-

PDU. In the context of multiplex scheduling, we are interested in finding the optimal ordering of

AL-PDUs inside a FlexMux PDU in the MuxCode Mode and the ordering of FlexMux-PDUs

themselves in both the Simple and MuxCode mode.

FlexMux-PDU

PayloadHeader

AL-PDUlengthindex

Figure 3.2: Structure of FlexMux packet in simple mode (from [76])

FlexMux PDU

.......AL-PDUAL-PDUversion AL-PDUlengthindex

......H PayloadH Payld H Payload

Figure 3.3: Structure of FlexMux packet in MuxCode mode (from [76])

56

Before proceeding with the two models (i.e., scheduling for composition and streaming), in the

following section, we discuss how to calculate the penalty incurred by buffering some objects.

We also derive the cost of delaying the display of some objects beyond their target display times,

and see how it gets affected by temporal correlation in audio-visual content. We will show that

both of these penalization terms vary linearly with the earliness or lateness. Thus our objective

function later on becomes a weighted sum of linear earliness and lateness penalization terms.

3.2.1 Earliness-lateness costs

The primary application of the early-tardy composition model considered in this chapter is in the

design of an adaptive presentation controller. The client is assumed to have much lower

processing and buffering capability than is needed to decode and playback the entire content.

We further assume that the application requires certain soft deadline constraints to be met. A

solution to the composition model tells us the ordering in which the processor shares its

resources among the decoders. The so-called early objects are decoded and displayed at the

desired display time. Those in the late set are not decoded and a previous reconstructed instant is

repeated and used for prediction.

When scheduling a sequence of objects with soft deadline constraints, two forms of distortion

occur. First, an object that is displayed later than its target time causes jitter on display. We

show below that the extent of this jerkiness increases monotonically with the difference between

target and achieved display times. Moreover, for a given time skew, the effect as perceived by

the end user depends on the temporal correlation of the visual content. The spatio-temporal

covariance function for the object is used to capture these effects. Second, an additional (usually

ignored) component of distortion (or penalization cost) occurs for objects that are decoded prior

to their due times. These objects need to be buffered until the target display time arrives and

therefore incur an earliness penalty. This buffering cost typically increases with the size of the

objects.

57

3.2.1.1 Lateness penalty

We consider the lateness cost first. The treatment given here derives the lateness penalization

term for an image sequence. However, the method is general enough and can be applied to other

forms of time dependent (isochronous) media as well. The spatio-temporal covariance function

[81][111] between two points (x1, y1, z1) and (x2, y2, z2) in an image sequence is usually assumed

to be separable in spatial and temporal dimensions and can be represented as:

Cov. ((x1, y1, z1), (x2, y2, z2)) = Cov.spatial ((x1, y1), (x2, y2)) ×Cov.temporal(z1, z2)

Here Cov.spatial ((x1, y1), (x2, y2)) is a two-dimensional Gaussian function, and Cov.temporal(z1, z2)

is decaying exponential. These are given by:

And,
1 2 0 1 2. (,) exp[| |]temporalCov z z m z zρ= −

The parameters of this model (i.e., Rm ,,, 21 αα) are content specific, and may have to be

estimated by doing pre-analysis on the video sequence. If we consider only the temporal part of

this expression we get that the correlation, ρ , between two points separated by f frames is given

by, 0() exp()f mfρ ρ= − . The effect of delaying frames can be considered equivalent to the

distortion introduced by dropping a sequence of frames. Assume, without loss of generality that

021 ααα == and R=0. Therefore, the distortion introduced by skipping k (>0) frames is given

by:

1 1 2 2

1 1 2 2
1 1 1 1 1

() [1 () . (, ; ,)]
Spatial

j j

k M N M N
j j

j x y x y

D k j Cov x y x yρ
= = = = =

= −∑∑∑∑ ∑

Assume further that the spatial distribution stays the same temporally. Thus,

1 1 2 2

2 2 0.5

1 1 2 2

2 2 2 2 2 2 0.5
0 1 2 1 20 0

1 1 1 1 1

2 2 2 [(1 2) (1 2)]
0 00

1 1 1 1

2 2 0

() exp() exp{ [() ()]}

 exp()

 (1 exp())

k M N M N

j x y x y

M N M Nk x x y y

j
x y x y

D k M N k mj x x y y

M N k mj dj r

M N k mk
m

ρ σ α

ρ σ

ρ

= = = = =

− + −

=
= = = =

= − − − − + −

≈ − −

= − − −

∑∑∑∑ ∑

∑∑∑∑∫

2 2 0.5

1 1 2 2

2
0 0

[(1 2) (1 2)]
0 0

1 1 1 1

(, ,)

where we assume that exp(), and (, ,)
M N M N

x x y y

x y x y

J M N

r J M N r

σ α

α α − + −

= = = =

= − = ∑∑∑∑

5.0
212121

2
21

2
2

2
21

2
1

2
02211 |]))((|2)()(exp[),;,(. yyxxRyyxxyxyxCov spatial −−−−−−−= αααασ

58

As can be seen in Figure 3.4, D varies as a linear function of k asymptotically. To a first

approximation, this establishes linearity of the lateness penalization term. The following three

cases can be considered separately:

1. m small (low motion, high correlation)

2 2 2 2 20
0 0

2 2 2
0 0 0

Let . Thus,

() (...) (, ,)

 [(, ,)] as 0

m

D k M N k k k J M N

M N J M N k

ε
ρ

ε ε σ α
ε
ρ σ α ε

=

= − − +

= − →

2. m large (high motion, low correlation)
2 2Taking limit as using L'Hospital's rule, we get lim ()mm D k M N k→∞→ ∞ =

3. k large

The behavior for large k is dominated by the linear term. Hence we get,
2

2 2 0 0 0(, ,)
() |k

J M N
D k M N k

m
ρ σ α

→∞ = −

Figure 3.4: Lateness Penalty

59

Figure 3.5: Earliness and lateness penalties

From 1 and 2, we note that the slope of D(k) for high motion exceeds that for low motion.

Hence, for a given k, the value of D(k) is more for high motion. From (3) we see that as m

decreases (i.e., for low motion), ()D k → ∞ decreases. Moreover, as should be expected, the

reverse is true for high motion. In the k → ∞ limit the difference between the two curves

depends on 0σ and 0ρ .

In summary, the lateness penalty is the loss of correlation incurred by not decoding a sequence of

object instants. It gets parameterized using the slope of D(k), which we will call β in the

analysis later. For late or un-decoded object planes, the display (let us say at time n) is delayed

by repeating the previous video object plane (VOP) for k time instants. Thereafter, the (n+k+1)
th object plane is decoded using the earlier reconstructed VOP (nth) for prediction, and the display

is refreshed.

60

3.2.1.2 Earliness Penalty

Earliness penalty is modeled as follows. Contrary to not decoding (or delaying) the display of a

video object (VO), the following happens if an object instance is decoded (see Figure 3.1(b)):

• Compressed VOPi is extracted from the decoding buffer DMi thereby freeing up some client

memory.

• VOPi is decoded and this consumes CPU processing power normally proportional to the

object size.

• The decoded VOPi is put in composition memory CMi. Again the memory consumption is

proportional to the object size, si. The decoded version is held in composition memory until

the display time arrives.

The above three operations are combined to yield an earliness penalty factor. First note that

objects should not be decoded too far in advance since the decoded version must be retained in

composition buffer until the display time arrives. This suggests a penalization term that increases

with the difference (target display time – decoding time). Second, each decoded object increases

decoder buffer occupancy by an amount equal to the decoded size (since, typically decoded size

>> compressed size). Decoding an object consumes CPU cycles normally proportional to object

size. Since both buffering and processing power terms increase with si, we assume that the

earliness cost is proportional to the object size. We absorb the two factors (i.e., the processing

power and buffer consumption) using an earliness penalization factor (α i) that varies as a

monotonically increasing function (φ(si)) of the object size6. We use an online statistical

estimator to find α i as described in the following.

 3.2.1.3 Estimating Parameters

A set of linear predictors is used to estimate α i and β i. α i is a function of the time needed to

decode Oi ((dt)i) and the decoded object size for Oi ((sd)i). Both (dt)i and (sd)i are typically

monotonically increasing functions of the encoded size of Oi ((se)i). Denote by index t the

current time instant. We wish to predict the CPU cycles needed to decode time instant t+1 of Oi

6 Finding the exact functional form of φ is not the focus of this work.

61

[(dt)i | t+1]. Likewise, we also would like to predict the decoded object size at t+1 [(sd)i | t+1].

The above two predictions are combined into the earliness penalty factor at time t+1 [(α i) | t+1].

Similarly, β i depends on temporal correlation in audiovisual content. We approximate (β i) |

t+1 using a predictor based on the mean absolute difference (MAD) between adjacent time

instances of an object.

An adaptive auto-regressive estimator is used to predict future data points given the past history.

The estimator gives future estimates using a weighted average of past values of data points and

prediction errors. The weighting parameter is automatically (adaptively) adjusted based on the

tracking behavior of the algorithm. Denote by Yt the variable being autoregressed (for example,

MADi | t) . Let
^

1tY + be the predicted value of Yt+1. We use a prediction procedure given by:
^ ^

1

1 ^ ^
1 1 2 2

1 1 12

(1) , where

, () (1) , (| |) (1) , and 0 1

t t t t t

t
t t t t t t t t t

t

Y Y Y

E
E Y Y E E Y Y E

E

ξ ξ

ξ ψ ψ ψ ψ ψ

+

+ − −

= + −

= = − + − = − + − ≤ ≤

Note that:

1. Five variables (
^

 and t tY Y for the first equation, and
^

1 2
1 1 2 2, , and t t t tY Y E E− − − −− for calculating

1,2
1tE −) need to be stored at any given time. The entire history gets embedded in these

variables.

2. The parameter tξ is updated automatically based on the performance of the predictor.

Hence, almost no administrative intervention is required.

3. The parameter tξ adapts based on two exponentially smoothed estimators of prediction error.

The first, 1
tE , predicts the residual error; while the second, 2

tE , predicts the absolute residual

error. Note that 1 1tξ + → if all previous values 1 1 1
1 2 1, , ... , t tE E E− − are of the same sign. Thus,

the predicted value is governed primarily by most recent sample and not history before that.

Similarly, self-adjusting (positive and negative) 1 1 1
1 2 1, , ... , t tE E E− − terms drive 1 0tξ + → .

Thus a very rudimentary flat predictor
^ ^

1t tY Y+ = would work well.

62

More complicated predictors for estimating α i and β i could be used as well7. The interested

reader may refer to [100] for algorithms to find several other MSE-optimal predictors based on

covariance and auto-correlation methods. For this work, we restrict our attention to adaptive

exponential smoothing methods to keep the space-time complexity low.

Summarizing, this section discussed how to calculate and estimate earliness-lateness penalization

factors. The subsequent sections will present composition and streaming-based models and ways

to solve and build on them.

3.2.2 Scheduling for composition

Assume that there are n objects, {O1,…,On}, which have to be composed together to form a

display instant of the scene8. We wish to design a playout scheduler that selects the set of

objects to decode, finds an optimal order in which to decode them, and finds a target display time

for this “quanta” of objects. We intend to find these such that the aggregate penalty for

decoding (and rendering) or dropping (and delaying) the display of objects gets minimized. The

two objectives (penalization terms) can be combined using an objective function of the following

form:

Composition Problem:)0,max()0,max(),(
11

dCCddsequencef i

n

i
ii

n

i
i −+−= ∑∑

==

βα

Where d = common display time of the decoded objects.

α i = scaling factor that indicates cost for earliness of object Oi

β i = scaling factor that indicates cost for lateness of object Oi. Justification for the linear

term was given in Section 3.2.1.1.

7For example, one could use a finite depth linear filter. Assuming that we use a linear combination of past p observations, we can

write
^

1

p

t i t i
i

Y c Y −
=

= ∑ . Unlike exponential smoothing heuristics, a significant computational effort may be required here in

building a good model (i.e., in estimating, storing, and updating the optimal parameter set {ci} under an MSE-like metric).
8 The level of granularity to be used depends on the application domain. Throughout this paper, we will assume that the data

unit (object) under consideration corresponds to a displayable entity (e.g., a set of audio samples or a video object plane). We do

not focus on lower-layer scheduling schemes like earliest-deadline-first (EDF), rate-based scheduling and pipelining

architectures.

63

Ci = time at which decoded version of object Oi is put in composition buffer CMi.

si = size of object Oi (in time units).

There are several points worth noticing about the above expression:

• The objective function f(sequence, d) indicates the penalty incurred due to a variance in

rendering around d. The distribution to the right of d is affected by the loss of correlation.

Similarly, the cost of derailing towards the left is a function of buffering and processing

power required for decoding Oi.

• We assume that data arriving prior to display time is decoded and held in a composition

buffer. The buffer renders its contents to the monitor at time d.

• The objective function does not take explicit account of composition buffer size at the client.

Instead, it implicitly tries to minimize buffering at the terminal by penalizing early decoding

and buffering attempts using an earliness cost. This would make sense, e.g., if during

compression or transmission the encoder does not have complete knowledge of terminals’

buffering and composition memory capabilities. Alternatively put, the above model is useful

for specifying requirements for playout scheduling and synchronization if the end terminal

has very limited buffering and low CPU power and the application needs that only certain

soft deadline constraints be satisfied.

• We assume that iα and iβ are normalized between 0 and 1, and that earliness and lateness

penalties may be combined additively.

• The objective function depends on two factors. First, we need to find an ordering in which to

decode objects. Second, we also need to find a target display time (d) of these objects.

These two objectives are inter-coupled in that the choice of one may affect the other.

Moreover, since we are considering composition, d does not occur periodically (e.g., every

30 ms). The optimal choice of d gets decided after solving Composition Problem. Hence, the

display could be aperiodic.

3.2.3 Scheduling for streaming

In the previous section, we considered the decoding and playout of objects that need to be

rendered together. The optimal rendition time and the decoding order was an output of the

64

algorithm. However, in most isochronous applications, the display time is a pre-specified

quantity and occurs, for example, every 30 msec. In this section, we analyze the optimal

transmission or multiplexing of a sequence of frames (or “quanta” of objects) having given

distinct display times. Within each such quanta of objects, the algorithms for optimizing playout

scheduling using the composition model are applicable.

Like the previous section, an early-tardy penalization framework is used here as well. We wish

to find an optimal way to multiplex a sequence of frames under soft deadline constraints. In

other words, we intend to find an object-scheduling scheme that minimizes an objective function

of the following form:

Streaming Problem:)0,max()0,max()(
11

ii

n

i
iii

n

i
i dCCdsequencef −+−= ∑∑

==

βα

Here di = target display time of object Oi.

iα = a scaling factor that indicates earliness penalty of object Oi .

 β i = a scaling factor that indicates lateness penalty of object Oi .

Ci = time at which the last bit for object Oi is received.

Here,

• The sets of variables {di} are given and distinct quantities.

• The summation is over objects displayed synchronously one after the other. In composition

problem, it was over (candidate) objects to be displayed at d.

• Candan et.al. [28] classified media objects into several categories. We use a part of their

categorization to highlight temporal flexibility for different object modalities. MPEG-4

objects may comprise of:

(a) Static objects including text, non-scalable images, etc. These objects have loose temporal

requirements since content does not change frequently. As illustrated in Figure 3.5(b)

static objects have low lateness penalty, but a higher earliness penalization factor that

increases with the size of object. The choice of β for static objects is application

dependent (we use an arbitrary value of 0.1).

(b) Temporal objects including synthetic or natural audio, speech, and video. These objects

have stringent ordering, synchronization and temporal restrictions. As illustrated in

Figure 3.5(c), this results in intermediate earliness and lateness penalties that have to be

65

calculated based on Section 3.2.1. Normally, audio is more sensitive to skew as

compared to video streams. Since humans are more sensitive to audio-hiccups the

penalization parameters (α and β) for audio are intentionally scaled up.

(c) Object descriptor (OD) and scene description (BIFS) elementary streams. PDUs from

these streams are needed to render objects, and therefore are assumed to have very high

lateness penalty (β =0.9) and very low earliness penalty (α =0.1).

The following sections discuss how to optimally solve the scheduling problem for composition

and stream- based models.

3.3 Solution to the stream-based model

Note that the early-tardy objective function is not a regular one and hence the optimal solution to

the E-T streaming model can be non-work conserving. In other words, the channel may be held

intentionally idle (or the display intentionally frozen) even when bandwidth is available. An

example best illustrates this unexpected behavior. Assume a hypothetical stream with only two

frames which have to be displayed one after the other with a gap of T=30 ms. Assume also that

both these frames are very small, so that the channel can carry much more data than is required

during the time interval T. Obviously, it does not make sense to transmit the two frames back-

to-back if we want to minimize the objective function of the Streaming Problem. Instead, this

objective function will be minimum if the two frames are so scheduled that they arrive just-in-

time for display. This leads to empty space during which the channel is intentionally not fully

utilized. If, however, there were no earliness penalization term, one could have transmitted the

two frames contiguously.

3.3.1 Algorithm

A sequencing issue normally does not arise when streaming a single isochronous stream.

Compression constraints and dependencies govern the ordering of object planes since reference

frames are scheduled to arrive prior to predicted ones. Hence the sequencing of VOP’s for a

single VO gets decided at compression time. Given an ordering of objects, we can still optimally

66

insert idle time using an approach based on marginal analysis. The algorithm [43] can be

summarized as follows:

1. We start with the last object instance in the sequence, and move towards the first one.

2. One object gets added in each step. Initially, this added object is placed at time t=0.

3. The added object instance is shifted as far to the right as possible, as long as the marginal

cost of moving to the right is negative. The marginal cost is defined as the unit cost of

moving a group of objects to the right. It equals the difference between lateness and

earliness costs of late and early objects, respectively, in the group. Shifting is done in unit

steps of time, and after each step the marginal cost is re-calculated. Notice that the marginal

cost changes if a group of objects hits on a previously scheduled group of objects. If this is

the case, the combined group is shifted as a block in subsequent steps.

4. The procedure terminates after all objects (down to the first one) have been added to the

schedule and shifted as far to the right as possible.

3.3.2 Observations

1. The early-tardy objective function is not a regular one, in the sense that having data come

late could be beneficial in certain cases. This is because it incorporates (a usually ignored)

earliness penalization term. An end device may have very limited buffers (or a very high

earliness penalty). Therefore, it does make sense not to transmit as fast as possible in order

to avoid buffer overflows. Alternatively, in a playout scenario, it may be better at times not

to decode objects as soon as possible in order to avoid unnecessarily hogging up composition

memory. The idle time obtained by the ET optimal solution could be a good place to transmit

control and signaling information, to accommodate best effort traffic, for applying escape

mechanisms, or as an auxiliary capacity for interactive (on-the-fly) changes in resource

requirement.

2. The algorithm above can be viewed as a method to smooth out burstiness in traffic. It is

likely that by doing optimal scheduling taking into account both lateness and earliness

penalties, that potentially less buffer space will be required to remove jitter.

3. In an earlier work, Little and Ghafoor [98] had suggested an algorithm for retrieval and

delivery of multimedia data. The primary focus was on retrieval of objects residing on a

67

single server. The temporal requirements among objects were specified using Object

Composition Petri-Nets (OCPN’s). Given a temporal specification the authors come up with

a method to do optimal retrieval scheduling. Since OCPN’s assume tight deadlines, the

work in [98] falls off as a special case of the above algorithm if:

• Lateness penalty is infinite,

• Earliness penalty is constant, and

• Network delays (including propagation, transmission, and variable components) are

incorporated in object sizes.

3.4 Solution to the composition model

This section explores schemes to find an optimal solution to the Composition Problem. The

treatment follows from the algorithmic framework of [8][9][119]. We augment earlier studies by

showing how sub-optimal algorithms can be used with a subsequent neighborhood search

mechanism to yield good heuristics. To start with, observe that search space for the Composition

Problem is very large. If there are n objects, we can have a maximum of n! possible sequence

orderings of decoding them. For each such sequence, the target display time could lie virtually

anywhere; leading to an infinite number of possibilities that need to be enumerated and

compared. Panwalker [119] and later Baker and Scudder [8][9] however, showed that the

following properties hold for an optimal solution to this problem. These help us constrain the

search space greatly and are given by:

Proposition (a) There is no idle time in the optimal schedule.

Proposition (b) The target display time of objects coincides with Ci of some object.

Proposition (c) The early objects (i.e., those which are decoded prior to the target display time)

are ordered in non-increasing order of iis α/ [or in weighted longest processing time first (WLPT

first) order].

Proposition (d) The late objects are ordered in non-decreasing order of iis β/ [or in weighted

shortest processing time first (WSPT first) order].

68

Proposition (e) The object whose completion (end of decoding) time coincides with the target

display time (say, Or) satisfies ∑ ∑
= +=

≥
r

i

n

ri
ii

1 1

βα , where objects are ordered in increasing order of

index i.

The interested reader may find proofs in [119]. Each of these proofs involves an interchange

argument in which a proposed schedule, not satisfying one of the above, is replaced by one with

a smaller objective function. As an illustration, we reproduce the proof of (c) in Appendix A.3.

What interests us here is how each of these propositions helps in reducing the search space.

Using (a), we are constrained to n! choices as we had originally conjunctured. From (b), once an

ordering is fixed, we need to look at the completion times of objects only as candidate positions

for setting target display time. This leads to an additional O(n) computation for each of the n!

choices. Propositions (c) and (d) together give the most substantial reduction in computation.

They say that once the two sets of early and late objects are fixed, we only need to carry out a

sorting of objects in each of them. Therefore, we should look at all possible ways to form two

sets from n objects. This may be done in ∑
=

=

n

i

n

i
n

0

2 ways, which is an improvement over n!

choices. Finally, we see that proposition (e) supplements (b). It says that once an ordering is

given, we may get the desired display time by finding the minimum r that satisfies the inequality

in (e)9.

3.4.1 A brute force optimal algorithm

Combining propositions (c) and (d) from [8][9][119] it is easy to come up with a brute force

approach of O(2n) complexity to find the optimal schedule for composition-model. The

algorithm (ALG 1) has the following steps:

0. Divide the n objects into two sets. Call one of them an early set and the other the late

set. The display time gets decided by how the objects are partitioned into two sets.

9 Unlike the composition model, in Streaming Problem, the optimal schedule can have idle time. Furthermore, early and late
objects do not have any specific sequencing constraints like WSPT or WLPT first. This makes Streaming Problem much more
intractable if a sequencing issue needs to be resolved. Luckily, for the application under consideration, this is not the case.

69

1. In the early set, reorder objects in non-increasing order of iis α/ . Resolve ties

arbitrarily.

2. In the late set, reorder objects in non-decreasing order of iis β/ . Resolve ties arbitrarily.

3. Calculate the objective function. If it is lower than the best ordering yet, replace the best

ordering by the current one.

4. Move to the next way of dividing n objects into two sets. Repeat steps 1-5. Stop if all

the possibilities are already looked at.

5. After looking at all possible sets, the one with the lowest objective function is the desired

solution.

3.4.2 Heuristics

Although ALG 1 solves the Composition Problem optimally, it is computationally intensive. It

may be prohibitive to use it for any reasonable n (e.g., for n=20, we have about a million options

to look at). From this section onwards, we propose faster heuristics that may be used to solve the

above problem approximately. Four heuristics are suggested. The first modifies the dynamic

programming approach of [65] and uses it in conjunction with a local search technique called

generalized apparent pair-wise interchange (API). The second considers some dispatching rules

(WSPT, WLPT and one due to Ow and Morton [116]) and studies them when followed by

neighborhood search. The third technique uses Tabu search to look in the neighborhood, while

the final one is based on genetic algorithms to do local search. Our primary contribution is in

modifying earlier studies on related (though slightly different) problems

[8][9][35][65][116][119] to yield heuristics that use a fast sub-optimal search followed by local

search.

Common to all these schemes is the idea of the neighborhood of a sequence. First, we use a

heuristic to get a sub-optimal but feasible solution. An approximate dynamic programming

method, WSPT first, WLPT first or a combined dispatching rule is used for this. Although these

methods give a solution that is sub-optimal, our intuition suggests that the optimal schedule lies

close to it. The idea of closeness is described using neighborhoods. For a given starting

schedule, a set of neighboring schedules is generated using a fixed transformation of the starting

70

sequence. The transformation we use is called the generalized apparent pair-wise interchange

(API) method. In this method, two objects are picked from the original schedule, and their order

is swapped. This is done for all possible pairs to obtain an 2/)1(−nn sized neighborhood. The

original schedule is then perturbed to one of the schedules in its neighborhood and this new

schedule becomes the current one, and the procedure is repeated iteratively.

Summarizing, there are four critical steps in these heuristics. First is the selection of a sub-

optimal method that generates the original (seed) schedule. Second is how a neighborhood is

created. Although we focus on generalized API, simpler or more sophisticated ways are also

possible. Third is how the original solution is perturbed to a new one. This may be a simple

random choice in the neighborhood or it could be the best choice from this set (which may even

be worse than the original schedule). One could choose to move to any or first-hit better choice

or select from a subset of choices in the neighborhood, as is done in Tabu search. Finally, the

fourth decision is how we decide to stop searching in the neighborhood. We may do this after a

fixed number of iterations. Another way could be to stop if there is no better choice in the

neighborhood or if the improvement is below a threshold. The heuristics we present below differ

in the aforementioned four aspects. In Sections 3.4.2.1 and 3.4.2.2 we give two different ways of

choosing the seed solution. Sections 3.4.2.3 and 3.4.2.4 explore the other two aspects, i.e., those

of neighborhood creation and searching in it to choose the next solution.

3.4.2.1 An approximate dynamic programming approach

This Section describes an approximate dynamic programming algorithm. The treatment given

here modifies the dynamic programming approach of Hall and Posner [65]. First note that

propositions (c) and (d) above give us two ways of ordering the schedule of objects. Using them,

we can get two lists of objects, say L1 (WLPT first) and L2 (WSPT first). Let us look at the

optimal schedule starting from the target display time and move outward one object at a time.

Objects decoded before the target time come in increasing index order from list L1. Those after

it are in increasing order of index from list L2. What makes things complicated is that there

need not be a single ordering of objects (i.e., a combined list L obtained from lists L1 and L2)

such that objects can be seen coming from it in increasing or decreasing index order as we move

71

outward from the target display time. This happens because ii βα ≠ , whence the same object

could lie at contradictory positions in the two lists. If we can somehow combine the earliness

and lateness costs together into one parameter, we may get a single list. This will be the

approach we take to get a first hand approximate solution to the Composition Problem. The

combined cost for object i could be any arbitrary function of ii βα , that increases with both

parameters; i.e., any (,)i i i ifλ α β= having / 0, / 0
i ii if f iα β∂ ∂ > ∂ ∂ > ∀ is a valid candidate.

Some simple choices could be , , n m n m
i i i i i i iλ α β α β α β= + + × etc. For simplicity, we consider

only the first one, and for the rest of this work assume iii βαλ += . Using this combined cost

factor, iλ , we obtain a list L in which objects are in increasing order of iis λ/ . Note that with

this choice the objective function also gets simplified to ||
1

dC i

n

i
i −∑

=

λ .

After getting a single ordering, it is easy to write a dynamic program [65] to solve Composition

Problem. Due to the above-mentioned aggregation of lateness and earliness costs, the solution

we obtain will not be optimal to the original problem. Represent by)(ehk the objective function

value for scheduling objects n, n-1,…, k+1, k such that the total decoding time (size) of early

objects (including the one that gets decoded right on time) is e. This leads to the following

dynamic program recursion:
n

1 k 1
1 j=1

1
1

() min{ (), () ()} for k 1,..,n; e 0,1,..., , and

() 0 for 0,1,...,

k

k k k k i k j
i

n

n j
j

h e e h e s s e h e s

h e e s

λ λ+ +
=

+
=

= + + − + = =

= =

∑ ∑

∑

72

e+skEarly Ok

Late Ok

1

1

k

j
j

s e
+

=

−∑

d

d

1

k

j
j

s e
=

−∑e

Ok goes here

Ok goes here

Figure 3.6: Dynamic programming when used on a relaxed problem can be used to get seed

solution (situation before Ok is scheduled, i.e., with hk+1(.) already computed and available).

Each incoming object is scheduled either early (to be decoded and rendered) or late (to be

delayed or dropped). This accounts for the first and second options, respectively, in the

dynamic programming recursion. These two choices (i.e., those of adding object Ok in the early

or tardy sets) are illustrated pictorially in Figure 3.6. The algorithm proceeds in decreasing order

of k (i.e., from)(1 ⋅+nh down to)(1 ⋅h), and the final solution is given by)0(1h . The space-time

complexity of above program is)(
1

∑
=

n

i
isnO . In other words, dynamic programming leads to a

pseudo-polynomial algorithm.

After finding h1(0) and backtracking the optimal solution, we use it as the input "seed" schedule

for a subsequent neighborhood search procedure. The neighborhood creation, schedule

perturbation etc. are carried out as follows:

1. The solution of the above approximate dynamic program is taken as the initial "seed"

schedule.

2. We create a neighborhood around the seed schedule using the generalized API procedure.

73

3. For each ordering in the neighborhood, a target display time is found by Proposition (e), and

using that, we calculate the objective function value. The schedule that gives the smallest

objective function value in the neighborhood is labeled as the critical schedule.

4. We assume that early and late sets of objects are the same as those in critical schedule.

Therefore, to satisfy propositions (c) and (d), we reorder objects in early set in WLPT first

order, and objects in late set in WSPT first order.

5. The schedule at the end of Step 4 is taken as the new "seed" schedule.

6. Steps 2-5 are repeated using the new seed until its neighborhood has no better schedule.

3.4.2.2 Dispatching schemes

In this section we suggest how dispatching rules can be used to get the seed schedule. A

dispatching scheme looks at the current set of unscheduled objects and schedules them one after

the other using a predefined rule. Unlike DP, dispatching rules can be both dynamic and static.

In other words, the decision rule can stay the same or change over time. Moreover, since a

dispatching rule is incremental by its very nature (unlike DP), it is a better choice for online

implementations. We consider three dispatching rules. D1 and D2 are the trivial WSPT and

WLPT rules respectively. D3 is a slight modification of a dispatching rule first suggested by Ow

and Morton [116].

Dispatching rule D1: All objects are assumed to be in the tardy set, and so the dispatching is

done according to WSPT first rule. Note that this dispatching rule is a static one, in that it does

not change as more and more objects get scheduled.

Dispatching rule D2: All objects are assumed to be in the early set, and thus the optimal

schedule is in WLPT first order. Rule D2 is also static.

Dispatching rule D3: Dispatching rules D1 and D2 operate at two extremes. While D1 gives the

optimal strategy for tardy objects, rule D2 is optimal only if all objects are in the early set in the

true optimal. What we ideally need, in a sense, is something that operates in between. The rule

should also be able to adaptively switch between rules D1 and D2 depending on the present

74

scheduling scenario. Ow and Morton [116] built on these ideas to come up with a mixed

dispatching rule and had studied its application for randomly generated input. To start with, all

objects are assumed to be unscheduled. Thereafter, objects are scheduled one after the other

depending on a prioritizing rule. This rule is used to find the priority of scheduling each

unscheduled object next. The object with highest priority is scheduled to be decoded (or gets

added to the stream depending on the application), and the process continues until all the objects

have been scheduled. As each object gets scheduled, it is removed from the unscheduled set and

added to a scheduled one and the current time is incremented by the size of object just scheduled.

The priority function of object i (Pi) is modified10 from [116] and is given by:

≤≤+

≤

=

otherwise / -

0 if)//(- /

0 if /

)(

ii

iiiii
i

ii

iii

ii

s

skKss
sk

K
s

Ks

KP

α

αββ

β

Here ii stdK −−= is the slack for object i if the current time is t. Slack indicates whether

object i would be early (Ki>0) or late (Ki<0) if it were scheduled now. s is the average size of an

unscheduled object. Figure 3.7 shows Pi(Ki) as a function of slack (Ki). We see that if Ki ≤ 0,

objects are likely to be tardy, and are therefore should be scheduled in WSPT first order.

Similarly, if skK i ≥ , object i is likely to be early, and gets scheduled in WLPT first order. In

the intermediate range, the priority of scheduling object i next is assumed to vary linearly

between the two limits. k is a look-ahead parameter that tells how many objects on the average

will get affected by scheduling an object next. A larger value of k means that we look far into

the future to avoid clashes, hoping to get a globally optimal solution. A smaller value gives a

locally optimal schedule, but can lead to multiple objects all competing closely to be scheduled

at a future time. Since all objects are due at the same time in our problem, we set k as a

reasonably large number to avoid clashes.

10 Ow and Morton used a very similar rule for a case where the target display time is a given input and could vary
for different objects. Our problem is distinct in that the display time has to be decided by the rule, and it is common
for all objects. Further, we don't use dispatching rules in isolation. There is a follow-up neighborhood search stage
that generates the final solution. Of course, this method can be easily extended to schedule packets due at different
times, and is therefore applicable for stream-based applications as well. For that we would substitute Ki=di-t-si, and
the rest of the algorithm would stay the same.

75

Figure 3.7: Combination of WSPT first and WLPT first dispatching rules (modified from

[116]).

The above problem differs from the one analyzed by Ow and Morton in that here we don’t know

a d to start with. To get around this, we initially set d to 2/sn and iteratively try to converge to

its optimal value. Given a d, a sequence is found using Rule D3, and the target display time is

again calculated by Proposition (e). The procedure is repeated iteratively a couple of times using

an estimate of d from the previous iteration. After obtaining solutions using dispatching rules

(D1, D2, or D3), we do a neighborhood search around it. The method used is same as with

dynamic programming (steps 2-6). DP and dispatching rules are ways to obtain seed solutions.

The next two sections explore the other part of optimization, namely local search. In particular,

we study two methods based on Tabu Search and Genetic Algorithms.

3.4.2.3 Tabu search

Like most local search methods, Tabu ("taboo") search is also based on moving from one

feasible solution to another one while looking in a neighborhood. In this method, however, we

make a deliberate attempt to avoid being trapped in a local minimum while searching for the

76

global minima. This is done as follows (for a more complete treatment, the reader is referred to

[62][123]):

1. Tabu search allows us to shift to the best possible move from the neighborhood even if it

does not lead to an improved solution.

2. To avoid jumping back from a new state (schedule) to a recently visited one, a list of tabu

("taboo") schedules is maintained. After moving to a new schedule, we add it to the tabu

list. The earliest added schedule is removed from the list to keep the number of tabu

schedules constant.

3. If all moves in a neighborhood are tabu, one is picket at random and the process

continues.

4. Since the procedure could continue forever, we enforce a stop after a fixed number of

iterations. The best solution yet is taken as the heuristic solution.

Solutions of WSPT first, WLPT first, dynamic programming and dispatching rule D3 are used to

find the initial seed. The above outlined search procedure is carried out starting with each of

these. Finally, the best of all four schemes is chosen as the final solution.

3.4.2.4 Genetic algorithm

Genetic programming provides a generic set of techniques for doing local search. These

methods are based on Darwin's theory of "survival of the fittest" in the process of evolution.

Although a different terminology is used (see Table 3.1 for a list), the basic ideas are very similar

to tabu search. A formal statement of the method we use is as follows (for a thorough overview,

the reader is referred to [19][96]):

1. As with Tabu search, the solutions of WSPT first, WLPT first, dynamic programming

and dispatching rule D3 are used to obtain the initial population. A constant population

size of 4 is assumed. Initialize k=1.

2. Consider the kth generation. Find the most and least fit individual in this generation.

Form a neighborhood of the most-fit individual (in our case, using generalized API).

Add the most fit individual from this neighborhood to the population. Remove the least

77

fit individual from it so as to keep the population size constant. Keep track of the most-

fit individual until the kth generation. Increment k.

3. Stop after the number of generations is more than a threshold, else go back to step 2.

4. Pick the most-fit individual yet as the solution.

Scheduling terminology Genetics terminology

Current set of schedules Current population

Sequence or schedule Individual in population

Value of objective function Fitness of individual

Iteration Generation

Possible new solution A newborn child

Previous solution Parent

Finding a new solution Applying a mutation

Table 3.1: Scheduling terminology vs. genetics terminology.

3.5 Variants

Below, we discuss two extensions of the above-presented early-tardy penalization framework.

3.5.1 Using both the models together

The treatment until now analyzed algorithms to schedule the playout of audio-visual objects

using an early-tardy penalization framework. The problem was discussed by dividing it into a

composition and a stream-based model. In this section, we give a combined algorithm that uses

results from both the models together to schedule the transmission (or multiplexing) of a mixture

of composite and streaming media. The algorithm is self explanatory, and its outline is as

follows:

78

1. Consider N objects, O1,..,ON, including both streaming and composite media. Object Oi has

ni desired display instants during the interval of the presentation. This gives us a set of

display instants {dij | i=1,..,N and j=1,..,ni}. ni could be 1 for static or composite objects.

2. For all pairs (i1, j1) and (i2, j2), if 1 1 2 2, ,i j i jd d ε− < (ε application dependent), bundle the two

time display instants. This is an aggregation step in which media that could be treated as a

composite is identified. In each quanta of indistinguishable display times, optimize the order

of decoding (transmission) of objects using one of the algorithms for composition model.

Since the common display time (d) is an output of composition algorithms, shift objects until

d matches with the target display time, without changing the ordering.

3. Taking into account the aggregation done in step 2, redefine the set of display instants as { *
ijd

| i=1,..,N and j=1,.., *
in }. All *

ijd are henceforth sufficiently distinct, and *
in ≤ ni (as a

degenerate case n*i could be 1 for static objects e.g., images.)

4. Consider the matrix of display times:

D* =

*
1

*
2

*

* *
1,1 1,

* *
2,1 2,

* *
,1 ,

...

...

.

.
...

N

n

n

N N n

d d

d d

d d

 < <

< <

< <

The ordering constraints required by the application (due to inter-frame compression) are

indicated using “<” signs. Observe that due to inter-dependencies, at any given time, only

one from a maximum of N objects could be scheduled next. We use the following steps to do

the object scheduling:

4.1 Define the initial current set as the set of objects with display times { *
,1id ; for all i}.

4.2 Find the best object to be scheduled next from the current set using dispatching rule D3,

and schedule it.

4.3 Remove the object just scheduled (say, Oi*,j*) from the current set and add Oi*,(j*+1) to

this set.

4.4 If there are any unscheduled objects, go back to step 4.2, else stop.

5. Optimally insert idle time in the schedule using the algorithm discussed for the streaming

problem.

79

3.5.2 Interdependent objects

Objects that compose a presentation are generally not independent. Inter-dependencies among

objects usually arise due to synchronization or compression constraints. The playout controller

must schedule taking due account of these inter-dependencies. Inter-dependencies due to

synchronization are easily incorporated in the playout controller by aggregating multiple objects

and scheduling their decoding (or delay) concurrently. Consider next embedded coding of

objects. Denote by Oi,j the jth scaled version of object Oi. We assume that layer j cannot be

decoded without prior decoding of layers 1,..,j-1. Layers among objects are assumed to be

independent. Unlike the independent layers case, here we solve a sequence of optimization

problems. Each optimization step involves finding a locally optimal greedy solution. The

procedure starts with the first layer of all objects, i.e., the object set {Oi,1 ∀ i}. Each optimization

step is similar to the Composition Problem, with the difference that every object has at most one

candidate version (with parameters α ij and β ij) entering in a given step. After solving this sub-

problem, the layer (say, Oi*j*) that is scheduled to be decoded first is removed from the candidate

set, and the next layer of this object (i.e., Oi*,(j*+1)) is entered for the next problem. The

procedure is repeated iteratively, until all layers of each object have been scheduled.

Subsequently, d is calculated using proposition (e) in Section 3.4. Objects in the early set are

decoded and played out in the order obtained and those in the late set are delayed.

3.6 Summary of the chapter and concluding remarks

In this chapter, we discussed algorithms to schedule the playout or retrieval of audio-visual under

relaxed temporal constraints. In particular, we used a framework based on the early-tardy due-

date assignment problem to investigate these issues. Throughout this chapter, we assumed that

objects require different tardiness and earliness guarantees based on their visual content and

media-modality. We discussed the justification of using an ET framework and presented ways to

estimate parameters of this model. Two sub-parts were recognized for the problem. The first

involves scheduling the playout and decoding of objects having a common display time. A brute

80

force optimal scheme and several heuristics were suggested to solve the composition-model.

These heuristics use a preliminary fast sub-optimal scheme to get seed solutions. Subsequently,

a local neighborhood search procedure is used to improve the seed solution by giving it a minor

perturbation. The second part of the problem, called the stream-based model, leads to a non-

work-conserving scheduling discipline to control the transmission and/or play-out of a sequence

of video frames. A method to optimally insert idle time in the bitstream, or equivalently, a way to

add optimal slippage in displaying frames was suggested. This can be viewed as a way to reduce

potential burstiness in traffic at a minimal cost.

Finally, we presented schemes to exploit results from both composition and streaming models

together. We discussed how the two sub-parts could be used simultaneously to schedule the

transmission of a mixture of non-isochronous and streaming media. Some extensions of the ET

penalization framework were also suggested. Summarizing, this work studied a formal

framework for handling synchronization and scheduling related research for continuous and non-

isochronous media and combinations of these. For publications related to this chapter, see [11].

This chapter dealt with playout scheduling issues in MPEG-4 like systems. We presented

models and algorithms for adaptive playout control and discussed an implicit way of modeling

resource constraints. Earlier in this chapter we showed how spatio-temporal variance in visual

content affects our scheduling decisions. The next chapter explores these ideas further. We

present content based approaches for visual segmentation and associated resource allocation for

transmission over wireless channels. We use extent of intra-coding, scene changes and motion

based features for segmenting content at a frame level. An experimental simulation platform

will be used to test the objective (SNR) effectiveness of the proposed FEC and ARQ algorithms.

81

CHAPTER 4

Content-based schemes for video transmission over wireless
channels

Contents

4.1 Introduction... 82
4.2 Related work ... 83

4.2.1 Data partitioning and layered coding.. 84
4.2.2 ARQ/FEC schemes.. 85
4.2.3 Concealment options and robust codecs... 85

4.3 An approach based on sub-stream segmentation .. 86
4.4 FEC based schemes... 87

4.4.1 Segmentation based on extent of intra-coding .. 87
4.4.2 Motion based segmentation ... 89
4.4.3 FEC based resource allocation ... 90
4.4.4 FEC results.. 91

4.5 Retransmission based schemes .. 101
4.5.1 Model.. 101
4.5.2 Segmentation... 103
4.5.3 Adaptive decoder buffer control... 104
4.5.4 ARQ results... 109

4.6 Summary of the chapter... 116

82

4.1 Introduction

Recently, there has been a great demand for audio/visual services to be provided over wireless

links. However, due to bandwidth constraints, high error rates and time varying nature of these

channels, the received video quality is usually inadequate. New algorithms are needed to enable

reliable video communication in wireless environments. This chapter describes new schemes for

video transmission over wireless channels. It can be broadly divided into two parts. Firstly,

content based approaches for video segmentation and associated resource allocation are

proposed. Secondly, joint source/channel coding techniques (in particular, content/data

dependent FEC/ARQ schemes) are used to do adaptive resource allocation. FEC based schemes

are used to provide class dependent error robustness and a modified ARQ technique is used to

provide constrained delay and loss. The approach is compatible with existing video coding

standards such as H.261 and H.263 at rates suitable for wireless communication.

Traditional methods of segmenting video into sub-streams involve frame type, headers, and data

type (e.g., motion vectors vs. transform coefficients). Improvement has also been shown by

separating video to sub-streams and using adaptive resource allocation mechanism [134] These

techniques are developed based on the notion that different types of video sub-streams have

different levels of importance and should be handled differently. However, these approaches are

restricted and do not take into account the ``content'' of the video. In this work, we propose

content-based segmentation methods to augment the traditional approaches. Here, video content

refers to the inherent visual features present in the video. Examples are structure of the scenes,

objects contained in the scene, attributes of the objects (e.g., motion, size, number etc.). Our goal

is to demonstrate the value of the content-based video transport framework by providing proof-

of-concept results of selected types of video content. We present resource allocation algorithms

based on two simple types of video content: scene changes and extent of motion or activity11.

Both of these features can be extracted from compressed video streams using automatic

algorithms [102]. Our approach uses content processing schemes to classify the video content

types and then allocate network resources (i.e., FEC and ARQ) adaptively. An experimental

83

simulation platform is used to test the objective (PSNR) and subjective effectiveness of proposed

algorithms. A logical level figure illustrating the system architecture is given below (see Figure

4.1).

The first half of the chapter involves the adaptive schemes based on FEC control. These

algorithms are applicable to both one-way and two-way real-time applications. In the second half

of the chapter, we present algorithms using selective repeat ARQ for one-way real time video

applications (like video on demand). The ARQ-based algorithms may incur retransmission delay

that might be too long for two-way interactive services (such as video conferencing). To

accommodate the variable delay caused by the selective use of ARQ schemes, our approach also

includes an “elastic” buffer before the decoder/display module to “absorb” the delay jitter. The

buffer absorbs the rate variation caused by selective ARQs and provides a compatible interface

to the decoder. We will present efficient algorithms for buffer control in this case.

The remainder of this chapter is organized as follows. Section 4.2 reviews existing approaches

and related work in this area. Section 4.3 explains our proposed approach. Section 4.4 presents

the schemes adopted for FEC. We also elaborate on the simulation method and results for

forward error correction in this section. ARQ based recovery methods are explained in Section

4.5. Section 4.6 briefly summarizes the contributions of the work and suggests some future

directions.

This chapter contains material that is joint work with Prof. S-F Chang. For publications related

to this chapter, see [12].

4.2 Related work

Our work focuses on content-based segmentation and associated resource allocation using

modified ARQ and FEC schemes. Although there has been a lot of work in scalable or layered

coding, and ARQ/FEC usage for videophone applications; the idea of content and object based

11 For example, new frames after a scene change are subjectively important in order to establish the new visual
context during the playback session. Image frames with high motion are less sensitive to errors due to the masking
effects in the human vision model.

84

approach to video coding is very recent and is largely limited to standardization bodies or related

works [75][125][156]. Below, we give a brief overview of scalability, ARQ/FEC schemes and

concealment options with particular emphasis on wireless video applications.

Figure 4.1 Logical level diagram of the system

4.2.1 Data partitioning and layered coding

Scalable [1][57][60][61][130] and joint source-channel coding techniques [104] are two main

methods used in real time transport on Internet and ATM networks. Unlike wired media, data

loss is a much bigger problem for transmitting video over wireless networks. Bit error rates of

around 10-3 to 10-2 may arise for long periods of time (approximately hundreds of milliseconds)

especially in mobile environments. Data loss can usually be prevented using sufficient error

correction codes, however, this results in increased bandwidth requirements since channel errors

usually occur in bursts.

Error protection schemes are normally used in conjunction with conventional data partitioning

schemes [23][99][121] leading to graceful degradation over channels of varying quality. In their

study, Arvind, Civanlar, and Reibman [2][6] discuss the packet loss resilience of MPEG-2

scalability profiles. They concluded that for cell loss ratios of about 10-3 12 spatial scalability

12 which translates into a BER of O(10-5)

85

performs the best, followed by SNR scalability and data partitioning in that order. Wavelet, sub-

band [21][151], and pyramid coding techniques which lend themselves to scalable architectures

have also been studied for mobile environments. Aside from these and other standards based

studies, there have also been somewhat unconventional ones as well. These include projects

such as the conditional replenishment based Asynchronous video [134] and Priority encoded

transmission (or PET) [95] related work at ICSI, Berkeley.

4.2.2 Combined ARQ/FEC schemes

As mentioned earlier, both FEC and ARQ schemes have to be used judiciously for error

correction. Khansari et.al. [91] use a combination of scalable (dual rate) source coding with

hybrid (Type I) ARQ and FEC for transmission of QCIF resolution H.261 video over wireless

channels. Their work concludes that usage of a mixture of FEC and ARQ based structure needs

less overhead as compared to using FEC alone for similar visual quality. Likewise, work at the

University of Southampton [67][153] also suggests using hybrid ARQ and unequal-FEC codes to

improve robustness in transport of DCT-based compressed QCIF videophone sequences. A

different flavor of ARQ has been studied in recent work by Han and Messerschmitt [66]. They

present a “leaky ARQ” scheme that successively improves the quality of delay-non-critical

portions of graphics by sending more refined versions. It trades off quality (reliability) for delay

for portions (e.g., menus) that should appear without significant delay. This work was, however,

limited to “window based text/graphics” and did not study the extra considerations due to

video13.

4.2.3 Concealment options and robust codecs

Unlike FEC and ARQ schemes, concealment based approaches use spatio-temporal correlation

in the bitstream to repatch errors in the video. Typically, these methods use temporal

replacement and motion-compensated temporal replacement or interpolation [58][59][94][167].

Current MPEG-4 standardization efforts are actively investigating concealment options such as

duplicate information, two-way decode with reversible VLC, and data partitioning

13 For example, real time deadlines, buffer requirements, error propagation, and inter frame coding etc

86

[75][76][77][125] showing very promising results. The idea there is to add the ability to quickly

resynchronize and localize errors in compressed video streams. Our work shares great synergy

with the content-based theme of MPEG-4 and MPEG-7.

Besides aiding in the design of a smart decoder, concealment schemes may also be applied

interactively between the source and the receiver. For instance, depending on the channel state

or decoder’s inability to re-synchronize properly, the encoder can increase the frequency of I

frames/macroblocks and decrease slice sizes to help localize errors. Based on feedback about the

burstiness of the channel, the encoder could also may also increase the minimum distance

between the predicted and predicting frames to prevent temporal error propagation.

4.3 An Approach Based On Video Sub-stream Segmentation

Traditional data partitioning and segmentation methods have exploited the hierarchy in the

coding structure. Both the H.26x and MPEG-x suite of standards divide the coded bitstream into

many syntax layers. In MPEG-2 (ISO/IEC 13818-2), for example, the entire sequence is divided

into group of pictures (GOPs). Each GOP has a specified number of pictures/frames, and starts

with an intra-coded I frame. I frames have no motion compensation performed on them. Also

present are the P frames which are predictively coded from previous I and P frames. Between the

anchor frames (I/P frames), are bi-directionally predicted B frames. Each picture is further

composed of slices, which in turn consist of macroblocks. 16x16 macroblocks consist of 4 8x8

blocks. Motion compensation is applied at a macroblock level, wherein a best matching block is

found and one or two motion vectors are sent in the bitstream.

Because of this hierarchy in coding, wireless errors affect video quality depending on where they

hit. Errors occurring in headers (e.g., sequence start-codes, GOP headers, picture headers, slice

headers) have the most detrimental effect. Next, the effect of errors depends on the image frame

type -- the sensitivity being I>P>B. The perceived error sensitivity for picture data is motion

vectors > low frequency DCT coefficients > high frequency DCT coefficients. Depending on the

above, we can define a data segmentation profile in decreasing order of priority in terms of error

robustness. The above is basically the philosophy behind the MPEG-2 data-partitioning method.

87

For wireless applications, the H.26x suite of standards are more popular due to their focus on low

bitrate. Although, there are additional options (e.g., PB frames, extended motion vector range

etc.) in H.263, the underlying structure of codecs is very similar.

Our approach differs primarily in that it uses video content as a means of further data

segmentation. Our goal is to develop a content-based video transport framework. We use a

psycho-visual (i.e., content based) framework for video segmentation. A typical video sequence

can be divided into a set of independent scenes. Further, a scene is composed of frames of

different activities (motion). We use scene changes and motion to further segment the video

stream. For resource allocation, we argue that different video content requires different form of

resources to be allocated to it. For example, new frames after a scene change are subjectively

important in order to establish the new visual context during video playback. Image frames with

high motion are less sensitive to errors due to masking effects in the human vision model.

The primary QoS constraints that we consider are error robustness and bounded end-to-end

delay. We use variable FEC to provide multi-tile error resilience. We study both the individual

and aggregate effects of using video headers, frame-type, motion, scene changes, transform

coefficients, and motion vectors as a basis for choosing the error correction overhead. We also

use a restricted link level retransmission scheme to provide bounded end-to-end delay. We

propose innovative schemes for selectively applying ARQ-based retransmission and controlling

the interface buffer between the receiver and the video decoder.

4.4 FEC Based Schemes

4.4.1 Frame Segmentation Based on Scene Changes or the Extent of Intra-Coding

The H.263 codec [64] is used for encoding the video. Hence, INTRA/INTER mode decisions for

prediction are made at a macroblock level [64]. The scheme to make these decisions is the same

as specified in Test Model Number 5 (TMN-5) [79]. Given a pre-encoded video sequence,

frames are prioritized based on the fraction of macroblocks that are intra-coded in them.

88

Following this, three partitions are generated as:

_ _
_ _ # _ _

Partition 1: [0.4,1] Highest priority
Partition 2: [0.1,0.4] Medium priority
Partition 3: [0,0.1] Low priority

Intra Coded Macroblocks
Inter Coded Macroblocks Intra Coded Macroblocks

α

α
α
α

=
+

∈
∈
∈

The choice of partitioning thresholds (i.e., 0.1 and 0.4) is adhoc here. We show variations in α

for a typical H.263 video sequence in Figure 4.2. The priority assignment we consider here is in

terms of error resilience and is provided by decreasing the level of FEC protection from Partition

P1 through Partition P3. There are several justifications for using this ordering of priorities:

• Frames that are mostly INTRA coded provide refresh instants and help in preventing

error propagation. Hence we would like to have least number of errors in them.

• For H.263 based encoding, the first partition typically corresponds to scene changes in

the sequence. Perceptually, scene change frames are important for a complete

understanding of the new video scenes.

• These frames can also be used to provide scene change based scalability in addition to

other schemes of temporal scalability14.

On the other side, high intra frames use more bits than lower intra frames. Thus, using higher

levels of FEC results in significantly higher increase in bit-rate. Using the experiments results

we present later in Section 4.4.4, we found that on the average this improves the visual quality

under a global (channel + source) bitrate constraint. In other words, increasing the error

protection for high intra frames pays off in the long term by preventing error propagation

temporally.

14 e.g., frame filtering options in MPEG which drop B or B+P frame combinations.

89

Figure 4.2 Percentage of intra-coded macroblocks in a typical H.263 video sequence.

4.4.2 Motion Based Segmentation

In H.263, macroblocks get coded in intra mode if the best prediction error is beyond a threshold.

If not, the macroblocks are inter-coded. Partitions P2 and P3 are largely inter-coded. Hence we

use an additional way of partitioning them. The segmentation is done into two levels -- low and

high motion, and motion is estimated at a frame level. For each frame, a frame level average

motion vector is calculated, and compared with the global average. This is used to classify

frames into high and low motion ones. Motion based segmentation can also be applied at a finer

granularity e.g., at the macroblock or VOP level15.

It is known that quantization errors are much less perceptible in areas of high texture due to

masking in the human visual system [39]. We experimented to see if similar masking effects

could be used when protecting from channel errors (i.e., after run-length and Huffman encoding

15 VOP or video object plane is a temporal instance of an arbitrarily shaped region in a frame. It is defined in
MPEG-4.

90

of the quantized signal). If we make decisions taking only these perception studies into account,

high motion frames should be able to tolerate more channel errors (perceptually) as compared to

low motion frames. Hence, we should assign lower FEC overhead for high motion frames as

compared to low motion ones. It must be noted16 that perception based decisions are somewhat

contradictory to compression-only based decisions. Through experiments discussed later, we

found that the ‘compression effects’ dominate ‘perception-based’ decisions for higher intra

coded partitions. For partitions that were largely inter coded (i.e., Partitions P2 and P3), we

experimented further to see if perception based decisions would work better.

4.4.3 FEC Based Resource Allocation

Figure 4.3 shows the segmentation hierarchy for error-robustness we obtained after experiments.

Each state (leaf node) corresponds to a given set of allocated resources. Nodes higher up in the

tree have more priority than those below. Similarly, nodes to the left carry more priority than

those to the right. We use stronger FEC protection for higher priority layers. Attributes having

highest incremental effect on the video quality are placed higher up in the tree and to the left

side. Headers form the highest priority layer to ensure that the corrupt bitstream can be decoded

properly. This is followed by scene change frames (Partition P1 above). Frames that are not in

partition P1 are further divided into partitions P2 and P3. Motion information is used to again

split these partitions. Finally, the actual data (motion vectors and DCT coefficients) are at the

innermost layer, and normal MPEG or H.26x data partitioning like schemes are applicable within

the frame17. Specific allocation schemes of different degrees of FEC and their experimental

results will be presented in Section 4.4.4.

16 The author wishes to thank Dr. Amy Reibman for bringing this to his attention.
17 In this study, all segmentation is done at a frame level. The lowest layer is constructed assuming the experimental
results obtained by some standardization bodies.

91

Figure 4.3 Template assignment for error robustness

4.4.4 FEC Results

We use the wireless channel simulator described in [68]. The wireless channel is modeled using

the Rayleigh fading multipath model. Personal Access Communications Services (PACS) system

is used for the air-interface [112]. The Rayleigh fading channel is simulated using the Jakes

Model [83]. Other wireless parameters used in the FEC-simulations are provided in Table 4.1 18

The simulator is used to generate simulation data with errors under different error controls. The

18 The authors thank Dr. Li-Fung Chang (Bellcore) for this information.

92

final data with errors is compared with the original data to generate error masks. Error masks are

used to mask the video data to simulate the transmission of video over the wireless channel. The

wireless channel simulator [68] is used to generate bit error pattern files on an off-line basis.

Error pattern files can be generated for different channel conditions, error correction capabilities,

and interleaving degrees. The coded video sequence is then sequentially parsed, and depending

on its current content (motion, extent of intra coding etc.), an appropriate error pattern file is

used to mask it.

Maximum Doppler frequency, fd = 1 Hz.

Perfect carrier recovery

Optimal symbol timing

Transmitted signal power = 19dB

QPSK modulation (2 bits/symbol).

Coherent demodulation

Matched Nyquist filter with a roll-off factor of 0.5

Diversity = 1

Round trip delay = 6msec.

Multiple access = TDMA

Air interface: 400 frames/sec each with eight 32 kbps slots

Code length = 40 symbols

Symbol length = 64 bits

FEC: RS(40, 40-2t)

Interleaving degree = 40

Table 4.1: Wireless parameters used in the simulation [68].

The simulations are done using the H.263 codec. Further details on the video parameters used in

the simulation are given in Table 4.2. The quality of final decoded video is measured using its

PSNR, defined as:

2

10 2 2 2

1.5 176 144 255
10log

() () ()e d e d e d

PSNR
Y Y U U V V

 × × ×
= − + − + − ∑ ∑ ∑

93

where the subscript e indicates the decoded version of a frame with errors and d stands for a

normal decoded frame (not the frame that was encoded). Y is the luminance, and U and V are the

chrominance components respectively. Further, because the proposed algorithm is psycho-visual

in nature, subjective evaluations are also made on the decoded stream.

Sequence: Unrestricted CNN news sequence (including

commercials).

Codec = H.263 [64]

Rate control: Simple offline rate control with fixed frame rate

Rate control ON for the entire sequence.

Resolution: QCIF (176x144 pixels).

Chroma format = 4:1:1

Motion estimation search window = 10 pels.

Encoded bit rate ≈ 32Kbps (CBR)

Frame rate = 7.5 fps.

All enhancement options ON

Number of frames ≈ 106 sec (800 frames)

Other encoding specific parameters are as in TMN5

Table 4.2: Video parameters

In the following, we study the incremental effect of using headers, scene-changes, intra-coded

macroblock percentage (α), and motion as a basis for choosing the error correction capability of

the code. The PSNR graphs plotted below show PSNR between a normal decoded sequence in

the absence of any channel errors and that with channel errors. The large spikes (bound by 150

dB.) indicate infinite PSNR or no errors in decoded video. To maintain fairness in comparisons,

the average FEC overhead in each case was maintained approximately same. The total overhead

due to channel coding is about 25% for all cases. We compare the average frame level PSNR for

the various cases under consideration. Figure 4.4 shows results for a typical frame. Figure 4.4(a)

is the normal decoded frame, while Figure 4.4(b) shows the same frame after it is transmitted

over the wireless channel. No data segmentation or concealment is used in Figure 4.4(b). Figure

94

4.4(c) shows the result with header plus α based segmentation. We see that there is a significant

improvement in quality as compared to 4.4(b). Figure 4.4(d) uses motion information in addition

to headers and α based segmentation. The subjective quality improvement is quite obvious,

especially in the impaired image areas.

FEC parameters for Figure 4.5 are shown in Table 4.3. In this table t is the error correction

capability of the code. Our objective in this study is to compare the increase in FEC overhead per

unit increase in PSNR under different scenarios. Thus, you will notice that the effective overhead

for one of the curves in each of the graphs (a), (b) and (c) is higher than the other one. Figure

4.5(a) compares PSNR of the decoded stream with no data segmentation and that with FEC done

based on headers (e.g., headers for the picture layer). From Figure 4.5(a) we see that a significant

gain can be obtained by giving high protection to headers. Giving higher error protection to

headers ensures that the decoder finds clean start codes and parts of video do not become un-

decodable until next sync. Figure 4.5(b) shows the incremental effect of giving higher protection

to Partition P1 frames. These frames are largely intra-coded, and are assigned next higher

priority to prevent error propagation. Black spikes in Figure 4.5(b) indicate the location of high-

intra frames. It can be seen that the dashed line (header + intra) consistently outperforms or

equals the solid one (header only) for a very little increase in the effective error correction

overhead. Figure 4.5(c) compares the effect of using Partitions P2 and

P3 for further data segmentation. Based on the α value, we use different t values for Partition P2

and P3 frames. The large black spikes indicate frames in partition P1 and the smaller spikes are

frames in partition P2. The dashed line is seen to outperform the solid one for all the frames. It is

worth noticing that with a very small extra FEC overhead for frames in partition P2, much

perceptual quality improvement can be obtained. However, the increase is not as much as

obtained with headers or Partition P1. In other words, although the effective error correction

overhead increases in both (b) and (c) (as compared to (a)(dashed)), the increase in this overhead

per unit increase in PSNR is much less with (b) as compared to (c). Similarly, this incremental

overhead is least with (a). Thus, we justify the arrangement of top three layers of the tree shown

in Figure 4.3.

Note that until now the layering structure was dominated primarily by ‘compression’ (extent of

95

intra coding) based decisions. It is also well known that quantization errors are much less

perceptible in areas of high texture due to masking in the human visual system [39]. Next, we

experiment to see if similar masking effects could be used when protecting from channel errors

(i.e., after run-length and Huffman encoding of the quantized signal). For this we use a separate

motion-vector based feature to further segment partitions P2 and P3. If we make decisions

taking only these perception studies into account, high motion frames should be able to tolerate

more channel errors (perceptually) as compared to low motion frames. We did not further

segment partition P1 since ‘compression-based’ decision dominates the final quality there.

Further, these frames don’t have many motion-vectors to start with. We indicate frames with

high motion by black spikes in Figure 4.5(d). We considered two cases: in the first, high motion

frames are given less FEC overhead as compared to frames with low activity (dashed line); for

the other case (solid line), it is the opposite. We noticed that the quality is degraded less in the

former case as compared to the latter; and therefore masking based results are substantiated.

However, the improvement that we obtained is fairly marginal compared to improvement from

top three layers. Further, note that this perception based result is somewhat contradictory to

compression-only based decisions. To start with, one would expect that there is high correlation

between the intra-coded macroblock percentage and the size of motion vectors. However, due

to non-linearities in codecs and source statistics there is no guarantee that it should be so. We

believe that lack of significant correlation between the two features (extent of intra coding for

layers two and three and motion vector size for the fourth layer) is what is causing this

discrepancy.

Overall, it is seen that headers give the largest improvement in SNR for minimal increase in error

correction overhead. Scene change (Partition P1) and the extent of intra coding (Partitions P2

and P3) information can be used to give higher error protection to selected frames with

decreasing marginal returns in improved visual quality per unit overhead. Motion vector size

was then used to further segment Partitions P2 and P3. We found that this feature suggests

decisions contradictory to those suggested by extent of INTRA coding. However, the

improvement obtained by taking motion vector size into account is much less compared to

marginal improvements obtained with top three layers. That is why layer three feature (α) lies

above layer four feature (mv size).

96

Looking at the incremental improvement obtained by each of the above criteria, we verify the

design of the layering structure shown in the tree in Figure 4.3. Within each criterion (e.g.,

partitions P2 and P3 combined), the chosen left to right arrangement is seen to give best results.

At a given depth in the tree, leaf nodes to the left are more important in terms error robustness.

Hence, if the underlying network allows only a limited number of service classes, or to decrease

the FEC encoding/decoding complexity, it may be feasible to cut down on classes bottom up in

the tree. Bundling leaf nodes into groups from left to right and providing them same QoS

guarantees is yet another possibility. Through experiments discussed later, we found that the

‘compression effects’ dominate ‘perception-based’ decisions for higher intra coded partitions.

Figure Scenario Parameters teffective

(a) (solid) No segmentation. t=5 t=5.00

(a) (dashed) Header based segmentation. t(header)=9, t=5 else. t=5.04

(b) (solid) Header based segmentation. t(header)=9, t=5 else. t=5.04

(b) (dashed) Header + Scene changes a e

[0.4,1].

t(header)=9, t(scn)=6, t=5 else. t=5.21

(c) (solid) Same as (b) (dashed). t(header)=9, t(scn)=6, t=5 else. t=5.21

(c) (dashed) (b) (dashed) + P2 or amedium e

[0.1,0.4].

t(header)=9, t(scn)=6,

t(amedium)=6, t=5 else.

t=5.28

(d) (dashed) High motion – lower FEC. t(header)=9, t(high motion)=4,

t(low motion)=5.

t=5.06

(d) (solid) Low motion – higher FEC. t(header)=9, t(high motion)=6,

t(low motion)=4.

t=5.03

Table 4.3 Simulation conditions for FEC

97

(a)

(b)

98

(c)

(d)

Figure 4.4. Results from different FEC allocation schemes. Channel BER without any

FEC=5.1x10
-3

 on the average (a) Original sequence (b) no data segmentation (c) headers +

P1 + P2 +P3 and (d) headers + P1 + P2 + P3 + motion.

99

(a)

(b)

100

(c)

(d)

Figure 4.5: Incremental effects of various attributes. Channel BER without any FEC=5.1

x10
-3

 on the average. The PSNR values shown are between a decoded frame with errors

and that without any errors (and not between a decoded frame with errors and the original

frames with are encoded). Note that the scale (a) is different from that in (b) onwards.

101

4.5 Retransmission Based Schemes

4.5.1 Model

In this section, we present the content-based algorithms in relation to ARQ. The link between

the first part (on FEC) of this chapter and the second part (on ARQ) is the common theme of

using adaptive resource allocation according to video content. We first discuss the ARQ model,

present the content-based schemes based on scene change and motion, describe an algorithm for

solving the delay jitter problem caused by the proposed ARQ scheme, and finally present

simulation results.

Figure 4.6 System diagram of the proposed ARQ-based schemes. The buffers shown are

ARQ buffers.

A simplified system model is shown in Figure 4.6. We consider transmission across a single last

102

hop wireless channel. We model channel delay as a deterministic random variable. Incoming

compressed stream is interleaved and FEC encoded before transmission through the simulated

channel. The ARQ buffer at the sender stores frames that have been sent but not yet

acknowledged. Its size is a function of the ARQ protocol being used and the window size19.

Similarly, an ARQ buffer for storing (and, if need be for reordering) of frames is required at the

receiver. The feed-forward loop is for display rate adaptation and its functionality will be

discussed in later sections.

Sequence: Unrestricted CNN news sequence (including

commercials).

Codec = H.263 [64]

Rate control: Online rate control with variable frame rate

Rate control ON for the entire sequence.

Resolution: QCIF (176x144 pixels).

Chroma format = 4:1:1

Motion estimation search window = 10 pels.

Encoded bit rate ≈ 24 Kbps (CBR)

Achieved frame rate = 6.4 fps (mean).

All enhancement options ON

Number of frames ≈ 106 sec (800 frames)

Other encoding specific parameters are as in TMN5

Table 4.4: Video parameters for ARQ simulations

Video encoding parameters used in ARQ simulations are indicated in Table 4.4. Unlike FEC

simulations, the video is aggressively rate controlled using H.263 online-rate control (See TMN5

for details). This H.263 option produces a variable frame rate bit stream with skipped frames so

that target bitrate constraints are met. We used this more aggressive rate control option (unlike

that in FEC simulations) since our primary objective when studying ARQ is to contain decoder

buffering requirements while meeting display constraints.

19 The maximum number of en-route frames at any instant.

103

The optimal packet or frame size that should be used is in general a function of the data rate,

channel rate, the ARQ protocol being used, the allowed latency etc. However, here we assume

that a video frame is the packet entity under consideration. This gives us significant advantage in

terms of speed, complexity, synchronization, packet handling and header integrity. Furthermore,

for the above mentioned encoding parameters, the average video frame size is about 620 bytes

which is a reasonably small size to be handled (ATM based transport uses a packet size of 188

bytes, which is of similar order of magnitude).

For 2-way interactive video, ARQ may not be suitable due to latency concerns. But, for 1-way

video applications, the proposed scheme with retransmission as a last wireless hop recovery

scheme can be used. Using ARQ for one way video playback is a complex task as has been

shown in literature. We will elaborate more on issues regarding the usage of ARQ schemes in

Section 4.5.3. Thereafter, experimental results justifying the approach are provided in Section

4.5.4. For publications related to these results, see [12].

4.5.2 Segmentation

We segment frames based on two types of basic video content - the extent of intra-coding (α ,

equivalent to scene changes), and the extent of motion. Since using ARQ involves latency

buildups leading to shifts in the display axis, the idea is to identify a subset of frames which are

more important. Only this subset uses ARQ based recovery. High-intra frames prevent error

propagation. Being scene changes, they are also important for full subjective understanding of

the video. Hence they are allowed one retransmission for recovery in case they are in error.

Motion is the second cue used in segmentation. High motion frames are allowed one

retransmission for recovery since the content changes significantly from the previous display

instant and most error concealment schemes at the decoder may not work. As illustrated in Table

4.5, ARQ based recovery is used for frames of class C1 only and not for those belonging to class

C2. Note further that a low-motion high α frame, if one exists, is retransmitted according to this

Table.

104

Class Criteria: Intra and motion

C1 High Intra (a e [0.4,1.0]) or High Motion

C2 Otherwise.

Table 4.5: Classes for ARQ

4.5.3 Analysis for adaptive decoder buffer control

4.5.3.1 Issues

Due to selective repeat ARQ, the CBR bit stream will suffer from rate variation at the receiver.

Using the same notation as in [136], the buffer evolution of the encoder buffer is given by:

1

max

with

0

e e
i i i i

e e
i

B B E R

B B

−= + −

≤ ≤

Here e
iB is the encoder buffer occupancy at the end of frame period i, Ri is the channel rate for

the same period, and Ei is the encoded rate for that period. The second constraint is required to

prevent encoder buffer overflow or underflow. To prevent under/overflow of the encoder buffer,

Ei and Ri should satisfy some constraints20. Rate control involves the proper selection of Ei (or

equivalently the quantization parameter and frame-rate) and Ri so that these requirements are

met.

Video transmission over networks normally assumes a fixed end to end delay between the

encoder and decoder. The dynamics of the decoder buffer, is therefore, a time-shifted version of

the above buffer dynamics, and is given by:

1

max

with

0

d d
i i i i L

d d
i

B B E R

B B

− += − +

≤ ≤

20 Refer to [136] for details

105

Here we assume an end-to-end delay of L frame periods and 0
1

L
d

j
j

B R
=

= ∑ is the startup decoder

buffering. For CBR video streams, it can be shown [136] that we can prevent underflow or

overflow of the decoder buffer by preventing overflow or underflow at the encoder buffer. If the

stream is VBR, then Ei and Ri must satisfy certain constraints to avoid buffer overflow and

underflow in the encoder and the decoder.

The scenario we are considering is much more complex due to possible retransmissions. Hence,

even if the video is aggressively rate controlled and the target constant bit rate is met, the display

constraints may not be met. Or equivalently, the decoder buffer may underflow due to loss of

time during retransmissions. Although it is possible to model retransmissions delays as simple

network delay jitters and modify L to L + ∆ 21, the scheme has its drawbacks. Firstly, errors

normally occur in bursts in wireless channels, and so the order of ∆ we wish to de-jitter is very

large. This may require large initial startups or initial buffering to prevent underflow. Secondly,

the channel characteristic is time varying and is not known a-priori, and in general cannot be pre-

negotiated (although channel dependent renegotiation is a possibility).

4.5.3.2 Analysis and Algorithm

The retransmission scheme we use is a modification of the Go-Back-W scheme with selective

retransmission of erred packets. W, the window size, indicates the maximum number of

outstanding packets sent out by the sender that have not yet been acknowledged by the receiver.

The receiver sends bundled ACK/NAKs at the end of the window and only frames in error are

retransmitted.

We focus on a single retransmission period, i.e., W frames are sent and B of these are assumed to

be in error and are retransmitted. Assume that tprop is the end to end propagation delay, rin

(indicated by Ri above) is the rate of input to the decoder buffer, rout (indicated by Ei above) is

the output rate from this buffer, Bstart is the decoder buffer occupancy prior to the retransmission

21 This suggestion was made in [136] for channels having variable delay (i.e., with a jitter term added to a mean
value).

106

period, Bend is its occupancy at the end of this period, and Tmax is the maximum frame

transmission time. Then, assuming that 2tprop goes idle during ACK/NAK22, we get

max max max(2)end start in prop outB B WT r WT t BT r= + − + +

We are concerned with the extent of imminent buffer underflow due to retransmissions.

Therefore, to a first approximation, we neglect variations in rin and frame transmission times Ei.

The analysis is easily extendible to incorporate these variations. In fact, these give us further

ways to prevent underflow by changing the source coding (changing Ei) or renegotiating with the

channel (changing rin; see [69] for details).

Assuming that the buffer occupancy was oscillating around its nominal value prior to the

retransmission period, the extent of buffer underflow due to retransmissions is:

max max max(2) ,

with
0

prop out inU WT t BT r WT r

B W

= + + −

≤ ≤

Again, to a first approximation, and for time scales in operation, we assume rout = rin.

Hence,

max(2)prop outU t BT r= +

To accommodate this imminent underflow, we propose to slow down the rate of display23. If we

choke the output rate rout by an amount r∆ , then the buffer will return to its nominal value after a

time:

max(2)prop outt BT r
T

r

+
=

∆

For the scenario under consideration, maxpropt BT<< , and / outr r∆ can also be considered as

fractional clock slow-down at the receiver. To simplify the display modification, we assume that

slow down in display is possible only using frame skips (i.e., by repeating frames in the display).

Thus, the average number of display instants to be spread out or the total necessary shift in the

display axis is,

22 For simplicity, we do not consider continuous ARQ protocols. Further, we assume that the first erred frame of a
maximum of W buffered up is passed to the decoder only after its retransmission is received. Later packets have to
be buffered until then to avoid reordering problems.

107

/sN T D=

where D is the average frame interval (e.g., 34 msec. for 30 Hz.). This shift is in addition to any

frame-skips in the encoded stream itself (which is variable frame rate in this case). The above

assumes that the network adaptation layer provides the necessary timestamp support for

synchronization. Other de-jittering mechanisms to absorb slight variations in network delay

[42][107] (e.g., end-system traffic shaping or smoothing) can be applied in addition to the

scheme mentioned here.

In our study on ARQ, the first place we used visual content was in deciding which frames to

allow retransmissions for. The other place we use current frame content is in deciding how the

decoder buffer spreads the anticipated buffer underflow. That is, the manner in which the Ns

instants are spread out in time differs depending on content. The content that we consider here is

motion. If the current frame to be displayed has high motion then the display axis is shifted

slowly to avoid jerks. But, if it has low motion, the entire shift is given instantaneously. Notice

that the receiver knows Ns after receiving W frames, and does not have to wait for the

retransmitted B to start shifting the display axis.

As an illustration, we give below sample code for a single window size i.e., W = 1 clock rate=30

Hz. Important observations on the code are also mentioned.

Pseudo code.

Step 0. _ _ (/ 2)d
initB first frame size m σ= + + where m is the mean frame size and σ is the

standard deviation in frame size. Let i be the frame at the head of the decoder buffer,

Case (a). if () or (_)i i idisplay arrival Threshold low motion− < then

() (34)i i orig sdisplay display N= + ×

23 This requires much less latency as compared to re-negotiating Ri (since MAC layer delays are quite high for the
current system) or changing Ei. However, video quality may suffer from jerks. Our objective hereafter is to
minimize the perception of these jerks.

108

Case (b). if () and (_) , theni i idisplay arrival Threshold high motion− >

1 1 max(() max(/ 2 ,1) 34 for 1, 2,3,...,k
i k i k orig sdisplay display N k K+ − + − = + × =

where Kmax is the minimum number satisfying
max

1

max(/ 2 ,1)
K

k
s s

k

N N
=

 > ∑

Observations on Step 0.

This total startup buffering is useful if we shift the display axis slowly as in Case(b). In other

words, / 2m σ+ is a cushioning term for slow shift in Case (b).

Observations on Case(a).

The shift in the display axis is instantaneous. This is because we can tolerate jerks with low

motion. The first condition is used as an emergency measure and Threshold is set at / 2m σ+ .

Observations on Case(b).

It takes logarithmic time to provide the necessary shift to the display axis, or max 2log sK N≤ . In

this case, we do not wish to accommodate the entire shift on one frame since the frame has high

motion and we wish to avoid jerks. The amount of shift decreases exponentially and is most at

time instant i (equal to half of the total required). This is adopted since errors normally occur in

bursts. By doing this, the effect of tails on following frames falls off fast, and we do not get big

carry over terms from previous frames in case of a burst of errors. Formally, the effect of these

terms at a given frame is bounded from above by slippage required by the maximum sized frame.

For example, if W=1, and we consider a frame of size / 2m σ+ = 829 bytes, its transmission

time is about 276 msec. Hence, Ns = 6+276/34 = 9 skips. Depending on the content of the

currently being displayed frame, this shift would be given instantaneously (Case a) or over

max 2log sK N≤ = 4 to be displayed frames (Case b). We will now discuss results obtained for

this algorithm in the following section.

109

4.5.4 ARQ Results

The ARQ scheme we used is also known as Type-I ARQ. In Type-I ARQ, FEC is applied to all

frames and ARQ is used for erred frames after FEC decoding. The analysis was carried out

assuming header+α based FEC. We used () 6, () 6, () 5, () 9high medium low headert t t tα α α α= = = = .

Different degrees of interleaving are used to vary the effective burst lengths. Figure 4.7 shows

the error distribution after FEC correction, but without any retransmissions. It can be seen that

even if we make binary decisions at a frame level, errors normally occur in bursts.

Figure 4.8 shows the number of frame errors after retransmissions. It can be seen that a

significant improvement can be obtained by using ARQ (compare with Figure 4.7). Implicit in

Figure 4.8 is the assumption that late packets are useful. This we achieve by reducing the

effective frame display rate at the receiver nominally using the algorithm mentioned above.

Figures 4.9(a) and (c) show the arrival and display deadlines without any shift to the display axis.

An alternate (equivalent) way to validate the above algorithm would be to plot the receiver

buffer occupancy as a function of frame number. In Figure 4.9, the dashed line shows the target

display deadline and the solid line is the arrival time. It can be seen that the display deadlines

cannot be met if we use ARQ without any shift to the display axis.

110

(a)

(b)

111

(c)

Figure 4.7 Error distribution before retransmissions. Channel BER (without any FEC) =

5.23x10-3. Errors shown are in the encoded video stream. (a) No interleaving (b)

interleaving degree = 20, and (c) interleaving degree = 40.

We also show the error distribution in Figure 4.9(c) to illustrate how retransmissions cause

display deadlines not to be satisfied. Also worth noticing is that the time it takes for arrival times

to start falling behind target display time depends strongly on the extent of interleaving and error

protection used.

Figures 4.9(b) and (d) show the arrival and display deadlines with shifts to the display axis

according to the algorithm above. We note that the arrival curve is maintained below the display

curve in the long run. By giving an elastic content-dependent shift to the display axis we are

able to meet display deadlines while maintaining good visual quality.

112

(a)

(b)

113

(c)

Figure 4.8 The number of frames in error after retransmissions. Channel BER (without

any FEC) = 5.1x10-3. Errors shown are in the encoded video stream. (a) No interleaving (b)

interleaving degree = 20, and (c) interleaving degree = 40.

114

(a)

(b)

115

(c)

(d)

Figure 4.9 Arrival and display deadlines. Window size = 1. Dashed-display, Solid-arrival

times. (a,c) without rate adaptation and (b,d) with rate adaptation; (a,b) no interleaving;

(c,d) interleaving degree=20.

116

4.6 Summary of the chapter

In this chapter, we presented a new approach for adaptive transmission of video over wireless

channels. We proposed a scheme for segmenting video into classes of various perceptual

importance. We presented a detailed mechanism for mapping between segmentation and

resource allocation. The proposed approach can be used as an enhancement to the currently

available scalability profiles, both at a frame and future video objects (as defined in MPEG-4). In

particular, the extent of intra coding, scene changes, and motion based procedures are used to

provide finer level of control for data segmentation. We present a comprehensive analysis on the

incremental effect of these attributes using a practical mobile and wireless channel simulator.

Based on our FEC results, we see that header and high intra (or scene change) based

segmentation gives the largest increase in PSNR. The extent of intra coding (Partitions P2 and

P3) and motion information can be used to further increase the perceptual video quality. In the

second half of the chapter, we present algorithms using selective repeat ARQ for one-way video

applications. These algorithms used visual content to identify a subset of frames which could be

retransmitted. To accommodate the variable delay caused by the selective use of ARQ schemes,

our approach suggests using an “elastic” buffer before the decoder/display module to “absorb”

the delay jitter. The buffer absorbs the rate variation caused by selective ARQs and provides a

compatible interface to the decoder. Our method for buffer control (slippage) also uses visual

cues to maintain good visual continuity white preventing decoder buffer underflow.

The proposed framework using video content provides great synergy to recent video coding

standards, e.g., MPEG-4, that use object-based video representations. Based on our results we

argue that introduction of video content into video segmentation allows us to define more

semantic classes of importance. We believe that by using such techniques we can get better

visual quality under given resource constraints. For publications related to this chapter, see [12].

In Chapter 2 of this thesis we discussed how to represent logical inter-dependencies among

objects that compose a presentation. Although this can be done easily, the resulting integer

problem may become extremely difficult to solve. As a way around it, we proposed to use LP

relaxations, and froze the variables that attained integral values in the optimal LP solution at their

117

respective values. This was followed by an exhaustive search for best solution over fractionally

assigned variables. The limited experiments that we conducted gave very encouraging results for

the dependency structure considered. However, as an approach, this is certainly not a generic

way, and may never even lead to a feasible integral solution. In the next chapter, we revisit this

issue by restricting our attention to some special dependency structures. We will present ways

to model predictive inter-dependencies in motion-compensated coders. We also discuss ways to

solve this problem and some of its natural extensions.

118

CHAPTER 5

Alternative formulations for bit allocation with dependent
quantization

Contents

5.1 Introduction... 118

5.1.1 Related work ... 119
5.1.2 Results... 120

5.2 Problem formulation and analysis.. 121
5.2.1 A disaggregated formulation.. 122
5.2.2 A typical run over an image sequence .. 126
5.2.3 The rounding algorithms.. 128
 5.2.3.1 LP-based dependent rounding ... 128
 5.2.3.2 LR-based dependent rounding ... 131

5.3 Experimental results .. 133
5.4 Summary of the chapter... 146

5.1 Introduction

A common problem that arises in image and video compression is the so-called bit allocation

problem [71][131][140][141][144][158]. In most Discrete Cosine Transform (DCT) based

119

compression standards, an image or video frame is divided into sets of 8×8 pixels that are called

blocks. Pixels in each block are transformed using DCT that does an approximate principal

component analysis on the data. The DCT coefficients are then quantized, run-length encoded,

and Huffman coded to generate the final bitstream. The main distortion that gets introduced in

this process and hence compresses data is due to quantization. Normally, coding standards

provide quantization matrices that may be scaled up or down to choose quality for each

macroblock or a slice of macroblocks. These scales must be chosen from a few (around 32 to

64) discrete levels. The objective is to choose the scale values for each macroblock so as to

minimize global distortion in a frame under an overall bit-rate constraint. In this chapter we

address this bit-allocation problem for video coding using mathematical programming.

5.1.1 Related Work

The bit-allocation problem has been studied earlier in the context of image and still texture

compression. In its discrete form (i.e., when the scale factor of the quantization matrices should

be chosen from a specified discrete set), the bit allocation problem can be formulated as a

multiple choice knapsack problem (MCKP) [148]. This is a well-studied problem in the

operations research literature. In this variation of the knapsack problem, there are some disjoint

sets of objects; objects in each of these sets have values and sizes associated with them The

objective is to choose exactly one object from each set without violating the knapsack size so as

to maximize the sum of the values of the chosen items. This is an NP-hard problem, but can be

solved relatively efficiently, both in theory and practice. From a practical point of view, several

good heuristics have been discovered for MCKP. One class of heuristics is based on solving the

underlying linear programming (LP) relaxation [15][18][44][110][165], and rounding the

(possibly) fractional solution obtained to an integral one. Such rounding heuristics construct

solutions with values that are provably within a factor of 2 of the best possible; perhaps more

importantly, such heuristics perform extremely well in practice [15]. Several studies have also

looked at Lagrange relaxations for solving bit allocation problems (see for example,

[52][53][54][55][144]). These usually guarantee gaps no better than the LP relaxation and (at

least in the above cited works) are computationally more intensive. From a theoretical point of

view, MCKP is known to admit a polynomial-time approximation scheme [30]: thus, for any

120

fixed e, a solution with value that is within a factor of (1+e) of the best possible can be computed

in time that is polynomial in the input size. This algorithm is not usable in practice but, for

instance, could be used to quantify the complexity-quality trade-off in a tunable way [13].

Moreover, since the guarantees are true irrespective of problem instance, in compression

terminology, this leads to a lossy-universal quantization (compression) scheme.

While the MCKP formulation can be used in applications involving image and still texture

compression, it is not directly applicable to video coding. This is because video coding further

compresses data by exploiting strong inter-frame correlation using motion compensation.

Typically, in block or optical flow based compression, pixel values in future macroblocks are

predicted using decoded pixel values in an earlier frame. The prediction error for the current

macroblock is then encoded using DCT, quantization, run-length, and Huffman coding. In

addition, a motion vector that identifies the location of the predicting block is sent in the

bitstream. Because of its predictive nature, the quantization choices we make for a particular

frame M (predicted macroblock) will now depend on how we quantized frame M-1 (predicting

macroblock). This leads to an exponential growth in the number of states of the trellis used to

solve the problem. In general, for a given quantization choice for the predicted macroblock, the

rate distortion behavior of the predicted macroblock worsens as predicting macroblock is

quantized more coarsely. However, counter claims about this monotonicity assumption have

also been reported in literature [34]. This behavior is usually attributed to non-linearities in

encoders and source statistics and the manner in which codecs make INTRA-INTER coding

decisions. To some extent this can also be caused by the non-convex R-D behavior the

predicting macroblock. Because of all the above reasons, the problem with inter-frame

dependencies turns out to be a much more difficult problem to solve.

5.1.2 Results

This chapter discusses a new approach to solve the bit-allocation problem with dependencies.

Our primary contributions are the following:

• We discuss several integer-programming (IP) formulations for the bit-allocation problem

with dependencies. These formulations are more general and easier to solve than those discussed

121

in earlier works [45][131]. Unlike [131], we don’t use monotonicity assumption, either in the

formulation stage or to simplify solving the problem. Further, unlike this work, we don’t use

dynamic programming [20] and instead focus on LP and Lagrange relaxations with randomized

rounding. These are more efficient and require less memory than dynamic programming.

• We show how to relax a so-called causality assumption [45] . The causality assumption

allows one to pre-quantize the predicting frame prior to finding the best choices for the predicted

macroblocks. We study the incremental improvement obtained by incorporating for

dependencies explicitly in the model. For simplicity, we restrict our attention to first order

backward and forward dependencies. The drift due to the recursive nature of prediction beyond

a single frame (both forward and backward) is not explicitly accounted for.

• Integer problems may end up being very difficult to solve. As an approximate way to solve

our IP formulation, we discuss the usage of linear and Lagrange relaxations along with

randomized-rounding. We present experimental results on real data to validate the performance

of these rounding methods and observe that the rounding algorithms perform extremely close to

optimality. Results also show an improvement of about 0.5 dB over the causally optimal

solution. From a practical standpoint this validates that the causality assumption is a very

justified one in reducing problem complexity for a marginal loss of optimality.

The balance of this chapter is organized as follows. We formulate and analyze the problem in

Section 5.2. Here, we also give several algorithms to approximately solve the problem. Section

5.3 gives an experimental study on the performance of the suggested algorithms. We conclude

in Section 5.4 with suggestions for future work.

For publications related to this chapter, see [16][17].

5.2 Problem formulation and analysis

We describe two formulations for the dependent quantization problem – a disaggregated one

(F1) and an aggregated one (F2). Considering the debatable nature of the aforementioned

monotonicity condition, none of the formulations we discuss require assumptions on convexity

of rate-distortion curves of predicting macroblocks or that of the predicted one conditioned on

122

specific quantization choices for the predicting one. Throughout the analysis we assume a first

order backward dependency (as with P frames).

5.2.1 Disaggregated formulation (F1)

We wish to jointly minimize the distortion over two frames under a global rate constraint. By

restricting to 2 frame problems, we bound the number of states. A finite width beam, while

compromising global optimality, prevents the number of states from growing exponentially as

the degree of dependency increases. After solving a sequence of joint 2-frame problems, the

heuristic given in Section 5.2.2 is used to reconcile the results and determine final the

quantization choices. This helps us study the incremental improvement obtained by accounting

for dependency effects explicitly in the model.

Using the notation and variables given in Table 5.1 below and in Figure 5.1, the joint frame M-1

and frame M problem is given by:

(Formulation F1)

, ,
, , , ,

,
, ,

,

,
, , , ,

min{ () () + (,) (,)}

Subject to:

(1) () 1 for 1,..,

(2) (,) 1 for 1,..,

(3) (,) () , , ,

(4) () () + (,)

k k i k i k
k l k l i j

k
l

i k
k l j

i k k

k k i k
k l i j k l

d l X l d j l Z j l

C X l k n

C Z j l i n

C Z j l X l i j k l

C r l X l r j l Z

= =

= =

≤ ∀

∑ ∑

∑

∑

∑ ∑ ,

,

(,)

(5) () and (,) {0,1} , , ,

i k

k i k

j l R

C X l Z j l i j k l

≤

∈ ∀

123

Table 5.1 Variables used.

Figure 5.1: Dependent quantization framework. Ignore the subscript r and the term or |

r=1,..,4 for boundary aligned predictor.

Variable Interpretation

Xk(l)

k=1,…,n and l=1,…nk

1 if macroblock k in frame M-1 is quantized at level l.

0 otherwise.

, (,)i kZ j l

k=1,…,n ; l=1,…nk

i=1,…,n and j=1,…ni

1 if macroblock i in frame M is quantized at level j

assuming that it is predicted using macroblock k in frame

M-1

encoded at level l. , (,)i kZ j l is 0 otherwise.

R Global bit-rate bound over both frames

dk(l) k=1,…,n and l=1,…nk Distortion for choice (k, l)

rk(l) k=1,…,n and l=1,…nk Bits used for choice (k, l)

, ,(,) and (,)i k i kd j l r j l

k=1,…,n ; l=1,…nk

i=1,…,n and j=1,…ni

Distortion and bits used if macroblock i in frame M is

quantized at level j assuming it is predicted using

macroblock k in frame M-1 encoded a level l.

124

Note that:

1) For notational convenience we suppress repetitive summation signs. The summations run on

all the indicated variables, and bounds on them are as given in the table above. Constraint C1

ensures that each macroblock in frame M-1 is encoded at one level. Constraint set C2 imposes

that each macroblock in frame M is encoded at one level and is predicted from exactly one

macroblock in frame M-1. Constraint C3 ensures that , (,)i kZ j l can be 1 only if we chose to

encode macroblock k in frame M-1 at level l. This captures the dependency in quantization

choices of successive frames. Constraint C4 is the global bit-rate constraint over the two frames.

Note that by ignoring terms having , (,)i kZ j l from F1 we get the standalone problem for frame

M-1. Obviously, this is a pure MCKP.

2) Dependency effects in MC-DCT coders come in two forms. First, the search for best motion

vectors depends on quantization choices in a previous frame. This is because most encoders use

reconstructed previous frames for motion estimation. This implicitly enforces a causality

constraint by assuming that all previous frames have been quantized. Second, given a motion

vector, one can still search for the best quantization choice for jointly encoding the predicting

macroblock and the prediction error. This step, however, would implicitly assume that the

motion vector does not change in the process (perhaps by doing motion estimation on raw

frames). In reality, both the above forms of dependency are tightly inter-coupled. Our

formulation captures the second dependency. We assume that motion estimation is done on raw

frames, and try to determine the effect of future and historical dependencies in quantization

choices.

3) Formulation F1 makes the implicit assumption that predicting pixels lie strictly on

macroblock boundaries in frame M-1. In general this is not true since the predicting pixels could

overlap with at most four aligned macroblocks in the previous frame. A first cut approach to

incorporate this could be by weighting appropriate terms using the proportion or of area

overlapped with aligned macroblocks. This would still retain the same problem structure.

Normally the search space for motion vectors has a very high cardinality. Since the above

problem would have to be solved for all such choices of {or|r=1,..,4}, and to relieve an

125

impractically large effort in gathering operational data, we will focus exclusively on F1 in what

follows.

4) An aggregated formulation can be obtained by replacing constraint (C3) in F1 by (C3’). The

other constraints stay the same.

(Formulation F2)

, ,
, , , ,

min{ () () (,) (,)}k k i k i k
k l i k j l

d l X l d j l Z j l+∑ ∑

Subject to:

(C1), (C2), (C4), (C5), and

(C3’) ,
,

(,) () () ,i k i k
i j i

Z j l n X l k l≤ ∀∑ ∑

F2 is correct and is equivalent to F1 since,

,
,

,

,

1. If () 1 (,) .

This does not constrain (,) un-necessarily.

2. If () 0 (,) 0 , corresponding to choice (,). This is true due to

constraint (3').

k i k i
i j i

i k

k i k

X l Z j l n

Z j l

X l Z j l i j k l

C

= ⇒ ≤

= ⇒ = ∀

∑ ∑

Both formulations F1 and F2 share the same set of variables. There are a total of

1 1 1

 + ()()
n n n

k k i
k k i

n n n
= = =

∑ ∑ ∑ binary variables and
1 1

2 ()() 1
n n

k i
k i

n n n
= =

+ +∑ ∑ constraints in F1. F2, on the

other hand, has a much smaller number of constraints (
1

2 1
n

k
k

n n
=

+ + ∑). Note that summing (C3)

over indices i, j leads to (C3’). Thus, if there is a point in the polyhedron defined by constraints

in F1, it also lies inside that of F2 (or Poly(F1) ⊆ Poly(F2)). Alternatively put, although the

specification of polyhedron of F1 needs many more constraints, it boxes the integral points more

compactly. As a consequence, if we were to use an iterative scheme (like branch and bound or

branch and cut) to solve the problem, formulation F1 is expected to lead to faster convergence.

Consider next the LP relaxation of F1. Due to constraint sets (C1) and (C2) upper bounds on

binary variables may be ignored in the LP relaxation. Let f1 equations in constraint set (C1) have

fractional positive terms. Hence n-f1 of them will have pure integral variables. Similarly define

126

f2 and n-f2 for constraint set (C2). Each equation having fractional terms will have at least two

fractional variables. Thus, the total number of fractional variables is 1 22 2 .f f≥ + The number of

integral variables for both (C1) and (C2) is 1 22n f f− − . Further, the number of non-negative

variables in an optimal basic feasible solution (BFS) of a linear program is bounded above by the

number of constraints in the problem [18]. Hence we get,
n

1 2 1 2
i=1 1

n

1 2
i=1 1

2 1 ()() #(fractional + integral vars.) (2 2) (2).

Combining, 1 ()().

n

i k
k

n

i k
k

n n n f f n f f

f f n n

=

=

+ + ≥ ≥ + + − −

+ ≤ +

∑ ∑

∑ ∑

A similar counting argument on F2 gives that 1 2
1

1
n

k
k

f f n
=

+ ≤ + ∑ . Therefore, although F1 bounds

the feasible integral points more tightly, a solution to its LP relaxation has many more fractional

variables than F2. Hence, it is possible that a lot fewer branches need to be explored when

solving F2 by branch and bound.

5.2.2 A typical run over an image sequence

The ultimate solution to the dependent quantization problem has to find the jointly optimal

solution for all frames between any two consecutive I frames. This will ensure that both

historical dependencies (i.e., how the choice of a predicted macroblock being encoded now gets

effected by a predicting one encoded in the past) and future dependencies (i.e., how the choices

made now affects the prediction performance in future) are taken into account. However such an

exhaustive procedure is computationally infeasible and needs buffering of all frames over which

the joint optimization is done. Moreover, the data-gathering step to populate F1 with parameters

rk(l), dk(l) etc. also becomes extremely impractical.

The above formulation is a simplification and may be used to study the effect of dependencies.

It assumes a first order backward dependency (as with P frames) and the recursive effects

beyond a single frame are ignored. We solve a sequence of joint 2-frame problems, and then use

a heuristic to reconcile the results and determine the quantization choices. Denote by F1(i, i+1)

the problem F1 solved for frames i and i+1. This yields a possible choice of quantization

parameters for both frames i and i+1. Let Quant(i) be the process of quantizing frame i for some

127

quantization choices. Note that Quant(i) can be based on either F1(i, i+1) or F1(i-1, i). Let G(i,

i+1) be the ratio of (PSNR/Bits used) obtained by solving F1(i, i+1).

An example best illustrates how to decide quantization choices over an image sequence. Let us

assume we have 4 frames, numbered 1 through 4 that we need to quantize. Frame 1 is intra-

coded while the others are assumed to be predictively coded. We follow the following steps:

1) Solve F1(1, 2) and F1(2, 3). If G(1,2)=G(2,3), Quant(1) and Quant(2) using the

quantization choice from F1(1,2). Here the historical dependency of frame 2 dominates its

future affects. If G(1,2)<G(2,3), Quant(2) using the choices given by F1(2,3). Given these

choices for frame 2, resolve F1(1,2) to obtain quantization choice for frame 1. Quant(1) using

these choices. Note that in this case, the future affects for frame 2 dominate its historical

dependency. After step (1), the quantization choice for frame 1 is frozen.

2) Solve F1(2, 3) and F1(3,4). The following four cases arise:

• G(2,3)=G(3,4), G(2,3)=G(1,2): Quant(2) and Quant(3) using the solution of F1(2,3). The

dependency effects between frames (2,3) dominate those between frames (1,2) and (3,4). Note

that there is no ambiguity between the choice for frame 2 in steps (1) and (2).

• G(3,4)=G(2,3), G(2,3)<G(1,2): Quant(2) using the solution of F1(1,2). In step 1, frame 1

would have been quantized using the same problem. Quant(3) using F1(2,3). We don’t use

F1(3,4) for quantizing frame 3 since G(3,4)=G(2,3).

• G(2,3)<G(3,4), G(2,3)=G(1,2): Quant(2) using the solution of F1(1,2). Quant(3) using the

solution of F1(3,4).

• G(2,3)<G(3,4), G(2,3)>G(1,2): Quant(3) using the solution of F1(3,4). Note that in this

case, frame 2 would earlier have been quantized using F1(2,3). Since G(3,4)>G(2,3), we

backtrack and re-adjust quantization for frame 2. This is done using quantization choices for

frame 3 obtained from F1(3,4) and resolving F1(2,3) for quantization choices for frame 2. We

deliberately don’t carry over any rippling effects back to frame 1.

After step (2), the quantization choice for frame 2 is frozen.

128

3) Proceed as in step (2) to quantize frames 3, 4, 5, … Note that here also we will restrict

ourselves to four combinations of G to avoid a combinatorial growth in the number of relations.

Thus the next step would use G(2,3), G(3,4), and G(4,5) only.

5.2.3 The rounding algorithms

This section discusses several methods to solve F1, each of which is based on a randomized

rounding step applied to a relaxation of F1. A randomized rounding scheme (first introduced as

a tool in [126][127]) is used to generate an integral solution using the LP relaxation. The

rounding scheme may be viewed as a transformation that uses the LP solution to get inside the

feasible IP polyhedron, while staying close to integral optimality. Section 5.2.3.1 applies a

dependent rounding scheme on the LP relaxation of F1. We discuss why a direct LP based

method may have problems, and in Section 5.2.3.2 try to further relax the problem using

Lagrangian relaxations. Despite both these relaxations, even solving the LP may become too

much of a computational burden since we have to do the operation repeatedly when encoding a

sequence of frames. The primal-dual method based on recent results of Jain and Vazirani [82]

and Goemens and Williamson [63] may be a feasible alternative in such cases.

5.2.3.1 LP-based dependent rounding

We first discuss a dependent rounding scheme based on the LP relaxation of F1. The rounding

method we use has the following steps:

1) Solve the LP relaxation of F1. Let the optimal LP solution be
~ ~

,() and (,)k i kX l Z j l .

2) Let the rounded integer solution be *()kX l and *
, (,)i kZ j l . Use

~ ~

,() and (,)k i kX l Z j l to obtain

*()kX l and *
, (,)i kZ j l as follows:

129

~

~
*

~
*

 Round () under constraint (C1) using,

 (() 1) ()

 (() 0) 1 ()

k

k k

k k

X l

P X l X l

P X l X l

•

= =

= = −
~

,

~

,* *
, ~

~

,* *
, ~

* *
,

,

 After the above, round (,) under constraint (C2) using,

(,)
 ((,) 1| () 1)

()

(,)
 ((,) 0 | () 1) 1

()

 ((,) 0 | () 0) 1

 (

i k

i k
i k k

k

i k
i k k

k

i k k

i k

Z j l

Z j l
P Z j l X l

X l

Z j l
P Z j l X l

X l

P Z j l X l

P Z

•

= = =

= = = −

= = =
* *(,) 1| () 0) 0kj l X l= = =

Note that with the above rounding functions, constraint (C3) is always satisfied. Further,
* * * * * * *
, , ,

~
~,

~

~

,

~
*
,

((,) 1) ((,) 1| () 0) (() 0) ((,) 1| () 1) (() 1)

(,)
 = 0 + ()

()

 = (,)
and

((,) 0) 1

i k i k k k i k k k

i k
k

k

i k

i k

P Z j l P Z j l X l P X l P Z j l X l P X l

Z j l
X l

X l

Z j l

P Z j l Z

= = = = = + = = =

= = − , (,)i k j l

3) If after step (2) *() 0 for any ,k
l

X l k=∑ repeat step (2) until *() 1 for all . k
l

X l k≥∑ We will

call each of these an X-iteration. If *() 1k
l

X l >∑ for any k, let *{ : () 1}kL l X l= = . Choose

* arg max{[1/ () ()] | }k kl d l r l l L= ∈ . Deterministically set * * * *() 1 and () 0.k kX l X l l= ≠ =

Intuitively, this sets those X’s that contribute most profit density in the objective function to 1. A

similar strategy is used to ensure that constraint (C2) is satisfied. If after step (2)
*
,

, ,

(,) 0 i k
k l j

Z j l =∑ for any i, repeat step (2) until *
,

, ,

(,) 1 i k
k l j

Z j l ≥∑ for all i. In our experiments, we

found that in certain cases this requires far too many Z-iterations. Thus, we threshold the

130

maximum number of times this step may be carried out. If after the maximum number of Z-

iterations there still exists an i for which *
,

, ,

(,) 0, i k
k l j

Z j l =∑ we find the Z’s that may be 1 (under

given X’s and under constraint (C3)). Among these potential choices of Z=1, we

deterministically set the one that has the maximum profit density to 1 and the rest to 0.

Similarly, if we find that for some *
,

, ,

, (,) 1i k
k l j

i Z j l >∑ , a pruning step like the one used for X’s is

exercised. Among candidate Z’s that may be 1, this step sets the Z with maximum profit density

to 1, and the rest to 0 (again under constraint (C3)).

4) Assuming the rounded integer solution from steps (1)-(3), check if constraint (C4) is

satisfied. If not, repeat steps (1)-(3) to obtain a new integral solution. If (C4) is satisfied, output

the solution and objective value.

Systematic rounding schemes have been fairly successful to generate heuristic solutions for

several integer problems (see, for example, [24][126][127] and references therein). The other

typical component of a rounding algorithm is a proof on worst case bounds on its performance

given feasibility. Most effort in this direction relies on Chernoff’s inequality [36]. Using

probabilistic bounds on the size of the tail of a sum of iid random variables, Bertsimas and

Vohra [24] give an algorithm similar to our rounding scheme for the uncapacitated facility

location problem [40][41]. The results of [24] are more exhaustive than ours in that the authors

also prove an O(log(n)) worst case guarantee on the performance of their algorithm. The

problem we consider here, however, is much more complicated due to the added packing

constraint (C4). Even constraints (C1) and (C2) are more restrictive than those of [24]. Despite

several attempts, we have not been able to prove guarantees for dependent rounding methods of

the form in Section 5.2.3.1. The main difficulty for formulation F1 stems from constraint C4.

An attempt to prove a guarantee on its feasibility (for the rounding scheme considered) leads to a

sum of dependent Bernoulli random variables for which tail inequalities of the form in [36] are

not known. Nonetheless, as will be shown through experimental results, our algorithms perform

quite well in practice.

131

5.2.3.2 LR-based dependent rounding

The approach of Section 5.2.3.1 requires an extra effort to ensure that the constraints (C4 in

particular) are satisfied. In this section, we further relax problem F1 using Lagrange multipliers.

We consider two natural LRs of F1. The first absorbs constraint C4 into the objective function,

while the second relaxes constraints C1 and C2.

5.2.3.2.1 Lagrange relaxation 1 (LR1)

Let 1 , , ,
, , , ,

() [() ()] () [(,) (,)] (,)k k k i k i k i k
k l k l i j

Z d l r l X l d j l r j l Z j lλ λ λ= + + +∑ ∑

Then LR1 is given by,

10

1 1

,
, ,

,

,

max{ ()} where

() min (())

 st. () 1 for 1,...,

 (,) 1 for 1,...,

 (,) () for all , , ,

 (,)

k
l

i k
k l j

i k k

i k

L

L Z R

X l k n

Z j l i n

Z j l X l i k j l

Z j l

λ
λ

λ λ λ
≥

= −

= =

= =

≤

∑

∑

, () {0,1} for all , , ,kX l i k j l∈

Note that if * *(,)x z is optimal for F1, then * *1 1 (,)
() () | 1()

x z
L Z R F OPTλ λ λ≤ − ≤ . Further, because

of the first two constraints, we have

,
, , , ,

1 , , ,
, , , ,

2 [() (,)]
2 2

 () [() ()] () + [(,) (,)] (,)
2 2

k i k
l k i j k l

k k k i k i k i k
k l i j k l

R R
n X l Z j l

n n

R R
Z R d l r l X l d j l r j l Z j l

n n

λ λ

λ λ
λ λ λ λ

= +

⇒ − = + − + −

∑ ∑

∑ ∑

Note that the structure of the problem remains the same as before. Thus we may use the

rounding scheme of Section 5.2.3.1 to solve approximately for 1()L λ except that step (4) in the

algorithm is no longer needed. Instead we search for the best Lagrange parameter, 0λ ≥ , to

satisfy the resource constraint most tightly.

132

The sub-gradient method of Held, Wolfe, and Crowder [53] is used to search for the Lagrange

parameter. The method starts with an initial value 0 0 of λ λ= and builds a sequence { }mλ of

estimates using,

1 , ,
, , , ,

(() () (,) (,))m m
m m m k k i k i k

k l i j k l

t r l X l r j l Z j l Rλ λ+ = + + −∑ ∑

Here ,{ (), (,)}m m
k i kX l Z j l solves LR1 at the mth iteration. The step size tm is chosen as:

*
1

2
, ,

, , , ,

(())
[() () (,) (,)]

m
m m

m m m
k k i k i k

k l i j k l

L L
t

r l X l r j l Z j l R
β λ−

=
+ −∑ ∑

Here *L is an upper bound on 1()L λ obtained by applying a greedy heuristic to F1. The greedy

heuristic solves for ()kX l assuming a total bit-budget of R/2 to maximize marginal returns [56].

Assuming the above choice of ()kX l , the method of Fox is used again to find , (,)i kZ j l under

constraints C2, C3 and modified C4. 0 2β = and is halved every 5 iterations if 1()L λ does not

change.

5.2.3.2.2 Lagrange relaxation 2 (LR2)

The second LR we consider relaxes constraints C1 and C2. Let,

2 , ,
, ,

(,) { [()] ()} { [(,)] (,)}k k k i k i i k k i
k l i k l j k i

Z u d l u X l d j l Z j l uλ λ λ
→ →

= + + + − −∑ ∑ ∑ ∑ ∑ ∑

Then LR2 is given by,

2, unconstrained

2 2

,

, ,
, , , ,

max { (,)} where

(,) min{ (,)}
 st. (,) () for all , , ,

 () () (,) (,)

k iu

i k k

k k i k i k
k l i j k l

L u

L u Z u
Z j l X l i k j l

r l X l r j l Z j l R

λ
λ

λ λ

→ →

→ → → →

=
≤

+ ≤∑ ∑

, (), (,) {0,1} for all , , ,k i kX l Z j l i k j l∈

There are several reasons that discouraged us from pursuing LR2 further:

• As there are 2n Lagrange parameters in LR2, it is much more complicated to search for the

best one. Contrast this with LR1 where the search was in a single dimension.

133

• In our experiments with the algorithm of Section 5.2.3.1, we found that it was more difficult

to satisfy constraint C4 as compared to C1 and C2. Since constraint satisfaction was the primary

reason that we explored Lagrange relaxations to start with, we found it more beneficial to stick to

LR1. One could go one step further and Lagrange relax constraint C4 from LR2. Although the

resulting Lagrange problem would be trivially solvable, the entire computational burden would

be relegated to the search of the best multiplier set.

• Unlike 1()L λ , there isn’t a straightforward method to solve for 2 (,)L u λ
→ →

 optimally or

approximately. A similar LR results for the facility location problem considered in [40]. The

techniques of [40], however, do not apply here since for a given (,u λ
→ →

) the following holds only

if constraint C4 is maintained:

, ,

,

(,) 0 if (,) 0

 = () if (,) 0
i k i k i

k i k i

Z j l d j l

X l d j l

λ

λ

= + ≥

+ <

Hence, the above Lagrange problem can only be “approximately” parameterized in terms

of ()kX l .

5.3 Experimental study

The experimental study was carried out on a sequence of 100 frames from the Table Tennis

sequence. Each frame was 352x240 pixels in size and was divided into 16x16 macroblocks,

leading to a total of 330 macroblocks per frame. Each macroblock was DCT compressed at five

quality levels. For simplicity we assume a motion vector of size 0 in all our simulations. Given

the quantization choice for the predicting macroblock, we calculated the residual signal and DCT

compressed it at five quality levels. This process was repeated for all the macroblocks in all

pairs of adjacent frames in an offline data generation stage. This populated 100 linear programs

of the form F1. IBM’s Optimization Solution (OSL) was used for solving these linear programs.

The linear program for each pair of frames had 9900 variables and 8911 constraints. Our

objective in these simulations was two-fold. First, we wanted to test the quality of solution

obtained by the rounding methods discussed above. Second, we wanted to test if incorporating

dependency in making quantization decisions leads to an improvement over independent

134

decisions on the predicting frame and the resulting residual in the next frame. The experimental

results are detailed in the following subsections.

(1) Typical example of dependent RD behavior

In Figure 5.2, we plot the decoded PSNR versus quality factor for a typical predicting

macroblock. The quality factor is normalized to be one of five levels (1,...,5). As has been

noticed by earlier authors also, we note that the R-D behavior is not concave or even

monotonically increasing.

Figure 5.2: R-D behavior of predicting macroblock.

In Figures 5.3(a) to 5.3(c), we plot the decoded PSNR versus quality factor for the predicted

macroblock conditioned on a given quantization choice for the predicting macroblock. Again,

we note that the behavior is highly non-concave (and is not even monotonic). This contradicts

assumptions made by earlier authors [34][115] to solve the dependent quantization problem.

135

(a)

(b)

136

(c)

Figure 5.3: R-D behavior of predicted macroblock (dependent RD behavior).

(2) Performance of the rounding algorithm of Section 5.2.3.1:

We now discuss the performance of LP based rounding algorithm of Section 5.2.3.1. We know

that for a minimization problem, the optimal LP solution forms a lower bound on the optimal IP

solution. Ideally, we would like to compare the rounded integral solution (obtained by rounding

the LP solution) with the optimal IP solution. Since the IP solution is difficult to obtain, we

bound the gap between optimal IP solution and rounded solution using the gap between the LP

optimal solution and the rounded solution. We plot this gap as a percentage in Figure 5.4.

Results indicate that the rounding method performs ‘extremely well’ and that for all practical

purposes the gap is almost zero.

137

Figure 5.4: Percentage gap between rounded IP solution and optimal LP solution (R=440K

bits)

During these simulations we also noted the following:

• The threshold number of X-iterations required for convergence in Step (3) of Section 5.2.3.1

ranged between 1-20.

• We experimented with the sensitivity of the rounding gap to the threshold number of Z

iterations. As discussed in Step (3) of Section 5.2.3.1, this was used as an escape route if

constraint (C2) required far too many iterations to converge. In Figure 5.5, we plot the average

rounding gap as a function of threshold number of Z iterations. As can be seen in these plots, the

rounding gap seems to be fairly insensitive to the threshold number of Z iterations. In practice, a

threshold value of 20 or 30 worked quite well.

138

(a)

(b)

Figure 5.5: Sensitivity of LP rounding algorithm to the threshold number of Z iterations

(R=440K, and 441K bits).

139

(3) Comparison of causally optimal solution with the dependent quantization approach:

Next we compare the performance of causally optimal algorithm to the dependent quantization

approach. For the causally optimal scheme, we independently solve the MCKP problem for the

predicting frame. Given the quantization choices for the predicting frame, the joint (two frame)

LP is solved, and a rounded solution is obtained based on it. The dependent quantization

problem solves the joint two frame problem (of the form F1) with no prior assumptions. In the

figures below, we plot the extra improvement obtained with the dependent quantization

approach. We experimented with different choices of the total bit budget, and its partitioning

between the two frames. From the results we note that on the average an improvement of about

0.2 to 0.5 dB is obtained. Though this number may not be very high, it gives us a reason to

expect that as the degree of dependency incorporated in the formulation increases, reasonably

high improvements may be obtained. This could justify doing some sort of ‘globally optimal’

dependent bit allocation between successive I frames (as the memory and computational power

required for doing so becomes available in future).

140

141

142

Figure 5.6: Improvement obtained using dependent quantization approach over the

causally optimal solution.

143

(4) Performance of the Lagrange relaxation approach of Section 5.2.3.2:

In the simulations conducted for the LP rounding algorithm, we noticed that sometimes the

number of iterations needed to satisfy constraint (C4) became large. This was particularly true as

the bit budget (R) was reduced. In such cases, the LR algorithm of Section 5.2.3.2 was used as a

backup mechanism. This algorithm solves the Lagrange problem for a sequence of Lagrange

parameters. Below we present convergence behavior of the algorithm for a max sum (of PSNRs)

problem of the form F1. Figure 5.7(a) plots variation in the Lagrange parameter as function of

the iteration number. Figures 5.7 (c) and (e) show the number of bits used and the value of the

LR solution obtained as a function of the iteration number. Since the Lagrange problem relaxes

the resource constraint, the value of its solution is super-optimal for problem F1 (i.e., it is larger

than the optimal IP solution for a max sum form for F1). As the Lagrange parameter is increased

the relaxed constraint gets weighted into the objective function. Consequently the gap between

the number of bits used by the LR solution and the total bit budget R shrinks, and the value of

LR solution deteriorates. Because of its very fast convergence, we believe that this LR algorithm

gives a very good alternative to the LP rounding approach when it fails to satisfy the problematic

resource constraint.

(a)

144

(b)

(c)

145

 (d)

(e)

146

(f)

Figure 7: Convergence of Lagrange relaxation algorithm. (R=435K and 441K).

(a,b) λ as a function of iteration number (m).

 (c,d) Sensitivity of the number of bits used by the LR solution as a function of iteration number.

(e,f) Convergence of LR solution as a function of iteration number.

5.4 Summary of the chapter

This chapter studied the bit allocation problem with a restricted dependency structure. In

particular, we presented MCKP-like formulations for optimal allocation of bits among predicting

and predicted macroblocks. We discussed rounding procedures that may be used to generate

approximate solutions after solving some relaxation of the original problem (either the LP

relaxation or a Lagrange relaxation). Experimental results show an improvement of about 0.2 to

0.5 dB over the causally optimal solution. From a practical standpoint this validates that the

causality assumption is a very justified one to reduce problem complexity for a marginal loss of

optimality.

147

CHAPTER 6

Optimal Dynamic Rate Shaping of Markov-1 Sources

Contents

6.1 Introduction... 148
6.1.1 Related work ... 149
6.1.2 Results... 150

6.2 Dynamic Rate Shaping Problem Formulation .. 151
6.2.1 Constrained DRS Problem Definition .. 151
6.2.2 Constrained DRS of Intra-Coded Pictures .. 154
6.2.3 Constrained DRS of Inter-Coded Pictures .. 155
6.2.4 Unconstrained Rate Shaping .. 171

6.3 Problem Analysis for Rate Shaping of Markov-1 Sources.............................. 178
6.3.1 Source Model .. 178
6.3.2 MCFD Model .. 178
6.3.3 Rate-Distortion Model ... 181
6.3.4 Current Frame-Only Shaping Error.. 187
6.3.5 Accumulation Error ... 188
6.3.6 Properties of the Optimal Solution... 189

6.4 Summary of the chapter... 191

148

6.1 Introduction

The concept of Dynamic Rate Shaping (DRS) [45][49][50] was introduced in early 1995 as a

technique to adapt the rate of compressed video bit-streams (MPEG-1, MPEG-2, H.261, as well

as JPEG) to dynamically varying bit rate constraints. The need for rate adaptation is a very

naturally-arising one in best-effort networks such as the Internet. Despite increases in bandwidth

availability, the fact that the underlying medium is shared necessitates adaptation at the edges of

the network. Furthermore, the recent success of wireless communications, not only in the form of

cellular telephony but also wireless LANs, demonstrates that the need for bandwidth adaptation

is ever present. Finally, the variety of devices with which users may want or need to access

content is so large, that being able to adapt on the fly is extremely important for offering a viable

content distribution service. In the past, server operators were concerned about scalability issues

– any additional processing done at a server would necessitate a reduction in the server’s

capacity. Current server speeds, as well as the transition away from free content models, have

rendered this argument more or less moot.

DRS bridges the gap between constant and variable bit rate video, allowing a continuum of

possibilities between the two. The approach has several applications. It provides an interface (or

bitstream filter) between an encoder and a network, with which the encoder's output can be

perfectly matched to the network's quality of service characteristics. It can match the rate

capabilities of encoders with a variety of decoders. It can facilitate multipoint communication

with mobile hosts, without compromising the signal quality of wired participants and can provide

smoother trick-mode (fast forward, fast reverse) operation in digital video recorders, and so on.

Since the presented algorithms do not require interaction with the encoder, they are fully

applicable to pre-coded, stored video (as in, for example, video-on-demand systems). By

providing decoupling of the encoder and channel or decoder in terms of rate, universal

interoperability can be achieved.

149

6.1.1 Related Work

At the time when DRS was introduced, techniques had been developed to employ rate control for

live sources based on network feedback [47][88]. No general solution was available, however,

for prerecorded material. Earlier work such as the approaches used in [106] and [162] to

manipulate the rate of compressed H.261 streams were ad-hoc, with no characterization of the

performance of the proposed schemes. Our focus is based on techniques where select DCT

coefficients are dropped (similar to data partitioning [50]). The other major category of

algorithms is that where re-quantization of DCT coefficients is performed. Since the original

introduction of DRS, considerable work has been performed on the subject. In [154] a set of

basic techniques for “bitstream scaling” are discussed, including the elimination of high

frequency components, but they are based on heuristics with no theoretical analysis or claim of

optimality. An early re-quantization-based scheme where the quantization step size is determined

by local and global activity criteria is presented in [109]. A more detailed theoretical analysis for

proper (re)quantizer selection for intra frames is offered in [161]. The subject is further

addressed in [5], where the optimal selection of quantizers is analyzed. Along these lines,

straightforward decoding plus encoding cascades are presented and optimized in [90][155][163].

Other techniques for rate adaptation include [137], an alternative (but incompatible with existing

standards) technique for data partitioning using re-quantization into an even value approximation

and an odd remainder part, [4] where the entire operation is very efficiently performed in the

frequency (DCT) domain, and [166] where rate shaping is performed by block dropping and

intelligent reconstruction at the (non-standard) receiver. Techniques have also been investigated

for the proper integration of rate shaping schemes with actual networks and decoders; in [80] we

describe a real-time DRS implementation for Internet video including a TCP-friendly rate

controller, whereas in [70] buffer conditions for the encoder and transcoder are presented in

order to avoid overflow/underflow at the decoder. Most recently, DRS has been applied on

MPEG-4, combining fine granular scalability (FGS) and FEC with R-D optimization [33].

Although our interest is primarily “homogeneous” rate shaping, where the source and target

coding formats are identical, it is also possible and – indeed – very interesting to examine

heterogeneous rate shaping or transcoding (e.g., from MPEG-2 to MPEG-4). Examples include

[142][143][160]. Finally, it is also natural to ask whether or not the original coding scheme could

150

be architected so that it facilitates rate adaptation with minimal additional processing. Scalable

coding in this respect is extremely useful, and developments in this area are very promising (e.g.,

[135] and [157]). We should point out, however, that all currently deployed coding standards are

all single layer schemes.

6.1.2 Results

Our earlier work in [45][48][49][50] discussed a family of DRS algorithms for two cases of

DRS, namely constrained (CDRS) and general or unconstrained (GDRS). This chapter

substantiates the limited observations in these papers by a more extensive set of experimental

simulations on actual MPEG-2 bitstreams. We also report on the complexity of these algorithms

on today’s computers and justify the computational viability of the DRS approach to transcoding.

Our findings suggest the following:

• A so-called memoryless algorithm that dispenses the shaping error accumulation from past

frames performs very close to the causally-optimal solution and does so over a large

spectrum of cluster sizes and rates. This is so both for the constrained as well as the

unconstrained versions of the DRS problem.

• Recoding or requantization based approaches have an inferior performance compared to both

the causally optimal and the memoryless algorithms for rate shaping ratios less than 2.

• Unconstrained DRS outperforms constrained DRS, but does to only marginally, due perhaps

to the effectiveness of the zig-zag scanning order for DCT coefficients.

• Clustering does not decrease the complexity of any of the algorithms discussed by much.

One may, therefore, decrease the optimization granularity and choose a distinct (potentially

different) breakpoint for each block. Our results show that this leads to a substantially better

PSNR performance.

• There is a major difference between the distribution of times spent in various stages of the

GDRS and CDRS algorithms. While the optimization step takes a substantial chunk of time

for generalized DRS, this step is seen to be extremely efficient for all variations of the

constrained DRS problem. A major portion of the time for both CDRS and GDRS gets spent

during bitstream decoding and R-D data collection.

151

The single most definitive experimental observation we shall make in both constrained and

unconstrained approaches is that the memoryless algorithm performed extremely close to the

causally optimal one. The desire to analytically investigate this property led us to explore the

DRS problem with a known source distribution – in our case an AR(1) process. In this chapter

we analyze the mixed mode DRS problem by providing a statistical characterization of the

source model, the motion compensated frame difference (MCFD) signal it generates, the current

frame shaping error and the accumulated motion compensation shaping error from past frames.

We derive the rate distortion behavior of the MCFD signal for both large and finite block sizes.

Utilizing these results along with facts from Matrix Perturbation Theory [159], we show that the

spectrum (eigenvalues) of the current frame residual error alone and that along with the motion

compensated accumulated error are separated by bounded constants. Similar arguments follow

also for the respective truncated sub-spaces and this helps justify a split of the drift space into

two subspaces - both of which have strong stochastic dependencies. Whence, we observe that

ignoring the term for motion compensated accumulation error from past frames does not alter the

spectral characteristics (or the rate distortion behavior) of the objective function too much (or

does so in a bounded manner). This corroborates the observed experimental finding that the set

of optimal breakpoint values is somewhat invariant to the inclusion or exclusion of the

accumulation error term. The importance of this result is that it allows us to use the much simpler

memoryless DRS algorithms without any significant distortion penalty.

For the sake of completeness, we repeat the problem formulation from [49] in the next section.

For a more thorough treatment, the interested reader may refer to [45][48][49][50]. For

publications related to this chapter, see [14][45][46].

6.2 Problem formulation and analysis

6.2.1 Constrained DRS problem definition

We define rate shaping [48][49] as an operation which, given an input compressed video

bitstream and a set of rate constraints, produces another compressed video bitstream that

152

complies with these constraints. For our purposes, both bitstreams are assumed to meet the same

syntax specification, and we also assume that a (possibly motion-compensated) block-based

transform-coding scheme is used. This includes MPEG-1, MPEG-2, and MPEG-4 as well as

H.261/H.263/H.26L and so-called “motion” JPEG. If the rate constraints are allowed to vary

with time, the operation will be called dynamic rate shaping.

The rate shaping operation is depicted in Fig. 6.1. Note that no communication path exists

between the rate shaper and the source of the input bitstream, which ensures that no access to the

encoder is necessary. Of particular interest is the source of the rate constraints ()TB t . In the

simplest of cases, ()TB t may be just a constant and known a priori (e.g., the bandwidth of a

circuit-switched connection). It is also possible that ()TB t has an a-priori known statistical

characterization (e.g., a policing function). Finally, another alternative is that ()TB t is generated

by the network over which the output bitstream is transmitted; this could potentially be provided

by the network management layer, or may be the result of end-to-end bandwidth availability

estimates. The objective of a rate-shaping algorithm is to minimize the conversion distortion, i.e.,

*

*

() ()
min {|| ||}

TB t B t
y y

≤
−

Note that no assumption is made on the rate properties of the input bitstream, which can indeed

be arbitrary. The attainable rate variation (* /B B) is in practice limited, and depends primarily

on the number of B pictures and the original rate of the bitstream. Also, no indication is given on

the length of the optimization window, and it too can be arbitrary. Complexity and delay

considerations make it desirable that it is kept small, and our interests will focus in the case

where the window is up to a complete picture (frame or field).

153

Figure 6.1: Operation of a dynamic rate shaper.

Assuming that a motion-compensated block-based transform coding technique is used to

generate the input bitstream and decode the output one, there are two fundamental ways to

reduce the rate (1) modifying the quantized transform coefficients by employing coarser

quantization, and (2) eliminating transform coefficients. In general, both schemes can be used to

perform rate shaping; re-quantization, however, leads to recoding-like algorithms which are not

amenable to very fast implementation and (as will be shown later) do not perform as well as

selective-transmission ones if the rate shaping ratio remains less than 2. Note that full recoding

represents the brute-force approach in effecting rate changes, and falls in this category. In the

rest of this chapter we only consider selective-transmission based algorithms. In particular, we

examine two different cases: truncation and arbitrary selection. In the former case, a set of DCT

coefficients at the end of each block is eliminated. This approach will be referred to as

constrained DRS. In the latter case, our algorithm is allowed to arbitrarily select DCT

coefficients for elimination from the bitstream, and hence will be called unconstrained DRS.

In constrained DRS, the number of DCT run-length codes within each block which will be kept

is called the breakpoint, paralleling the data partitioning terminology [45]. All DCT coefficients

above the breakpoint are eliminated from the bitstream. In general DRS, the breakpoint becomes

a 64-element binary vector, indicating which coefficients within each 8x8 block will be kept.

Figure 6.2 illustrates the difference between the two approaches. Assuming the use of MPEG,

and to avoid certain syntax complications24, we require that at least one DCT coefficient remains

24 These include recoding the coded block patterns, and re-executing DC prediction loops.

154

in each block. Consequently, scalar breakpoint values range from 1 to 64, while vector ones will

be non-zero.

Figure 6.2: Breakpoint definition for constrained and unconstrained DRS

6.2.2 Constrained DRS of Intra coded pictures

In intra-picture rate shaping, there is no temporal dependence between pictures. Consequently,

the shaping error will simply consist of the DCT coefficients that are dropped. It can then be

shown [49] that the DRS problem can be expressed as follows:

*

1

*

() () 1() ()

min {|| ||} min { ()}
N

i i T
i

N

i i
B t B t iR b B t

y y D b

=

≤ =≤

− ⇔
∑

∑

with
2() [()]

i

i i i
k b

D b E k
≥

= ∑ (1)

where {1,..,64}ib ∈ is the breakpoint value for block i (run-length codes from bi and up will be

eliminated), N is the number of blocks considered, Ei(k) is the value of the DCT coefficient of

the k-th run in the i-th block, and Ri(bi) denotes the rate required for coding block i using a

155

breakpoint value of bi.

This constrained minimization problem can be converted to an unconstrained one using

Lagrange multipliers: instead of minimizing ()i ii
D b∑ given ()i ii

R b∑ , we minimize:

1 1

min{ () ()}
N N

i i i i
i i

D b R bλ
= =

+∑ ∑ (2)

Note that the two problems are not equivalent; for some value ofλ , however, which our

algorithm will have to find, their solutions become identical [52][144]. The interested reader

may refer to [49] for a detailed description of the Lagrangian relaxation algorithm.

Note that since the selection set is discrete in nature, the above Integer Problem (IP) [110] may

alternatively be relaxed to a linear program [18]. This approach has been well studied in similar

problem setups [15] and is known to perform very close to IP optimality in time that is linear in

the size of the optimization window. This complexity is provably better than that of Lagrange

relaxation [52][53], Dynamic Programming [113][128] or marginal analysis [56] approaches.

Similar algorithmic approaches but in different contexts have also been used in

[15][113][128][211].

6.2.3 Constrained DRS of Inter coded pictures

When all picture coding types are used (I, P, and B) the problem is significantly more complex.

Figure 6.3 shows the block diagram of a MC transform encoder with Huffman (VLC) coding.

Using the notation from this figure, we obtain the expressions for the decoded bit-stream with

and without rate shaping as follows:

1 1 1 0 0

* * * * *
1 1 1 0 0

() with

() with
i i i i

i i i i

y M y e e y

y M y e e y
+ + +

+ + +

= + =

= + =
 (3)

Here M(.) is the motion compensation operator and ei is the coded prediction error. Thus, the

minimization problem for the inter-coded case becomes:
* * * *

1 -1

1

Min.{|| ||}=|| () () ||=|| + ||

Subject to: () ()

i i i i i i i i i i i

N

i i T
i

y y M y M y e e a e e

R b B t

−

=

− − + − −

≤∑
 (4)

156

Here ai is the accumulated error due to motion compensation based on (optimal) truncation of

DCT coefficients in the past frame, while ei-ei* is current-frame only distortion due to rate

shaping of transformed prediction error. Note that in

general * *
1 1 1 1() () ()i i i i i i iM y M y M y y− − − −− ≠ − , i.e., motion compensation is a non-linear operation,

because it involves integer arithmetic with truncation away from zero.

Figure 6.3: Motion compensated transform encoder.

From (3) and (4) we observe that, in contrast with the intra-only case, optimization involves the

accumulated error ai. Furthermore, due to the error accumulation process, rate-shaping decisions

made for a given picture will have an effect on the quality and partitioning decisions of

subsequent pictures. As a result, an optimal algorithm for (4) would have to examine a complete

group of pictures (I-to-I), since breakpoint decisions at the initial I-picture may affect even the

last B or P picture. Not only the computational overhead would be extremely high, but the delay

would be unacceptable as well.

An attractive alternative algorithm is one that solves (4) on a picture basis, and where only the

157

error accumulated from past pictures is taken into account; this algorithm will be referred to as

causally optimal. Note that in order to accurately compute ai, two prediction loops have to be

maintained (one for a decoder that receives the complete signal, and one for a decoder that

receives only partition 0). This is because of the non-linearity of motion compensation, which

involves integer arithmetic with truncation away from zero. With the penalty of some lack in

arithmetic accuracy, these two loops can be collapsed together.

The causally optimal problem can be formulated as follows:

1

^

1()

min { ()}iN

i i T
i

N

i
iR b B

D b

=

=≤∑
∑ (5)

with
^

2 2() () 2 (()) () ()i

i i

i i i
i i

k k b k b

D b A k A k E k E kξ
≥ ≥

= + +∑ ∑ ∑ (6)

where N is such that a complete picture is covered, Ai(k) is the k-th DCT coefficient (in zig-zag

scan order) of the of the i-th block of the accumulated error ai, and (.)ξ maps run/length

positions from the prediction error (.)iE to actual zig-zag scan positions. This minimization

problem can be solved using the Lagrangian multiplier approach, with the new definition for the

distortion
^

D .

The complexity of solving (5) is significant, and can be shown to be between that of a decoder

and an encoder. In order to examine the benefit of error accumulation tracking, one can apply the

intra-only algorithm to the mixed-mode case, since the only difference is the accumulated error

term ai. Surprisingly, the results of this memoryless mixed-mode partitioning algorithm are

almost identical. Figure 6.4 (reproduced from [49]) shows the relevant PSNR values for the

“Mobile” sequence; the difference of the causally optimal and memoryless algorithms is in

general less than 0.1 dB and the curves can hardly be distinguished. It turns out that this holds for

a wide range of bit rates, although the difference increases slightly to 0.2-0.3 dB. This is a very

important result, as it implies that we can dispense completely with the error accumulation

calculation and its associated computational complexity, for a minimal cost in performance.

158

Figure 6.4: Results of various rate-shaping algorithms on the “Mobile” sequence, MPEG-2

coded at 4 Mbps and rate shaped at 3.2 Mbps (reproduced from [49] with author’s

permission).

To further substantiate our claim that the quality degradation between the causally optimal and

memoryless algorithms is perceptually insignificant across a large spectrum of cluster sizes and

partition rates, we present a far more extensive set of simulation results in Figure 6.5, Figure 6.6

and Figure 6.7. The compliance bitstreams used in these simulations were downloaded from

ftp://ftp.tek.com/tv/test/streams/Element/index.html and the MPEG-2

Video Encoder (Version 1.1) from MPEG Software Simulation Group was used to re-encode the

streams. Figure 6.5 shows results for various DRS algorithms on 400 frames from the Flower

sequence originally encoded at 10 Mbps and shaped to 6.5 and 6 Mbps. Similar results are

shown in Figure 6.6 for the Table Tennis sequence. As witnessed for the Mobile sequence

shaped by about 80%, these plots reconfirm that the memoryless algorithm is a very good

approximation and performs within 1 dB of the causally optimal one. The rate-based algorithm,

which ignores the objective function completely, but instead does a maximal breakpoint selection

159

based solely on a sequence of localized rate constraints, is seen to under-perform the memoryless

algorithm by about 8-10 dB. Figure 6.7 shows the average PSNR values for a wide spectrum of

shaping rates for several commonly used sequences. Yet again, the memoryless algorithm

performs extremely close to the causally optimal one, with a difference of only 0.1 to 0.2 dB for

a wide range of rate shaping ratios. The performance of the DRS approach is seen to fall off

much faster than recoding (with no reuse of motion vectors or other coding parameters). At a

ratio of about 2:1 and higher, recoding is seen to out-perform dynamic rate shaping. At such

drastic rate shaping ratios, requantization (or recoding) offers a better alternative compared to the

(computationally more attractive) DRS approach since the former allows one to re-distribute the

quantization error among the various coefficients based on their statistical characteristics at the

transcoded rate and not at the original encoding rate.

(a)

160

(b)

(c)

161

(d)

Figure 6.5: PSNR (Y only) for the “Flower” sequence, coded at 10 Mbps and shaped to 6.5

and 6 Mbps using DRS with causally optimal, memoryless or rate based algorithms.

(a)

162

(b)

(c)

163

(d)

Figure 6.6: PSNR (Y only) for the “Table Tennis” sequence coded at 10 Mbps and shaped

to 6.5 and 6 Mbps using DRS with causally optimal, memoryless or rate based algorithms.

164

(a)

(b)

165

(c)

(d)

166

(e)

Figure 6.7: Results of various dynamic rate-shaping algorithms on different MPEG-2

Sequences encoded at 10 Mbps and transcoded to different target rates.

One way to reduce the complexity of the DRS problem is by a so called clustering approach [49]

in which a common breakpoint is selected for a set of blocks. Denote by C(n) the clustered DRS

algorithm where n consecutive blocks have a common breakpoint. Figure 6.8 compares the

performance of C(1) and C(44) algorithms for five commonly used test sequences. As can be

seen from these plots, C(1) outperforms C(44) by about 2-5 dB at a rate shaping ratio of about

2:1. The gap is higher for lower rate shaping ratios and shrinks as the rate shaping ratio

increases.

167

(a)

(b)

168

(c)

(d)

169

(e)

Figure 6.8: Comparison of PSNR performance of C(44) and C(1) for different MPEG-2

Sequences encoded at 10 Mbps and transcoded to different target rates.

Tables 6.1 through 6.5 compare the complexity of solving the C(1) DRS algorithm with that of

the C(44) algorithm for the different test sequences considered. The times we report were

measured on an IBM ThinkPad® machine with a 1.80 GHz Intel® Pentium® 4 Mobile CPU and

256 MB of RAM running the Microsoft Windows XP Professional 2002 operating system. We

make the following key observations from these tables:

• The rate based and causally optimal DRS algorithms take between 300-400 msec to rate

shape each frame. This amounts to an almost real-time performance of around 3 frames per

second.

• The memoryless algorithm is considerably more efficient than the causally optimal one and

saves around 100 msec of processing time per frame. With the memoryless algorithm one can

transcode about 4 frames per second.

• For all the algorithms considered (causally optimal, memoryless and rate based), the C(1)

times are almost the same as the C(44) times. Hence, complexity-wise there is virtually no

170

difference between C(1) and C(44), while the former gives a much better performance in terms

of Y-PSNR and should be the obvious choice for practical implementations.

• Bitstream decoding and R-D data collection takes about 80% of the processing time and is by

far the most resource intensive operation.

• Bitstream output takes around 19-20% of the processing time.

• Finally, the actual optimization algorithm with the Lagrangian iterations and bisection takes

less than 1% of the time.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

C(1) Causally Optimal 378 81.4 % 17.85 % 0.72 %
C(1) Memoryless 247.75 74.36 % 24.52 % 1.11 %
C(1) Rate Based 376.5 82.67 % 16.99 % 0.33 %
C(44) Causally Optimal 379.5 81.4 % 18.6 % ˜ 0 %
C(44) Memoryless 251 67.3 % 32.56 % 0.09 %
C(44) Rate Based 380 79.8 % 20.12 % ˜ 0 %

Table 6.1: Comparison of the complexity of various stages of the C(1) and C(44) algorithms

for the “Cactus and Comb sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

C(1) Causally Optimal 332.75 80.69 % 18.33 % 0.90 %
C(1) Memoryless 221.5 72.91 % 25.51 % 1.59 %
C(1) Rate Based 330 80.68 % 19.01 % 0.30 %
C(44) Causally Optimal 336.25 81.19 % 34.81 % ˜ 0 %
C(44) Memoryless 225.5 65.08 % 34.81 % ˜ 0 %
C(44) Rate Based 335.5 76.52 % 23.47 % ˜ 0 %

Table 6.2: Comparison of the complexity of various stages of the C(1) and C(44) algorithms

for the “Flower sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

C(1) Causally Optimal 323.5 80.91 % 18.16 % 0.92 %
C(1) Memoryless 212 70.16 % 28.06 % 1.77 %
C(1) Rate Based 319.25 81.28 % 18.48 % 0.23 %
C(44) Causally Optimal 323 77.55 % 22.37 % 0.078 %

171

C(44) Memoryless 215.5 68.44 % 31.56 % ˜ 0 %
C(44) Rate Based 325.75 80.04 % 19.95 % ˜ 0 %

Table 6.3: Comparison of the complexity of various stages of the C(1) and C(44) algorithms

for the “Mobile sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

C(1) Causally Optimal 375.5 82.09 % 17.37 % 0.53 %
C(1) Memoryless 241.5 73.08 % 25.57 % 1.53 %
C(1) Rate Based 373.25 81.5 % 18.35 % 0.13 %
C(44) Causally Optimal 380.75 80.17 % 19.76 % 0.06 %
C(44) Memoryless 244 68.95 % 31.04 % ˜ 0 %
C(44) Rate Based 377.5 80.13 % 19.87 % ˜ 0 %

Table 6.4: Comparison of the complexity of various stages of the C(1) and C(44) algorithms

for the “Susie sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

C(1) Causally Optimal 349.25 82.61 % 16.82 % 0.57 %
C(1) Memoryless 224.5 71.93 % 26.95 % 1.11 %
C(1) Rate Based 349.5 81.97 % 17.73 % 0.28 %
C(44) Causally Optimal 379.5 79.5 % 20.47 % ˜ 0 %
C(44) Memoryless 230.75 68.69 % 31.31 % ˜ 0 %
C(44) Rate Based 352.5 78.37 % 21.63 % ˜ 0 %

Table 6.5: Comparison of the complexity of various stages of the C(1) and C(44) algorithms

for the “Table Tennis sequence”.

6.2.4 Unconstrained rate shaping

In this section, we concentrate on the generalized version of the DRS problem, discussing its

performance particularly in comparison to the constrained DRS approach. Let

{ {0,1}, 1,.., }k T
i ib b k K

→

= ∈ = denote the breakpoint vector for block i, where k
ib is 1 iff the k-th

DCT coefficient run-length of block i-th is retained. In order to avoid a perceptually ill-defined

distortion, we only include the luminance component in our distortion calculations. As a result,

breakpoint decisions will be made on a per macroblock basis, i.e., all blocks of a given

172

macroblock will use the same breakpoint vector. Rate calculations include, of course, the two-

chrominance components. It can then be shown that the optimal DRS problem for intra-coded

pictures can be formulated as:

1

1()

min { ()}
N

ii T
i

N

ii
iR b B

D b
→

=

→

=≤∑
∑ (7)

with

2() ()k i
ii i j

j k

D b b E k
→

∈ϒ

= ∑∑ (8)

where N is the number of macroblocks over which optimization takes place, ϒ denotes the

luminance blocks of a macroblock, (.)iR denotes the number of bits required to code macroblock

i with the breakpoint configuration , ()i iib D b
→ →

 denotes the distortion associated with

, ()i
i jb E k

→

is the value of the DCT coefficient of the k-th run in the j-th block of the i-th

macroblock, and k
ib is the logical inverse of k

ib .

Using the causality argument and taking into account only the accumulated error, it can be

shown that (7), (8) can be generalized to include P and B pictures by defining the distortion as

follows:

2 2() () 2 (()) () ()
i

i k i i i k i
i j i j j j i

y k k k

D b A k b A k E k b E kξ
→

∈ϒ

= + +

∑ ∑ ∑ ∑ (9)

where ()i
jA k is the k-th DCT coefficient (in zig-zag scan order) of the i-th block of the j-th

macroblock of accumulated error, and (.)i
jξ maps run-length positions to zig-zag scan positions.

Yet again, the constrained minimization problem of (7) and (9) can be converted to an

unconstrained one using Lagrange multipliers. A fast, iterative algorithm for the determination

of the optimal λ can be found based on bisection [52] or a descent algorithm [53]. For more

details on this algorithm, refer to [46][49]. A key characteristic of this algorithm is that it

operates in the convex hull of the “operational” R(D) curves of each block. Initial experimental

173

results for optimal unconstrained DRS with the “Mobile” sequence coded (using MPEG-2) at 4

Mbps and rate-shaped at 3.2 Mbps were reported in [49]. As with CDRS, these results showed

that the memoryless algorithm performs almost identical to the optimal one. To supplement these

observations, we present a more extensive set of simulation results comparing the performance

of GDRS and CDRS in Figure 6.8. As can be seen from these plots, unconstrained and

constrained DRS perform almost identically. This is likely to be due to the efficiency of the zig-

zag scanning order for DCT coefficients. Alternatively, one may argue as well that the non-

sequential (somewhat random) selection of breakpoints produces a distribution of (run-length,

value) pairs for which the original set of VLC tables were not optimized, hence giving worse R-

D performance. Since VLC tables are pre-specified by the standard, one generally does not have

a freedom to re-optimize in this dimension if a standard-compliant transcoded bitstream is

required.

(a)

174

(b)

(c)

175

(d)

(e)

Figure 6.9: Comparison of PSNR performance of CDRS and GDRS for different MPEG-2

Sequences encoded at 10 Mbps and transcoded to different target rates. Also shown is the

performance of a recoding based scheme.

176

Tables 6.6 through 6.10 compare the complexity of CDRS C(1) algorithm with the GDRS

algorithm for the different test sequences considered. The times we report were measured on a

machine with a 1.80 GHz Intel® Pentium® 4 Mobile CPU and 256 MB of RAM running the

Microsoft Windows XP Professional 2002 operating system. We make the following key

observations from these tables:

• For both the causally optimal and memoryless algorithms, CDRS is much more efficient than

GDRS. The ratio of the CDRS to GDRS times is roughly 1:2.5 for the causally optimal approach

and about 1:3.5 for the memoryless algorithm. Since the GDRS and CDRS algorithms have

virtually no difference performance-wise, CDRS would be the obvious choice for all practical

implementations.

• The distribution of times spent in the various stages of a GDRS transcoder is drastically

different from that of a CDRS transcoder. For the causally optimal GDRS approach, the

processing time gets distributed as 35%, 10% and 55% for the decoding and R-D data collection,

bitstream output and optimization stages, respectively. For the memoryless GDRS algorithm, the

distribution is approximately 25%, 10% and 65% for these stages. Contrast this with the 80%,

19%, and 1% distribution for the all the CDRS algorithms and note that the CDRS schemes spend

virtually no time in the actual optimization algorithm.

Stage Algorithm
Overall

Time/Frame
(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

CDRS Causally Optimal 378 81.4 % 17.85 % 0.72 %
CDRS Memoryless 247.75 74.36 % 24.52 % 1.11 %
CDRS Rate Based 376.5 82.67 % 16.99 % 0.33 %
GDRS Causally Optimal 829 40.41 % 11.49 % 48.10 %
GDRS Memoryless 694.25 29.46 % 13.25 % 57.30 %

Table 6.6: Comparison of the complexity of various stages of the CDRS and

GDRS algorithms for the “Cactus and Comb sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

CDRS Causally Optimal 332.75 80.69 % 18.33 % 0.90 %
CDRS Memoryless 221.5 72.91 % 25.51 % 1.59 %
CDRS Rate Based 330 80.68 % 19.01 % 0.30 %

177

GDRS Causally Optimal 990.5 29.40 % 10.50 % 60.1 %
GDRS Memoryless 881.75 20.69 % 11.62 % 67.68 %

Table 6.7: Comparison of the complexity of various stages of the CDRS and

GDRS algorithms for the “Flower sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

CDRS Causally Optimal 323.5 80.91 % 18.16 % 0.92 %
CDRS Memoryless 212 70.16 % 28.06 % 1.77 %
CDRS Rate Based 319.25 81.28 % 18.48 % 0.23 %
GDRS Causally Optimal 1000.5 27.81 % 10.32 % 61.87 %
GDRS Memoryless 894.25 18.48 % 10.48 % 71.04 %

Table 6.8: Comparison of the complexity of various stages of the CDRS and

GDRS algorithms for the “Mobile sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

CDRS Causally Optimal 375.5 82.09 % 17.37 % 0.53 %
CDRS Memoryless 241.5 73.08 % 25.57 % 1.35 %
CDRS Rate Based 373.25 81.5 % 18.35 % 0.13 %
GDRS Causally Optimal 820.75 41.18 % 11.48 % 47.33 %
GDRS Memoryless 686.5 28.69 % 12.05 % 59.25 %

Table 6.9: Comparison of the complexity of various stages of the CDRS and

GDRS algorithms for the “Susie sequence”.

Stage Algorithm

Overall
Time/Frame

(msec)

Decoding and
R-D data
collection

Bitstream
Output

Optimization

CDRS Causally Optimal 349.25 82.61 % 16.82 % 0.57 %
CDRS Memoryless 224.5 71.93 % 26.95 % 1.11 %
CDRS Rate Based 349.5 81.97 % 17.73 % 0.28 %
GDRS Causally Optimal 936.75 32.66 % 10.06 % 57.25 %
GDRS Memoryless 813 22.32 % 11.90 % 65.77 %

Table 6.10: Comparison of the complexity of various stages of the CDRS and

GDRS algorithms for the “Table Tennis sequence”.

178

6.3 Problem Analysis for Rate Shaping of Markov-1 Sources

Motivated by the performance of the memoryless algorithm, this section details the behavior of

the above minimization problem for the motion compensated (inter) frame case assuming an

auto-regressive (AR) source model [14]. By analyzing the statistical and rate-distortion behavior

of the different components of this minimization problem, the following key result is

mathematically shown: The set of optimal breakpoint values for any frame is somewhat

invariant to the accumulated motion compensated shaping error from past frames and may be

very reasonably approximated using the current frame shaping error alone.

6.3.1 Source Model

The following sections characterize the statistical and R-D behavior of each of the different

components of equations (3) and (4). We model the pixel values of intra-frame images using a

first order Markov process [84]. An Autoregressive-1 (AR(1)) process is a wide-sense stationary

process characterized by an exponentially decreasing auto-correlation function (ACF). In the 2-

dimensional case the ACF R(x,y)=R(0,0)ρx
|x|ρy

|y|, which assuming that ρx=ρy=ρ yields

R(x,y)=R(0,0)ρ |x|+|y|. A correlation coefficient (ρ) of 0.9-0.98 is known to model natural images

quite well [32].

6.3.2 MCFD Model

Next, we need to model the statistical behavior of the motion residual signal (e in equations (3)

and (4) above) assuming an AR(1) model for the source signal y. Chen and Pang [31][32] show

that the ACF of the MCFD for an AR(1) source can be viewed as the convex combination of two

uncorrelated zero-mean wide-sense stationary processes, i.e.,

(1)n n nE Y Zα α= + −

where Yn is the same as the original source AR(1) process with parameters (ρ,σ2) and Zn is an

independent white-noise sequence. More formally, the variance-normalized ACF Re of e in

either direction is given by:

179

2 1

2

2 3

4
e e1 e2

2 3

1 2

1 () () ()
() 1 () ... ()
() () 1 ... ()

R R R. ... ()
.

() () ... 1 ()
() () ... () 1

N

N

N

N

N N

N N

A a A a A a
A a A a A a
A a A a A a

A a

A a A a A a
A a A a A a

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ

ρ ρ ρ
ρ ρ ρ

−

−

−

−

− −

− −

= = +

 (10)

where,

2 3 1

2 2

2 3

4
e1

2 3 4

1 2 3

1
1 ...

1 ...
R () . 1 ...

.
... 1
... 1

N

N

N

N

N N N

N N N

A a

ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

ρ

ρ ρ ρ ρ
ρ ρ ρ ρ

−

−

−

−

− − −

− − −

=

 (11)

and

2

1 0 0 0 0
0 1 0 0 ... 0
0 0 1 0 ... 0

(1 ()) . 1 ... 0
.
0 0 0 ... 1 0
0 0 0 ... 0 1

eR A a

 = −

 (12)

To obtain the above expressions, the authors of [31] model errors in motion estimation using a

uniform pdf. over [-a, a]. The parameter a may be regarded as the inaccuracy in motion

estimation and is typically 0.5 for motion estimation with single pixel accuracy and 0.25 for half

pixel accuracy. A is a function of a and ρ and is given by:
2

2

1
1 2 ()(1)

2 ln
() 1

1
1

ln

a a a

a

a
A a

ρ ρ ρ
ρ

ρ
ρ

−
− − −

 = ≤
 −

−

 (13)

180

with 0 a x< ≤ or y depending on the direction Figure 6.10 below plots A(a) as a function of the

inaccuracy (a) in motion estimation. Note that A is a decreasing function of both ρ and of the

accuracy (1-a) in motion estimation.

The ACF of equation (10) has been normalized using the variance E[Re(0,0)] given by:

2

e
1

[R (0,0)] 2 (0,0) 1
ln

a

aE R
ρ

ρ

 −
= −

 (14)

Given the above facts, the two dimensional ACF can be reasonably approximated as a separable

combination of horizontal and vertical normalized ACF and is given by:

, ,[(,)] [(0,0)]e e e x e yE R x y E R R R= (15)

Figure 6.10: A(a) as a function of the inaccuracy in motion estimation (a)

181

6.3.3 Rate distortion behavior

The next step in finding the optimal DRS solution involves a characterization of the rate

distortion behavior of the MCFD signal e.

a) Large Block Size

Berger [22] shows that the MSE rate distortion function of a Gaussian source with a Toeplitz

ACF that corresponds to a spectral density function Φ(ω) has the following parametric

representation for large block sizes:

e

1
min[, ()] and

2
1 ()

() max[0, log] where () R ()
4

jk

k

D d

R D d k e

π

θ π

π ω
θ π

θ ω ω
π

ω
ω ω

π θ

−

∞
−

−
=−∞

= Φ

Φ
= Φ =

∫

∑∫
 (16)

The R(D) curve can be generated using the parameter
1
2

R
D

θ
∂

= −
∂

. Using the above expression

for normalized ACF in a single direction yields:

2
0

cos()
() 1 2 ()Real{ () 1}= 1+2 ()

1 2 cos()
jw k

k

A a e A a
ω ρ

ω ρ ρ
ρ ρ ω

∞
−

=

 −
Φ = + − + −

∑ (17)

Figure 6.11 plots the spectral density function for typical values of ρ . As can be seen from

Figure 6.11 (c) plots, as the inaccuracy in motion estimation increases, the spectral density for a

given source correlation coefficient increases. For a given (constant) inaccuracy in motion

estimation, as the source correlation increases, the spectral density at any frequency increases.

From Figure 6.11 (b) we note that as the source correlation coefficient, lower frequencies have

higher spectral density. The spectral density gets concentrated around lower frequencies as the

source correlation increases.

182

(a)

 (b)

183

 (c)

Figure 6.11: Spectral density function (a) Spectral density function as a function of the

frequency (omega) and the inaccuracy in motion estimation (a) (b) The spectral density

function as a function of omega (c) The spectral density function as a function of the

inaccuracy in motion estimation (a).

Small Distortion:

For small θ or equivalently small distortion, Dθ=θ and R(Dθ)=R(θ)=R(D) where:

2
0

1 2 3 4
0

1 2 () cos1() log { }2 1 2 cos

1 = [log(cos) log(cos)]2

A a
R D d

D D

a a a a d

π

π

ρ ω ρ
ωπ ρ ρ ω

ω ω ωπ

 −
= + + −

+ − +

∫

∫
 (18)

with
2 2

1 2 3 41 (1 2 ()), 2 (() 1), (1), 2a A a a A a a D a Dρ ρ ρ ρ= + − = − = + = − (19)

184

While we omit final expressions, we observe that this may be solved for explicitly using the fact

that [152],

2 2

0

ln(cos) ln for
2

a a b
a b d a b

π

ω ω π
 + −

± = ≥

∫

Note that 1 2 (1)(1 2 ()) 0a a A aρ ρ ρ− = + + − > if () (1) / 2A a ρ ρ< + , which is true since 1ρ < .

Further, 2
3 4 (1) 0a a D ρ− = + > . Figure 6.12 plots the rate distortion function for small distortion

for typical values of ρ and)(aA . Note that the rate decreases as the distortion increases and that

as the correlation coefficient (ρ) increases, the rate needed to achieve a given distortion in the

MCFD signal decreases.

Figure 6.12: Rate distortion function for small distortion.

Figure 6.13 shows three dimensional plots of the rate required to encode the MCFD signal at a

given distortion as a function of both a and ρ. For a given source correlation coefficient ρ, as the

inaccuracy a in motion estimation increases, A(a) increases. Consequently, the white noise term

contributing to the ACF of the MCFD signal becomes less dominant. The statistical behavior of

185

the MCFD signal starts to get closer to the original AR(1) source model and it becomes easier to

encode it – thus resulting in small rate requirements. As was observed from Figure 6.12 earlier,

we again see that as the source correlation coefficient increases, the rate required for encoding

the MCFD signal at a given distortion decreases. One would certainly expect such behavior in

the source domain. The fact that it is even true after motion compensation is suggestive of the

fact that strong statistical properties carry over from the source signal to the MCFD signal.

Finally, we observe that the rate requirement is a strong function of the source correlation

coefficient and its dependency on the inaccuracy in motion estimation (a) is rather weak.

Figure 6.13: Rate (for a given distortion) of the MCFD signal as a function of the

inaccuracy in motion estimation (a) and the source correlation coefficient.

186

Large Distortion:

Consider next large values of D or θ. Note that Φ(ω) is even and is an increasing function for

ω∈[-π,0] and a decreasing one for ω∈[0,π]. Let ωθ>0 be such that Φ(ωθ)=θ, then

0

2

2

1 min[, ()]

()(1 ()) (1) () 1
 =

1 2 cos

w

D d

w w A a A a
d

θ

π

θ

θ θ

π

θ ω ωπ

θ π ρ
ω

π π π ρ ρ ω

= Φ

 − − −
+ + + −

∫

∫
 (20)

From [152], we have that for 2 2b c≥ ,

1

2 2 2 2

2 () tan(/ 2)
tan

cos
dw b c

b c w b c b c

ω− −
= + − −

∫ (21)

Thus,

1()(1 ()) 2 () (1)
tan tan(/ 2)

(1)
w w A a A a

D wθ θ
θ θ

θ π ρ
π π π ρ

− − − +
= + − −

 (22)

Unlike for small D, R(D) must be left in a “non-explicit” parameterized form now:

2
0

1 2 ()(cos)1() log2 (1 2 cos)

w A a
R D d

θ

θ
ρ ω ρ

ωπ θ θ ρ ρ ω
 −

= + + −
∫ (23)

Figure 6.14 plots the rate distortion function for large values of distortion for typical values of

ρ and)(aA . Note that again as the correlation coefficient (ρ) increases, the rate needed to

achieve a given distortion in the MCFD domain decreases.

187

Figure 6.14: Rate distortion function for large distortions.

b) Finite Block Size

For finite block sizes, the parametric rate-distortion function [22] is given by:
1 1

0 0

11 1min(,) and max[0, log(/)]
2

N N

k k
k k

D RN Nθ θθ λ λ θ
− −

= =

= =∑ ∑ (24)

Here λk are the MC-DCT coefficient variances. Note also the following special cases:

1

0

1

0

1If min(), and () log2

1If max(), () 0 and

N
k

k
k

N

k k
k

D R D N D

R D D N

θ

θ θ

λ
θ λ θ

θ λ λ

−

=

−

=

≤ = =

= = =

∏

∑
 (25)

6.3.4 Current frame shaping error

Until now, we have modeled the MCFD signal e and its R-D behavior. We now return to the

current-frame shaping error e-e*. Recall that for AR(1) sources with high ρ, the rate distortion

188

behavior for coding DCT coefficients is very close to the statistically optimal Karhunen-Louve

Transform (KLT) (see Chapter 6 in [132]). We therefore take (the somewhat round-about)

recourse to the KLT to approximate DCT. It is known that the orthogonal basis functions for

KLT are the eigenvectors of the signal’s ACF matrix. Let the eigenvectors Ei and eigen-values

λi solve the eigen-problem for Re, i.e.,
1

e 0 1 1 0 1 1[] R [] [, ,...,] with [] [, ,...,]N NE E diag E E E Eλ λ λ−
− −= = (26)

If Ci is the projection of the residual signal along Ei, the shaping error in terms of KLT is given

by:

2 2() | |
N N N

T T
i i i i i

i b i b i b

C E C E ee E
= = =

= =∑ ∑ ∑ (27)

with an average value of:

*
e|| || R

N N
T
i i i

i b i b

e e E E λ
= =

− = =∑ ∑ (28)

Using the above equations and the fact that e is jointly Gaussian, we conclude that e-e* is also

Gaussian and can be represented in a statistically optimal manner in terms of (Ei, λi)|i≥b. A

further simplifying fact [32] is that since,
1 1 1

1 2 1 2[] [] [] ()[] [] []e e e e eE R E E R R E E R E R− − −= + = + (29)

the optimal eigenvectors for e are in fact the same as those of the original AR(1) source signal.

Since the eigenvectors and eigenvalues for the AR(1) source may be computed using

transcendental equations (see equations 3.2.15 and 3.2.16 in [132]), one may back-substitute the

eigenvectors thus obtained into (29) to obtain the eigenvalues for Re.

6.3.5 Accumulation error

The only portion in equations (3) and (4) that we have not yet characterized is the accumulation

error term, *
1 1() ()i i i i ia M y M y− −= − . If we assume that motion compensation is done via pixel

translation, ignore the errors due to integer truncation, and assume that motion vectors obtained

with y and y* are the same and identical to those for y-y*, we can write *
1 1()i i i ia M y y− −≈ − . The

motion compensation operator only translates pixel values. Hence, from a statistical point of

view, the random process that models *
1 1i iy y− −− should model ai sufficiently well as well.

189

6.3.6 Properties of the optimal solution

Due to the above arguments, a degenerate case of motion compensation is worthy of special

attention. Let Mi be the identity operator corresponding to zero motion vectors. Solving (3)

recursively yields that:
* * * * *

1 1
0,.., 1

{ ()} i i i i i i j j i i
j i

y y y y e e e e e e− −
= −

− = − + − = − + −∑ (30)

Here the first parenthesized term is the accumulation error while the second term is the current

frame shaping error. If Z=X+Y and X and Y are un-correlated, it is easy to see that RZ,Z=RX,X+

RY,Y. Thus, if the current frame shaping error signal is temporally uncorrelated and identically

distributed, we get that the accumulation error term affects the ACF by a scalar multiple.

Consequently, using R-D expressions for large blocks given before, we see that the R(D)

function gets perturbed by an additive constant. Therefore, under the above assumptions, the set

of optimal breakpoint values would not get affected if we were to exclude the accumulation error

term altogether to start with.

One may observe a similar result, though with much weaker assumptions, by using the following

fact from matrix perturbation theory [159]:

Lemma: If A and A+E are n-by-n symmetric matrices, λk(X) is the kth largest eigenvalue of X ,

then for k=1,..,n:
n

i,j2 1 j=1,..,n
i=1

() () = maxk kA E A E n E n Eλ λ+ − ≤ ≤ ∑ (31)

Using this with A=A(a)Ye1=Re1 and E=Re2, yields:

() () (1 ())k kA E A A a nλ λ+ − ≤ − , or (32)

1 1() () (1 ()) () () () (1 ())k e k e k eA a Y A a n R A a Y A a nλ λ λ− − ≤ ≤ + − (33)

Since A(a)≤1, we see that all the eigenvalues for Re and Ye1 are a within constant bound of each

other. Thus, using (33), we see that the R(D) function gets perturbed by at most a constant

amount if we were to drop the Mi(yi-1) term (from Mi(yi-1)+ei) and computed the R(D) function

based only on ei. Using exactly similar arguments on truncated sub-spaces of y* and e* lets us

190

drop the *
1()i iM y − term. Again, we are led to the fact that the optimal break-point values don’t

change (much) by excluding the accumulation error term.

Yet another perturbation inequality [159] leads to even tighter bounds.

Lemma: Let A and A+E be n-by-n symmetric matrices, and let ()k Xλ be the kth largest

eigenvalue of X, then:

1() () () () () for 1,..,k n k kA E A E A E k nλ λ λ λ λ+ ≤ + ≤ + = . (34)

Using this with 1 1 2() and e e eA R A a Y E R= ≡ = yields:

1 1() () (1 ()) () () () (1 ()) for 1,..,k e k e k eA a Y A a R A a Y A a k nλ λ λ+ − ≤ ≤ + − = (35)

where we use that 1() () 1 ()nE E A aλ λ= = − . This further implies that:

1() () () 1 () for 1,.., .k e k eR A a Y A a k nλ λ= + − = (36)

Note that statistically Mi(Yi-1) behaves like Yi. Thus, we consider the above lemma

with 1 2(1 ()) and e eA A a Y E R= + = , yielding:

1 1 1(1 ()) () (1 ()) () (1 ()) () (1 ()) k e k e e k eA a Y A a Y R A a Y A aλ λ λ+ + − ≤ + ≤ + + − (37)

for k=1,..,n, which further implies that,

1 1() (1 ()) () 1 () for 1,.., .k e e k eY R A a Y A a k nλ λ+ = + + − = (38)

and that,

1 1() () ()k e e k e k eY R Y Rλ λ λ+ = + (39)

or using (36),

1

1 1
() 1 () 1

() ()k e e k eY R R
A a A a

λ λ

+ = + − −

 (40)

Equation (40) shows that dropping the accumulation error term would (due to the log term)

affect the Rate Distortion function by an additive constant only, leading us to the conclusion that

the set of optimal breakpoints would stay (more or less) the same after dropping this term.

191

6.4 Summary of the chapter

The concept of Dynamic Rate Shaping was discussed as an adaptation mechanism between

coded video rate characteristics and transport service capabilities, and analyzed in an operational

rate-distortion context. We build on earlier experimental results that show that a memoryless

version of the algorithm performs almost identical to the causally optimal one, hence

significantly simplifying the implementation complexity, with no compromise in terms of

quality. This is so even with the memoryless version of GDRS algorithm. The desire to better

understand the good performance of the memoryless problem led us to analyze the behavior of

the optimal solution to the DRS problem assuming an AR(1) source model. By deriving the

statistical and rate-distortion characteristics of different components of the inter-frame problem

we showed that the set of optimal breakpoint values for any frame is somewhat invariant to the

accumulated motion compensated shaping error from past frames and may be very reasonably

approximated using the current frame shaping error alone. This result is significant because it

opens up the way to construct simpler memoryless algorithms that give minimal penalty in

achieved picture quality, not just for this, but possibly other types of problems such as those in

[3] and [105].

192

CHAPTER 7

Conclusions and future work

Contents

7.1 Approximately optimal bit allocation... 193
7.2 Scheduling objects... 193
7.3 Memoryless algorithms and dependent allocation ... 194

In this Thesis, we explored problems that arise at various stages of an audio-visual

communication system. We addressed (a) the optimal intra and inter frame quantization

problem, (b) the modeling of object based systems both at the server and the client side, (c) the

content based approach for resource allocation and error control, and (d) the structure of the

optimal dynamic rate shaping problem for Markovian sources. We took the approach of

abstracting the minimal essentials that help to model the problem in a mathematically tractable

form, yet retain a high correlation with reality. We also introduced the video coding community

to several new mathematical tools that may aid in solving a wide array of problems. While the

treatment presented above is fairly complete, it leaves ample room for improvement and

extensions.

193

7.1 Approximately optimal bit allocation

An interesting outcome of the MCKP formulation of Chapter 2 is that some known

approximation algorithms [30][72][138] can be used to solve bit allocation problems. We

believe that these have not been studied well enough for applications in compression and may

have enormous impact on it. An ε-Polynomial Time Approximation Scheme (PTAS), although a

theoretical nicety for the most part, gives a smooth tradeoff between an algorithm’s complexity

and its performance. Using a PTAS, one can solve the bit allocation problem to an arbitrary

degree of precision with a proportionate increase in computational complexity (and hence, delay)

at an encoder. The user may pre-specify the encoding complexity that he is willing to incur;

based on which the algorithm scales to satisfy an error-ratio relative to the optimal solution,

irrespective of source statistics or the problem instance. Alternatively put, based on an a-priori

error bound from the optimal solution, the scheme would scale gracefully from very low to

exponentially high complexity. Hence one may view a PTAS as a set of algorithms to tradeoff

encoding complexity versus distortion while quantizing in an operational R-D. We reiterate an

important outcome of using approximation algorithms is that their performance is guaranteed

irrespective of the problem instance or the source density being quantized. Of equal, if not more

practical interest, is a known 4/5-approximation algorithm that has fairly minimal complexity.

Each of these algorithms yields a lossy universal compression (quantization) scheme. We will

discuss these results and its implications on quantization theory in more detail in a follow-up

paper [13].

7.2 Scheduling objects

The early-tardy model of Chapter 3 could be expanded in several directions. A functionality that

our model ignores (yet one that is commonly supported in multimedia documents) is user

interaction. Users may change the playout of a presentation by interacting with the scene. This

could happen by stopping or starting some elementary streams, by adding locally stored objects,

or by signaling a remote server to modify the scene. Similar behavior can also be caused by

quasi-static objects including objects with hyperlinks, D-HTML documents with portions that

may be activated or de-activated interactively, and objects having local or distributed dependent

194

objects. Events caused by these occur at a coarse time granularity, are asynchronous, and fairly

unpredictable. They cause the temporal requirements of some objects to change at render time.

In order to facilitate the use of an ET-like framework to handle this, one avenue could be to

extend incremental approaches like the dispatching rules. Another direction may be to build

some fault tolerance within the model to allow a cushion for unpredictable variations.

Yet another functionality that is becoming commonplace is the integration and coherent playback

of objects present in distributed and federated network environments. New issues like

heterogeneity, type and location of synchronization control, hierarchical synchronization

frameworks, and load balancing have to be taken into account in distributed systems. The

incorporation of some of the above into the ET model could form an interesting direction to work

in. Finally, as we have mentioned earlier also, our framework handles buffer limitations

implicitly using an earliness penalization term instead of using explicit buffering constraints.

Other works such as the JINSIL project [150], Escobar-Molano [51] and Kalva and Eleftheriadis

[86][87] took an explicit account of these to find an optimal resource schedule for continuous

display of structured video. Their primary focus in these works had been on buffer and

bandwidth allocation issues resulting from variations in number of atomic objects and their

compression ratios. Similar results in [101][139] also report significant improvement in network

utilization by doing work-ahead smoothing and optimal pre-fetching under decoder buffering

and delay constraints. We believe that it would be an interesting exercise to study if ET problems

with additional buffering constraints can be optimally yet easily solved.

7.3 Memoryless algorithms and dependent allocation

In the last two chapters of this Thesis we studied the affects of dependency in quantization and

dynamic rate shaping problems, respectively. We saw experimentally that the improvement

obtained by relaxing the causality assumption was fairly marginal for the dependent quantization

problem. The author believes that a rigorous approach like that of Chapter 6 could be used to

explain this behavior as well. Finally, the key result of Chapter 6 opens up the way to construct

much simpler memoryless (approximate) algorithms for traditional drift problems such as those

in [3] and [105].

195

APPENDICES

Contents

A.1. Branch and bound method ... 195
A.2. Dynamic programming for MCKP... 198
A.3. Proof of propositions in Chapter 3 .. 199

A.1 Branch and bound method [110]

The Branch and Bound method is a recursive procedure for solving any pure or mixed integer-

programming problem. Without loss of generality we consider a max IP. As we show in Figure

8.1, the Branch and Bound method solves the problem by repetitively solving linear relaxation of

integer programs. The optimal solution to a linear relaxed problem forms an upper bound on all

feasible solutions to the integer program. The procedure consists of two rules – a Branching

Rule and a Fathoming or Stopping Rule. In the branching step, two sub-problems are solved

each preventing a fractional variable (Xi in Figure 8.1) from taking on its fractional value (I+f) in

the optimal solution to the LP. Note that children of a node can only lead to worse solutions than

the parent. Thus, branching need not be done if the linear program gives a solution with integral

variables (where necessary) or a value of the LP relaxed objective function that is less than the

current best integer solution. A formal statement of the method is:

196

Branching Rule:

STEP 1. Solve the corresponding linear programming problem by ignoring any integer

constraints, for example, if we require that Xi ∈{0,1}, we would put the constraint 0≤ Xi ≤1 for

i=1,..,n in the LP relaxation. The linear program may be solved in one of many ways, e.g., using

the simplex method or a faster interior point method.

STEP 2. Choose any variable, say Xi, which takes on a fractional value (say, I + f) in the

solution to Step 1. If for the original IP Xi must take only integral values only, we generate two

sub-problems specified below, and repeat the Branching rule for each of them.

Sub-problem 1: Linear programming problem in STEP 1 + constraint Xi ≤ I

Sub-problem 2: Linear programming problem in STEP 1 + constraint Xi ≥ I+1

Fathoming or Bounding Rule:

A node in the tree is fathomed if either of the following is true:

RULE 1. The sub-problem is infeasible.

RULE 2. The solution to the linear relaxation has an integer-valued solution for the necessary

variables. Note that this solution is feasible for the original IP. If the value of the objective

function is higher than the current best lower bound, the current lower bound is set to this value.

RULE 3. The value of the objective function is less than the current lower bound. Note that the

variables need not be integers to do this fathoming step.

Although Branch-and-Bound is a generic procedure, its complexity is exponential. In case of

KP, solving the linear program involves only a sorting step. Once the candidate objects are

sorted, they are added in decreasing order of profit density. When the bandwidth constraint

cannot be satisfied, a fractional amount of the critical object is added using up the entire residual

bandwidth. Since there is only one fractional object, the two sub-problems also get simplified to

the original problem plus a constraint for including or excluding the critical object. This leads to

two smaller problems with exactly the same structure as the original one. Using an iterative

197

argument one gets an O(2n) complexity for Branch and Bound for KP. Using similar arguments,

we can show that the complexity of this method for MCKP is (2)
i

i

n

O
∑

.

Figure 8.1: The Branch and Bound Method.

198

A.2 Dynamic programming for MCKP [110][148]

As with the simple knapsack problem, dynamic programming gives a pseudo-polynomial time

algorithm for MCKP. We use the following notation:

fk(m) = maximum objective function value if m units of bandwidth are available and we are

allowed to use only items in sets 1,..,k.

m = amount of currently available bandwidth, m ≤ B

si
* =

inj ,..,1
min
=

{sij} for i=1,..,N

Using the above, a state is defined by the pair (k, m) and has a value

fk(m)=max{ ij

k

i

n

j

X
i

∑∑
= =1 1

ijp ij

k

i

n

j

X
i

∑∑
= =1 1

ijs ≤ m; ∑
=

in

j

ijX
1

= 1 for each i ≤ k and Xij∈{0,1} }

With this definition of state, we can write the following DP recursion:

f1(m) = - ∞ for m=0,..,s1
*-1.

 =
1,..,1

max
nj =

 { p1j s1j ≤ m } for m= s1
*,..,B.

and for k=2,..,N,

fk(m) = - ∞ for m = 0,..,∑
=

k

i 1

si
* -1

 =
knj ,..,1

max
=

 { fk-1(m-skj) + pkj skj ≤ m }

 for m = ∑
=

k

i 1

si
* ,..., B

The optimal objective function is given by fN(B) and the optimal set {Xij} can be found by

backtracking the algorithm. Obviously, the space and time complexity of this method is

O(B∑
=

N

i 1

ni) . As this may become large fast, DP is not suitable for solving big problems. We

may, however, prune out some states from each set to reduce complexity. For example, if there

are two scaled versions O1 and O2 of an object such that O1 has higher bitrate and lower PSNR

than O2, then O1 will never be included in an optimal solution and hence can be pruned out.

199

A.3 Proof of propositions in Chapter 3 [119]

Consider proposition (b) in Section 3.4 of Chapter 3. We need to show that target display time

of objects coincides with the completion time of some object. Assume otherwise. This would

mean that we have a situation like the one shown in Figure 8.2. Let the objective value of this

schedule be f(d). Form a new schedule by shifting objects in set P1 to the right by d1. Call the

new objective function value f(d1). It is easy to see that :

2 1

1 1() () ()j i j i
j P j P

f d f d dβ β α α
∈ ∈

= + + − −∑ ∑

Similarly, form a new schedule from the original one by shifting objects in set P2 to the left by

d2. Call the new objective function value f(d2). Then,

∑∑
∈∈

−−+−=
12

22)()()(
Pj

ij
Pj

ij ddfdf ααββ

Since both d1 and d2 are greater than zero, one of the two new schedules must be better than the

original one depending on whether ∑∑
∈∈

−−+
12 Pj

ij
Pj

ij ααββ is less than or greater than 0.

Other propositions in Section 3.4 can be proven in a similar way.

Figure 8.2: The target display time should coincide with the completion time of some

object.

200

REFERENCES

[1] E. Amir. and S. McCanne and M. Vetterli, “A Layered DCT Coder for Internet Video",

Proc. ICIP, Laussanne, Switzerland, Vol. 1, pp. 13-16, Sep. 1996.

[2] R. Aravind. and R. Civanlar, R. and A.R. Reibman, “Packet Loss Resilience of MPEG-2

Scalable Video Coding Algorithms", IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 6, No.5, pp. 426-435, Oct. 1996.

[3] J.F. Arnold, M.R. Frater, Y. Wang, “Efficient Drift-Free Signal-to-Noise Ratio Scalability,”

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 1, pp. 70-82,

Feb, 2000.

[4] P. Assuncao, and M. Ghanbari, “A frequency-domain video transcoder for dynamic bit-rate

reduction of MPEG-2 bit streams,” IEEE Trans. on Circuits and Systems for Video

Technology, Vol. 8, No. 8, 1998, pp. 953–967.

[5] P. Assuncao and M. Ghanbari, “Optimal transcoding of compressed video,” Proceedings,

IEEE Int’l Conf. on Image Processing, October 1997, Santa Barbara, CA, Vol. 1, pp. 739–

742.

[6] E. Ayanoglu etal., “Forward error control for MPEG-2 video transport in a wireless LAN”,

ACM/Baltzer Mobile Networks and Applications Journal, Vol. 1, pp. 235-244, Dec. 1996.

[7] O. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, and L. Ward, “MPEG-4 Systems:

Overview”, pp. 331-365, Multimedia Systems, Standards and Networks, Editors A. Puri, T.

Chen, Marcel Dekker, New York.

201

[8] K. Baker and G.D. Scudder, "Sequencing with earliness and tardiness penalties: A review,"

Operations Research, Vol. 38, pp. 22-36, 1990.

[9] K. Baker and G.D. Scudder, “On the assignment of optimal due date”, Journal of Operations

Research Society, Vol. 40, No. 1, pp. 93-95, 1989.

[10] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, "Improving TCP/IP Performance over

Wireless Networks" Proceedings 1st ACM International Conference On Mobile Computing

and Networking, pp. 1-11, Nov. 1995.

[11] P.Batra and A.Eleftheriadis, “A framework for optimal scheduling of structured and

streaming media”, Columbia University, EE Dept./ADVENT Technical Report #2000-03. To

be submitted, IEEE Transactions on Multimedia, 2003.

[12] P.Batra and S-F. Chang, “Effective algorithms for video transmission over wireless

channels”, Signal Processing: Image Communication, Vol. 12, pp. 147-166, 1998. An earlier,

but quite different version is in: CU/CTR Technical Report 476-97-10, 1997.

[13] P. Batra, “Complexity-Distortion tradeoffs in quantization”, In Preparation, October

2002.

[14] P. Batra and A. Eleftheriadis, “Analysis of dynamic rate shaping of Markov-1 sources”,

IEEE Int’l Conf. on Image Processing, Sep 2003.

[15] P. Batra, “Modeling and efficient optimization for object based scalability and some

related problems,” IEEE Transactions on Image Processing, Vol. 9, No. 10, pp.1677-92, Oct.

2000. An earlier version is in: EE Dept./ADVENT Technical Report #1998-05.

[16] P. Batra, A.Eleftheriadis, and J. Sethuraman, “Alternative formulations for bit allocation

with dependent quantization”, In review with IEEE Transactions on Image Processing, 2002.

[17] P. Batra and A. Eleftheriadis, “Alternative formulations for bit allocation with dependent

quantization”, Proc. ICASSP, 2002.

[18] M. Bazaraa, J. J. Jarvis, and H. D. Sherali, “Linear Programming and Network Flows”,

2nd Edition, John Wiley and Sons, 1990.

[19] J. Bean, "Genetics and Random Keys for Sequencing and Optimization," ORSA Journal

of Computing, Vol. 6, pp. 154-160, 1994.

[20] R. Bellman and S. Dreyfus, “Applied Dynamic Programming”, Princeton University

Press, Princeton, N. J., 1962.

202

[21] J. Belzer, Liao, Villasenor, "Adaptive Video Coding for Mobile Wireless Networks",

Proc. ICIP, Oct. 1994.

[22] T. Berger, “Rate Distortion Theory: A Mathematical Basis for Data Compression,”

Englewood Cliffs, NJ: Prentice Hall, 1971.

[23] E. Berklekamp, R Peile, and S.P. Pope, “The Application of Error Control to

Communications", IEEE Communications Magazine, Vol. 25, No. 4, pp. 44-57, Apr. 1987.

[24] D. Bertsimas and R Vohra, “Rounding algorithms for covering problems”, Mathematical

Programming, Vol. 80, pp. 63-89, 1998.

[25] H. Burton and D.D. Sullivan, "Error Control Coding", Proceedings of the IEEE, Vol. 60,

No. 11, pp. 1293-1301, Nov. 1972.

[26] M.C. Buchanan and P.T. Zellweger, “Automatically generating consistent schedules for

multimedia applications”, Multimedia Systems, Vol. 1, No.2, pp. 55-67, 1993.

[27] J. Cain and D.N. McGregor, “A Recommended Error Control Architecture for ATM

Networks with Wireless Links" IEEE Journal on Selected Areas in Communications, Vol.

15, No. 1, pp. 16-28, Jan. 1997.

[28] K. Candan, B. Prabhakaran, and V.S. Subrahmanian, “Collaborative Multimedia

Documents: Authoring and Presentation,” International Journal of Intelligent Systems, Vol.

13, 1059-1111, 1998.

[29] N. Chaddha and S. Diggavi, “A Frame-work for Joint Source-Channel Coding of Images

over Time-Varying Wireless Channels" Proc. ICIP, Laussanne, Switzerland, Vol. 1, pp. 1-5,

Sep. 1996.

[30] A. Chandra, D. S. Hirschberg, and C. K. Wong, “Approximate algorithms for some

generalized knapsack problems”, Theoretical Computer Science, Vol. 3, pp. 293-304, 1976.

[31] C.-F. Chen and K.K. Pang, “Hybrid Coders With Motion Compensation,”

Multidimensional Systems and Signal Processing, Vol. 3, pp. 241-266, 1992.

[32] C.-F. Chen and K.K. Pang, “The Optimal Transform of Motion-Compensated Frame

Difference Images in a Hybrid Coder,” IEEE Transactions on Circuits and Systems – II:

Analog and Digital Signal Processing, Vol. 40, No. 6, pp. 393-397, 1993.

[33] T. P.-C. Chen and T. Chen, “Fine-grained rate shaping for video streaming over wireless

networks,” unpublished manuscript (submitted to ICASSP 2003), available at

http://amp.ece.cmu.edu/people/Trista.

203

[34] J. Chen and D.W. Lin “Optimal bit allocation for coding of video signals over ATM

networks,” IEEE Journal on Selected Areas in Communications, pp. 1002-15, Vol. 15, No. 6,

Aug. 1996.

[35] T. Cheng and M.C. Gupta, "Survey of scheduling research involving due date

determination decisions," European Journal of Operations Research, Vol. 38, pp. 156-166,

1989.

[36] H. Chernoff, “A measure of asymptotic efficiency for tests based on the sum of

observations”, Annals of Mathematical Statistics, Vol. 23, pp. 493-509, 1952.

[37] T. Chiang and H-J Lee, “ISO/IEC MPEG98/M3816, Study of FCD text for rate control”,

July 1997.

[38] J. Chuang, “Comparison of Two ARQ Protocols in a Rayleigh Fading Channel” IEEE

Transactions on Vehicular Technology, Vol. 39, No. 4, pp.367-73, Nov. 1990.

[39] R. Clarke, “Digital Compression of Still Images and Video", Academic Press, London,

England, 1995.

[40] G. Cornuejols, M.L. Fisher, and G.L. Nemhauser, “Location of bank accounts to optimize

float: An analytic study of exact and approximate algorithms”, Management Science, Vol.

23, No. 8, pp. 789-810, April. 1977.

[41] G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey, “The uncapacitated facility location

problem”, In P. Mirchandani and R. Francis, Eds., Discrete Location Theory, John Wiley and

Sons, John Wiley and Sons, New York, 1990.

[42] R. Cruz, “A Calculus of Network Delay, Part 1: Network Elements in Isolation", IEEE

Transactions on Information Theory, Vol. 37, No. 1, pp. 114-31, Jan. 1991.

[43] J. Davis and J.J. Kanet, "Single machine scheduling with early and tardy completion

costs," Naval Research Logistics, Vol. 40, No. 1, pp. 85-101, 1993.

[44] M. Dyer, “An O(n) algorithm for the multiple-choice knapsack linear program”,

Mathematical Programming, Vol. 29, pp. 57-63, 1984.

[45] A. Eleftheriadis and P. Batra, “Optimal data partitioning of MPEG-2 coded video”, To

appear, IEEE Transactions on Circuits and Systems for Video Technology, 2004.

[46] A. Eleftheriadis and P. Batra, “Dynamic rate shaping of compressed digital video”, Being

revised for IEEE Transactions on Multimedia, 2003.

204

[47] A. Eleftheriadis, S. Pejhan and D. Anastassiou, "Algorithms and Performance Evaluation

of the Xphone Multimedia Communication System", Proc. ACM Multimedia, pp. 311-20,

Aug. 1993.

[48] A. Eleftheriadis and D. Anastassiou, “Meeting arbitrary QoS constraints using Dynamic

Rate Shaping of Coded Digital Video,” NOSSDAV, pp. 96-106, Durham, New Hampshire,

April 1995.

[49] A. Eleftheriadis, “Dynamic Rate Shaping of Compressed Digital Video,” Ph.D. Thesis,

Department of Electrical Engineering, Columbia University, New York, NY, 1995.

[50] A. Eleftheriadis and D. Anastassiou, “Optimal Data Partitioning of MPEG-2 Coded

Video,” Proceedings, 1st IEEE International Conference on Image Processing (ICIP-94),

Austin, Texas, November 1994, pp. I.273-I.277.

[51] M. Escobar-Molano, S. Gandeharizadeh, and D. Ierardi, “An Optimal Resource

Scheduler for Continuous Display of Structured Video Objects,” IEEE Transactions on

Knowledge and Data Engineering, Vol. 8, No. 3, June 1996.

[52] H. Everitt III, “Generalized Lagrange multiplier method for solving problems of optimum

allocation of resources”, Operations Research, Vol. 11, pp. 399-417, 1963.

[53] M. Fisher, “The Lagrangian relaxation method for solving integer programming

problems,” Management Science, Vol. 27, pp. 1-18, Jan. 1981.

[54] G. Forney, “The Viterbi Algorithm”, Proc. IEEE, Vol. 61, pp. 268-78, Mar. 1973.

[55] B. Fox and D. M. Landi, “Searching for the multiplier in one-constraint optimization

problems”, Operations Research, Vol. 18, pp. 253-262, 1970.

[56] B. Fox, “Discrete optimization via marginal analysis”, Management Science, Vol. 13,

No. 3, pp. 210-216, Nov. 1966.

[57] M. Garrett and M Vetterli, "Joint source/channel coding of statistically multiplexed real-

time services on packet networks" IEEE/ACM Transactions on Networking, Vol. 1, No. 1,

pp. 71-80, Feb. 1993.

[58] M. Ghanbari and V. Seferidis, “Cell-Loss Concealment in ATM Video Codecs", IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 3, No. 3., Jun 1993.

[59] M. Ghanbari, “Postprocessing of Late Cells for Packet Video", IEEE Transactions on

Circuits and Systems for Video Technology, Vol. 6. No. 6, pp. 669-78, Dec. 1996.

205

[60] M. Ghanbari, “Two-Layer Coding of Video Signals for VBR Networks”, IEEE Journal

on Selected Areas in Communications, Vol. 7, No. 5, pp. 771-81, Jun. 1989.

[61] H. Gharavi and M. Partovi, "Multilevel Video Coding and Distribution Architectures for

Emerging Broadband Digital Networks", IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 6, No. 5, pp. 459-69, Oct. 1996.

[62] F. Glover, "Tabu Search: A Tutorial," Interfaces, Vol. 20, No. 4, pp. 74-94, 1990.

[63] M. Goemens and D.P. Williamson, “The primal-dual method for approximation

algorithms and its application to network design problems”, In Approximation Algorithms

for NP-hard Problems, D. Hochbaum, Ed., PWS, 1997.

[64] H.263 Standard, "Line transmission of non-telephone signals", Jul. 1995.

[65] N. Hall and M.E. Posner, "Earliness-tardiness scheduling problems, I: Weighted

deviation of completion times about a common due date," Operations Research, Vol. 39, pp.

836-846, 1991

[66] R. Han and D.G. Messerschmitt, “Asymptotically Reliable Transport of

Multimedia/Graphics Over Wireless Channels" Proceedings Multimedia Computing and

Networking, San Jose, CA, pp.29-31, Jan. 1996.

[67] L. Hanzo and J. Streit, "Adaptive Low Rate Wireless Videophone Schemes", IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 5, No. 4, pp. 305-318,

Aug.1998.

[68] T. Hsing etal. "A Real-Time Software Based End-to-End Wireless Visual

Communications Simulation Platform", Polytechnic University Symposium on Multimedia

Communications and Video Coding, Nov. 1995.

[69] C. Hsu. and A. Ortega and M. Khansari, “Rate control for robust video transmission over

wireless channels”, Proc. VCIP, San Jose, Feb. 1997.

[70] C. Hsu, A. Ortega, "Joint Selection of Source and Channel Rate for VBR Video

Transmission under ATM Policing Constraints", Vol. 15, No. 6, pp.1016-28, Aug. 1997.

[71] J. Huang and P.M. Schultheis, “Block quantization of correlated Gaussian random

variables”, IEEE Transactions on Communication Systems, Vol. 11, No. 3, pp. 289-296, Sep.

1963.

[72] O. Ibarra and C. E. Kim, “Fast approximation algorithms for the knapsack and sum of

subset problems”, Journal of the ACM, Vol. 22, pp. 463-468, 1975.

206

[73] IEEE Journal on Selected Areas in Communications, Special Issue on “Synchronization

Issues in Multimedia Communications,” Guest Eds. N.D. Georganas, R. Steinmetz, and T.

Nakagawa, Jan. 1996.

[74] Information Technology – Generic coding of Moving Pictures and Associated Audio,

ITU-T Draft Recommendation H.262, ISO/IEC 13818 Draft International Standard (MPEG-

2), 1994.

[75] ISO/IEC JTC1/SC29/WG11 N1808 MPEG97, "Description of Core Experiments on

Error Resilience Aspects in MPEG-4 Video", 1997.

[76] ISO/IEC JTC1/SC29/WG11, N2416, “Coding of audio-visual objects: Systems” FCD

ISO/IEC 14496-1. Oct. 1998.

[77] ISO/IEC JTC1/SC29/WG11, N2417, “Coding of audio-visual objects: Video” FCD

ISO/IEC 14496-2. Oct. 1998.

[78] ISO/IEC 14772-1, “The Virtual Reality Modeling Language”, 1997 http://www.vrml.org/

Specification/VRML97.

[79] ITU-T Recommendation H.263, “Video coding for low bit rate communication”, May

1996.

[80] S. Jacobs and A. Eleftheriadis, “Streaming Video using TCP Flow Control and Dynamic

Rate Shaping,” Journal of Visual Communication and Image Representation, Special Issue

on Image Technology for World-Wide-Web Applications, Vol. 9, No. 3, September 1998,

pp. 211–222.

[81] A. Jain, "Fundamentals of Digital Image Processing," Prentice Hall, Inc., Englewood

Cliffs, N.J., USA, 1995.

[82] K. Jain and V.V. Vazirani, “Approximation algorithms for metric facility location and k-

median problems using the primal-dual schema and Lagrangian relaxation”, To appear,

Journal of the ACM, 2001.

[83] W. Jakes Jr., “Microwave Mobile Communications", John Wiley and Sons, 1994.

[84] N.S. Jayant and P. Noll, “Digital Coding of Waveforms – Principles and Applications to

Speech and Video,” Englewood Cliffs, NJ: Prentice Hall, 1984.

[85] H. Kalva et.al. “Implementing multiplexing, streaming, and server interaction for MPEG-

4,” IEEE Transactions on CSVT, pp. 1299-311, Vol. 9, No. 8, Dec. 1999.

207

[86] H. Kalva and A. Eleftheriadis, “Algorithms for Multiplex Scheduling of MPEG-4

Presentations”, In Review with IEEE Trans. On CSVT.

[87] H. Kalva and A. Eleftheriadis, “Scheduling Interactive MPEG-4 Presentations”, In

Review with IEEE Trans. On CSVT.

[88] H. Kanakia, P. P. Mishra, and A. Reibman, “An Adaptive Congestion Control Scheme

for Real-Time Packet Video Transport,” Proceedings, ACM SIGCOMM Conference,

September 1993, pp. 20-31.

[89] G. Karlsson and M. Vetterli, “Packet Video and its Integration into the Network

Architecture", IEEE Journal on Selected Areas in Communications, Vol. 7, No. 5, pp. 739-

51, Jun. 1989.

[90] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman, “Transcoding of MPEG

bitstreams,” Signal Processing: Image Communication, Vol. 8, No. 6, September 1996, pp.

481–500.

[91] M. Khansari and M. Vetterli, “Layered Transmission of Signals over Power-Constrained

Wireless Channels" Proc. ICIP, Washington D.C., pp. 23-26, Oct. 1995.

[92] M. Khansari et.al., “Low Bit-Rate Video Transmission over Fading Channels for

Wireless Microcellular Systems", IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 6, No. 1, pp. 1-11, Feb. 1996.

[93] M. Kim and J. Song, “Multimedia documents with elastic time,” ACM Multimedia

Conference, 1995.

[94] W. Lam and A Reibman, "An error concealment algorithm for images subject to channel

errors" IEEE Transactions on Image Processing, Vol. 4, No. 5, pp. 533-542, May 1995.

[95] B. Lamparter and M. Kalfane, “The Implementation of PET”, TR-95-047, International

Computer Science Institute, Berkeley, CA. Aug. 1995.

[96] G. Lawton, "Genetic algorithms for schedule optimization," AI Expert, pp. 23-27, May

1992.

[97] D. LeGall, “MPEG: A video compression standard for multimedia applications”

Communications of the ACM, 34(4): 46-58, April 1991.

[98] T. Little and A. Ghafoor, “Multimedia Synchronization Protocols for Broadband

Integrated Services,” IEEE Journal on Selected Areas in Communications, pp. 1368-1382,

Vol. 9, No. 9, 1991.

208

[99] H. Liu and M. Zarki, “Data partitioning and Unbalanced Error Protection for H.263

Video Transmission over Wireless Channels", Polytechnic University Symposium of

Multimedia Communications and Video Coding, New York, NY, Nov. 1995.

[100] J. Markel and A.H. Gray, “Linear prediction of Speech”, 3rd Edition, New York: Springer

Verlag, 1982.

[101] J. McManus and K. Ross, “Video-on-demand over ATM: Constant-rate transmission and

transport,” IEEE Journal on Selected Areas in Communications, Vol. 14, pp. 1087-1098,

Aug. 1996.

[102] J. Meng and S-F. Chang, “CVEPS: A Compressed Video Editing and Parsing System",

ACM Multimedia Conference, Boston, MA, Vol. 2419, Nov. 1996.

[103] J. Meng etal, “Scene Change Detection in a MPEG Compressed Video Sequence",

IS&T/SPIE Symposium Proceedings, San Jose, California, Vol. 2419. Feb. 1995.

[104] J. Modestino, D.G. Daut, and A.L. Vickers, "Combined Source-Channel Coding of

Images using the Block Cosine Transform", IEEE Transactions on Communications, COM-

29, No. 9, Sep. 1981.

[105] R. Mokry and D. Anastassiou, “Minimal Error Drift in Frequency Scalability for Motion-

Compensated DCT coding,” IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 4, No. 4, pp. 392-406, Aug. 1994.

[106] D. G. Morrison, M. E. Nilsson, and M. Ghanbari, “Reduction of the Bit-Rate of

Compressed Video While in its Coded Form,” Proceedings, Packet Video Workshop, 1994,

pp. D17.1–17.4.

[107] MPEG-2 Systems Standard, ISO/IEC 13818-1 MPEG-2 H.222.0, "Generic coding of

moving pictures and associated audio: Systems", Nov. 1994.

[108] MPEG-2 Video Standard, ISO/IEC 13818-2 MPEG-2 H.262, Video, Nov. 1994.

[109] Y. Nakajima, H. Hori, and T. Kanoh, “Rate conversion of MPEG coded video by re-

quantization process,” Proceedings, IEEE Int’l Conf. on Image Processing, October 1995,

Vol. 3, pp. 408–411.

[110] G. Nemhauser and L. A. Wolsey, “Integer and combinatorial optimization”, New York:

Wiley, 1988.

[111] A. Netravali and B.G. Haskell, "Digital Pictures: Representation, Compression, and

Standards," New York, Plenum Press, 2nd Edition, 1995.

209

[112] A. Noerpel, Y. Lin, and H. Sherry, "PACS: Personal Access Communications System - a

tutorial" IEEE Personal Communications, Vol. 3, No.3, pp. 32-43, Nov. 1996.

[113] A. Ortega, “Optimization techniques for adaptive quantization of image and video under

delay constraints,” Ph.D. Thesis, Department of Electrical Engineering, Columbia

University, New York, NY, 1994.

[114] A. Ortega and M. Khansari, “Rate Control for Video Coding over Variable Bit Rate

Channels with Applications to Wireless Transmission", Proc. ICIP, Washington DC, pp. 23-

26, Oct. 1995.

[115] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based buffered

compression and fast approximations”, IEEE Trans. On Image Processing, Vol. 3, No. 1, pp.

26-39, Jan. 1994.

[116] P. Ow and T.E. Morton, "The single machine early tardy problem," Management

Science, Vol. 35, pp. 177-191, 1988.

[117] S. Paek and S-F Chang, “Video server retrieval scheduling and resource reservation for

variable bit rate scalable video”, IEEE Transactions on CSVT, Vol. 10, No. 3, April 2000.

[118] K. Pahlavan and A. Levesque, “Wireless Information Networks”, John Wiley and Sons,

Inc., 1995.

[119] S. Panwalkar, M.L. Smith, and A. Seidman, "Common due date assignment to minimize

total penalty for the one machine scheduling problems," Operations Research, Vol. 30, pp.

391-399, 1982.

[120] Papers in ACM Multimedia Conference, 1993, 1997 and 1998.

[121] V. Parthasarathy, J.W. Modestino and K.S. Vastola, "Design of a Transport Coding

Scheme for High-Quality Video over ATM Networks", IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 7, No. 2, pp. 358-76, Apr. 1997.

[122] S. Pejhan, M. Schwartz and D. Anastassiou, "Error Control Using Retransmission

Schemes in Multicast Transport Protocols for Real-Time Media", IEEE/ACM Transactions

on Networking, Vol. 4, No. 3. pp. 413-27, June 1996.

[123] M. Pinedo, “Scheduling Theory, Algorithms, and Systems,” Prentice Hall, Englewood

Cliffs, N.J. 1995.

[124] A. Puri and T. Chen Eds. “Multimedia Systems, Standard, Networks,” In preparation,

Marcel Dekker, 1999.

210

[125] A. Puri etal., "Considerations in ISO MPEG-4 and ITU-T Mobile Video Standards",

Proceedings 3rd. International Workshop on Mobile Multimedia Communications (MoMuC-

3)", Princeton, NJ, Sep. 1996.

[126] P. Raghavan and C.D. Thompson, “Randomized rounding: provably good algorithms and

algorithmic proofs”, Combinatorica, Vol. 7 pp. 365-374, 1987.

[127] P. Raghavan, “Probabilistic construction of deterministic algorithms: approximating

packing integer programs”, Journal of Computer and System Sciences, Vol. 37, pp. 130-143,

1988.

[128] K. Ramchandran, “Joint Optimization Techniques in Image and Video Coding with

Applications to Multi-resolution Digital Broadcast,” Ph.D. Thesis, Department of Electrical

Engineering, Columbia University, New York, NY, 1993.

[129] K. Ramchandran and M Vetterli, “Best wavelet packet in the rate-distortion sense”, IEEE

Trans. on Image Processing, Vol. 2, No. 2, pp. 160-175, Apr. 1993.

[130] K. Ramchandran etal., “Multi-resolution Broadcast for Digital HDTV Using Joint

Source/Channel Coding", IEEE Journal on Selected Areas in Communications, Vol. 11, No.

1, pp. 6-23, Jan. 1993.

[131] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for dependent quantization

with applications to multi-resolution and MPEG video coders”, IEEE Trans. On Image

Processing, Vol. 3, No. 5, pp. 533-545, Sep 1994.

[132] K.R. Rao and P. Yip, “Discrete Cosine Transform: Algorithms, Advantages,

Applications,” Academic Press, San Diego, California, 1990.

[133] T. Rappaport, “Wireless Communications, Principles and Practice", Prentice Hall, New

Jersey, 1996.

[134] J. Reason et.al. “Asynchronous Video: Coordinated Video Coding and Transport for

Heterogeneous Networks with Wireless Access”, Mobile Computing, Korth and Imielinski,

Kluwer Academic Publishers, Boston, MA, 1995.

[135] R. Rejai, M. Handley, and D. Estrin, “Layered quality adaptation for Internet video

streaming,” IEEE Journal on Selected Areas in Communications, Quality of Service (QoS) in

the Internet, Vol. 18, No. 12, December 2000, pp. 2530–2498.

211

[136] A. Reibman and B. Haskell, “Constraints on Variable Bit Rate Video for ATM

Networks” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 2, No. 4,

pp. 361-72, Dec. 1992.

[137] K.-C. Roh, K.-D. Seo, and J.-K. Kim, “Data Partitioning and coding of DCT coefficients

based on re-quantization for error-resilient transmission of video,” Signal Processing: Image

Communication, Vol. 17, No. 8, September 2002, pp. 573–586.

[138] S. Sahni, “Approximate algorithms for the 0/1 knapsack problem”, Journal of the ACM,

Vol. 22, pp. 115-124, 1975.

[139] J. Salehi, Z. Zhang, J.J. Kurose, and D. Towsley, “Supporting stored video: reducing rate

variability and end-to-end resource requirements through optimal smoothing,” ACM

Sigmetrics, pp. 222-231, May 1996.

[140] G. Schuster and A. Katsaggelos, “Rate-distortion based video compression -- Optimal

video frame compression and Object Boundary Encoding”, Kluwer Academic Publishers,

1997.

[141] A. Segall, “Bit allocation and entropy for vector sources”, IEEE Trans. On Information

Theory, Vol. IT-22, pp. 162-169, Mar. 1976.

[142] K.-D. Seo, S.-C. Heo, and J.-K. Kim, “Adaptive rate control algorithm based on

logarithmic R-Q model for MPEG-1 to MPEG-4 transcoding,” Signal Processing: Image

Communication, Vol. 17, No. 10, November 2002, pp. 857–876.

[143] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower spatio-

temporal resolutions and different encoding formats,” IEEE Trans. on Multimedia, Vol. 2,

No. 2, June 2000, pp. 101–110.

[144] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers”,

IEEE Trans. on Signal Processing, Vol. 36, pp. 1445-53, Sept. 1988.

[145] H. Song and K. M. Lee, “Adaptive rate control algorithms for low bit rate video under

networks supporting bandwidth renegotiation,” Signal Processing: Image Communication,

Vol. 17, No. 10, November 2002, pp. 759–780.

[146] Signal Processing: Image Communication, Special Issue on MPEG-4, Parts 1 and 2:

Invited and Submitted Papers, Vol. 10, Nos. 1-4, May-July 1997.

212

[147] J. Signes, Y. Fisher, and A. Eleftheriadis, “MPEG-4: Scene Representation and

Interactivity”, pp. 407-447, Multimedia Systems, Standards, and Networks, Eds. A. Puri and

T. Chen, Marcel Dekker, Inc. New York.

[148] P. Sinha and A. A. Zoltners, “The Multiple-Choice Knapsack Problem”, Operations

Research, Vol. 27, No. 3, May-June 1979.

[149] I. Sodagar, Hung-Ju Lee, P. Hatrack, Ya-Qin Zhang “Scalable wavelet coding for

synthetic/natural hybrid images”, IEEE Transactions on Circuits & Systems for Video

Technology, vol.9, no.2, March 1999, pp.244-54.

[150] J. Song, A. Dan, and D. Sitaram, “Efficient Retrieval of Composite Multimedia Objects

in the JINSIL Distributed System,” pp. 260-271, ACM Sigmetrics, Seattle, WA, 1997.

[151] R. Stedman, H. Gharavi, L Hanzo and R. Steele, “Transmission of Sub-Band Coded

Images via Mobile Channels", IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 3, pp. 15-26, Feb. 1993.

[152] H. Stocker and J.W. Harris, “Handbook of Mathematics and Computational Science,”

Springer, New York, NY, 1998.

[153] J. Streit and L. Hanzo, “Quadtree-Based Reconfigurable Cordless Videophone Systems",

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 2, pp. 225-37,

Apr. 1996.

[154] H. Sun, W. Kwok, and J. W. Zdepski, “Architectures for MPEG Compressed Bitstream

Scaling,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, No. 2, April

1996, pp. 191–199.

[155] J. Tajime, Y. Senda, and Y. Miyamoto, “Fast software MPEG-2 video transcoder with

optimization of requantization error compensation,” Proceedings, IEEE Int’l Conf. on Image

Processing, 2002, Vol. 1, pp. 705–708.

[156] R. Talluri etal., "A robust, scalable, object-based video compression technique for very

low bit-rate coding", IEEE Transactions on Circuits and Systems for Video Technology, Vol.

7, No. 1, pp. 221-233, Feb. 1997.

[157] D. Taubman and A. Zakhor, “A common framework for rate and distortion based scaling

for highly scalable compressed video”, IEEE Transactions on CSVT, Vol. 6, No.4, pp. 329-

254, Aug. 1996.

213

[158] A. Trushkin, “Optimal bit allocation algorithm for quantizing a random vector”,

Problems of Information Transmission, Vol. 17, pp. 156-161, 1981.

[159] C.F. Van Loan and G.H. Golub, “Matrix computations,” 3rd Edition, Johns Hopkins

University Press, Baltimore, MD, 1996.

[160] A. Vetro and C. W. Chen, “Rate-reduction transcoding design for wireless video

streaming,” Proceedings, IEEE Int’l Conf. on Image Processing, 2002, Vol.1, pp. 29–32.

[161] O. Werner, “Requantization for transcoding of MPEG-2 intra-frames,” IEEE Trans. on

Image Processing, Vol. 8, No. 2, February 1999, pp. 179–191.

[162] M. Yong, Q-F. Zhu, and V. Eyuboglu, “VBR Transport of CBR-Encoded Video over

ATM Networks,” Proceedings, Packet Video Workshop, 1994, pp. D18.1–18.4.

[163] J. Youn and M.T. Sun, “Video Transcoding with H.263 Bit Streams,” Journal of Visual

Communication and Image Representation, December 2000, pp. 385–404.

[164] L. Yun and D. Messerschmitt, “Variable Quality of Service in Systems by Statistical

Power Control", Proc. IEEE ICC, 1995.

[165] E. Zemel, “An O(n) algorithm for the linear multiple choice knapsack problem and

related problems”, Information Processing Letters, Vol. 18, pp. 123-128, 1984.

[166] W. Zeng and B. Liu, “Rate shaping by block dropping for transmission of MPEG-

precoded video over channels of dynamic bandwidth,” Proceedings, ACM Multimedia

Conference, 1996.

[167] J. Zhang, M.R. Frater, J.F. Arnold, and T.M. Percival, "MPEG-2 Video Services for

Wireless ATM Networks", IEEE Journal on Selected Areas in Communications, Vol. 15, No.

1, pp. 119-28, Jan. 1997.

